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Abstract. We introduce a new preconditioner for elliptic PDE’s on unstructured meshes. Using
a wavelet-inspired basis we compress the inverse of the matrix, allowing an effective sparse approx-
imate inverse by solving the sparsity vs. accuracy conflict. The key issue in this compression is to
use second-generation wavelets which can be adapted to the unstructured mesh, the true bound-
ary conditions, and even the PDE coefficients. We also show how this gives a new perspective on
multiresolution algorithms such as multigrid, interpreting the new preconditioner as a variation on
node-nested multigrid. In particular, we hope the new preconditioner will combine the best of both
worlds: fast convergence when multilevel methods can succeed, but with robust performance for
more difficult problems.

The rest of the paper discusses the core issues for the preconditioner: ordering and construction
of a factored approximate inverse in the multiresolution basis, robust interpolation on unstructured
meshes, automatic mesh coarsening, and purely algebraic alternatives. Some exploratory numeri-
cal experiments suggest the superiority of the new basis over the standard basis for several tough
problems, including discontinuous anisotropic coefficients, strong convection, and indefinite reaction
problems on unstructured meshes, with scalability like hierarchical basis methods achieved.
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1. Motivation. Approximate inverses are becoming increasingly popular pre-
conditioners for the iterative solution of large sparse linear systems. The main reason
is that they can be efficiently applied (with just matrix-vector products) on high per-
formance hardware; they are also a valuable general-purpose alternative to ILU for
tough problems where ILU breaks down from instabilities.

Several algorithms for computing sparse approximations to A−1, or to its inverse
triangular factors L−1 and U−1, have been proposed: e.g. [5, 6, 7, 19, 27, 30, 36].
Unfortunately, for linear systems arising from elliptic PDE’s, there appears to be
an inherent problem in the explicit nature of these preconditioners, a fundamental
conflict between accuracy and sparsity. As problem sizes increase, their performance
(either in terms of convergence rate at a fixed number of nonzeros per row, or storage
required for a fixed convergence rate) quickly decreases.1

For a simple heuristic analysis of this problem, ignore boundary conditions. Sup-
pose the elliptic PDE Lu = f on domain Ω is discretized to Au = f on points x1,
. . . , xn in Ω, where the matrix A is the discrete form of the elliptic operator L,
and ui ≈ u(xi). (The discretization may use finite elements, finite volumes, or any
other reasonable scheme.) The continuous solution may be written with the Green’s
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scalability of ILU is still open [3, 4, 9, 14, 32, 33, 34].
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function G(x, y) on Ω× Ω satisfying LG(x, y) = δ(x− y):

u(x) =

∫

Ω

G(x, y)f(y) dy

(assuming this exists, as one would expect for an elliptic problem well-posed enough
to permit numerical solution). The discrete solution is similarly found with the matrix
A−1 satisfying AA−1 = I:

ui =

n∑

j=1

A−1
ij fj

Through this analogy, it is clear that A−1 is the discrete approximation to the Green’s
function.

Unfortunately, it is well known that though the Green’s function decays away from
its diagonal singularity, the decay may be slow especially for convective or indefinite
problems (in fact, for problems with Neumann boundaries, G might not even decay
to zero at all). The decay of the true Green’s function is independent of the mesh
size in the discretization, and so as the mesh is refined the number of large nonzeros
in A−1 also increases, roughly like O(n1+1/d) where n is the number of mesh nodes
and d is the dimensionality of the problem.2 This means an approximate inverse
preconditioner cannot scale effectively with the problem size.3

To be more precise, one cannot scale in the standard basis, where ui approximates
u(xi). In [11, 18], the realization that the Green’s function is smooth away from the
diagonal suggested wavelets as alternate bases: they can compress smooth functions
into high quality sparse approximations, handle non-smooth points (e.g. at the di-
agonal singularity, or arising from discontinuous coefficients), and provide fast and
parallelizable transforms to and from the standard basis. The finer the mesh, the bet-
ter the smoothness of G(x, y) can be exploited for compression, so the preconditioner
may scale much more effectively.

The original paper [18] considered only classical wavelets, treating the discrete
Green’s function as a two-dimensional, regularly sampled, periodic image. For prob-
lems of dimensions greater than one (so the Green’s function is of dimension greater
than two) on irregular meshes with non-periodic boundaries, this leads to significant
problems. In particular, these “first generation” wavelets are constructed on regu-
larly sampled one-dimensional periodic domains, and so cannot hope to perform well
on data coming from more complicated situations. This motivated the use of second
generation wavelets[35] in [11] that naturally match such domains, while retaining the
attractive properties of compression, tolerance of singularities, and fast transforms.
The present article describes the multiresolution approximate inverse preconditioner
of [11] and more recent developments.

Other authors have proved that discretizing elliptic PDE’s with a wavelet ba-
sis in the finite element method (and using point or block diagonal preconditioners)

2There are n columns in A−1, with column i containing a discrete approximation to G(·, xi).
There is a d-dimensional subregion ΩL ⊂ Ω s.t. G(x, xi) is large for x ∈ ΩL. There are O(n1/d)
mesh nodes contained in ΩL, so column i of A−1 has roughly O(n1/d) large entries, for a total of
O(n1+1/d) in A−1.

3Of course, this reasoning only applies directly to fully explicit approximate inverses: precondi-
tioners in factored form perhaps may be more effective, since their product may be dense, though at
the time of writing this has yet to be demonstrated.
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Fig. 2.1. The multiresolution approximate inverse method

The initialization phase

• Determine multiresolution bases α and β

• Use a standard operator-based approximate inverse algorithm to find
Q̃ ≈ (M−T

β AM−1
α )−1

The application phase (called by a Krylov solver)

• Apply preconditioner to x by y = M−1
α (Q̃(M−T

β x))

can give optimal scalability, primarily working with classical wavelets and general-
izations to handle boundaries and even dyadically-refined unstructured meshes (e.g.
[15, 16, 21, 22, 23, 24]) but also e.g. approximate wavelets derived from an existing
hierarchical basis [37, 38]. The work in [21] actually worked with a full approximate
inverse rather than just diagonal preconditioners, and found significant improvements
by taking into account interactions between different levels. The present paper dif-
fers by combining second-generation wavelets with a more sophisticated approximate
inverse, with an emphasis on heuristically finding good multilevel algorithm compo-
nents (regrettably without yet theoretical results to confirm the promising first few
numerical experiments).

2. Outline of the Method. Since the Green’s function is defined on the prod-
uct space Ω×Ω, it is natural to look for a wavelet basis that is a tensor product α⊗β

of wavelet bases α and β on Ω. In the discrete case, this means representing A−1 as

A−1
ij =

n∑

k=1

n∑

l=1

Qkla
k
i bl

j

where the separable basis functions are the product of elements ak ∈ α and bl ∈ β,
and the coefficients are stored in matrix Q. Equivalently,

A−1 = M−1
α QM−T

β

where M−1
α and M−1

β have the basis functions of α and β respectively as their columns.
Applying these operators to the standard basis vectors shows that Mα and Mβ are
the transforms from the wavelet bases to the standard basis.

The transformed A−1, ready for compression, is Q = MαA−1MT
β . For the precon-

ditioner, a highly sparse approximation Q̃ will be used. Rewriting Q = (M−T
β AM−1

α )−1

shows that Q̃ can be obtained by applying a standard sparse approximate inverse al-
gorithm to the transformed operator M−T

β AM−1
α —in particular, without knowledge

of the true inverse A−1. Note that to avoid forming (M−T
β AM−1

α ) explicitly, which
may incur significant fill-in, an approximate inverse algorithm that works on a linear
operator (not necessarily a matrix) is required. One example, used in this research,
is SAINV[7].

To summarize, an overview of the multiresolution approximate inverse method is
given in figure 2.1.

3. The General Algorithm.
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Fig. 3.1. The transform algorithms of the Lifting Scheme

The forward transform (standard basis → multiresolution basis)

• Start with the function values f1, . . . , fn at sample points x1, . . . , xn.

• Let λ0
i = fi for all i, C0 = {x1, . . . , xn}, and j = 0.

• Begin loop:
• Split up the sample points Cj into two disjoint subsets, the fine nodes
F j+1 and the coarse nodes Cj+1.

• Predict λ
j
F , the values at the fine nodes, from λ

j
C , the values at the

coarse nodes, with some linear prediction operator Pj : λ
j
F ≈ Pjλ

j
C .

• Store the wavelet coefficient γ
j+1
i = λ

j
i − (Pjλ

j
C)i for each fine node

xi ∈ F
j+1.

• Update the value at each coarse node by λ
j+1
i = λ

j
i + (Ujγj+1)i for

each xi ∈ C
j+1 so that the required moments will be preserved. This

update operator Uj must also be linear.

• If |Cj+1| is small enough, below some constant, break out of the
loop. Otherwise, set j ← j + 1 and continue.

• Return λj from the coarsest level along with the wavelet coefficients
γ1, . . . , γj from each level.

The inverse transform (multiresolution basis → standard basis)

• Start with λj and the wavelet coefficients γ1, . . . , γj .

• Begin loop:
• Reconstruct λ

j−1
C at the coarse nodes by λ

j−1
i = λ

j
i − (Uj−1γj)i for

each xi ∈ C
j .

• Reconstruct λ
j−1
F at the fine nodes by λ

j−1
i = γ

j
i + (Pj−1λ

j−1
C )i for

each xi ∈ F
j .

• Continue with j ← j − 1 until j = 1.

• Return fi = λ0
i for all i.

3.1. The Basis Construction. The goal of the new basis α ⊗ β is to con-
vert “smoothness” in the standard basis to small coefficients that can be accurately
approximated by zero. For irregular domains, the lifting scheme[35] for second gen-
eration wavelets is a natural choice. In this scheme, the basis is not constructed
explicitly but rather the forward transform algorithms (from the standard basis to
the multiresolution basis, called Mα and Mβ above) are designed to directly achieve
good compression along with easy invertibility. Figure 3.1 gives summaries of the
transform algorithms.

The essential idea is that where a function is smooth, its values can be accurately
predicted from nearby neighbours, and so storing the prediction error results in small
coefficients except near “rough” regions. Doing this in a hierarchy of levels gives
rise to a multiresolution representation: wavelet coefficients at level j correspond to
features on the scale of the grid resolution of the set of nodes Cj at level j. It should be
noted that on unstructured meshes (and possibly for other reasons mentioned below)
the prediction operator for each fine node may have different weights—unlike classical
wavelets, where one set of convolution weights is used throughout the domain.

The update step is required in signal processing to prevent aliasing, where for
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example a high resolution singularity is propagated unchanged to lower resolutions;
the update step is an averaging designed to make sure the signal is smooth enough
to be faithfully represented at the next coarser level. However, in this context of
compressing discrete Green’s functions, this seems to be a liability as demonstrated
in [11]. In the ideal case, all wavelet coefficients in Q will be very small except on
the diagonal, where the discrete Green’s function must have a singularity: finding
a sparse approximate inverse for a nearly diagonal matrix is simple. However, the
update step smooths out this inherent singularity, smearing the large diagonal entries
to off-diagonals, resulting in a harder task for a sparse approximate inverse algorithm.

On the other hand, without the update step the basis can be viewed as just a
generalization of the standard hierarchical basis[1, 40] (if regular refinement and linear
interpolation for prediction are used, it is exactly the hierarchical basis; see section
4 for more details). While optimal scalability has been demonstrated with classical
wavelets in [15, 16, 21, 22, 23, 24], it is well known that with just diagonal or block
diagonal preconditioning the hierarchical basis is not optimal: the condition number of
the preconditioned system slowly grows with the number of unknowns, particularly in
higher dimensions. To get the optimal performance of methods such as multigrid, the
basis must be stabilized[37, 38], making the basis functions from different levels at least
approximately orthogonal. This is essentially what the update step does, smoothing
the function at each level so that coarser levels don’t see the high resolution features
picked up at finer levels. Thus perhaps a theoretical analysis, beyond the scope of
this paper, will show that the update step can be of value for multiple dimensions.
However, the issue is further complicated by the fact that approximate inverses can
be more effective in higher dimensions, where the Green’s function decays faster and
a sparse approximation is more feasible. For the rest of this paper we will not use the
update step, leaving these questions for future research.

Without the update step, the forward transform is simplified, and in fact all
wavelet coefficients at all levels can be computed simultaneously. The forward trans-
form M can easily be written explicitly as a triangular matrix multiply and the inverse
transform as a triangular solve, as in figure 3.2. As long as each prediction operation
can be done in constant time, i.e. each Pj has a bounded number of nonzeros per
row, it is clear that the forward and inverse transforms can both be done in O(n)
time in serial. In terms of parallel computation, the forward transform is as good as
a single sparse matrix multiply, whereas the inverse transform can naturally be done
in O(log n) steps (with smaller and smaller matrix multiplies) assuming a geometric
decline in the size of the Cj .

There are two big issues that need to be resolved when constructing the basis.
The first is how to coarsen; how to select the sets Cj of coarse nodes at each level.
So far, we have concentrated on independent set heuristics similar to those used in
unstructured multigrid[17] and algebraic multigrid[31]. The second issue is how to
define the prediction operators Pj at each level. Standard linear interpolation or
higher order polynomial interpolation is a possibility, but for robustness in difficult
problems we have found more sophisticated techniques are necessary[11].

Looking at the compressed inverse Q = MαA−1MT
β , notice that the transform Mα

is being applied to each of the columns of A−1. From the equation AA−1 = I, observe
that column i of A−1 is actually the discrete solution to the PDE Lu(x) = δ(x− xi).
Thus the functions compressed by α satisfy the homogeneous PDE Lu = 0 almost
everywhere, which we can take as our definition of “smooth”. Predicting the value
at a fine node i from nearby coarse nodes can be done by solving a discrete form of
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Fig. 3.2. The multiresolution basis transforms without update steps expressed in terms of
triangular matrices

The forward transform (standard basis → multiresolution basis)




γ1

γ2

...
γj

λj




= Mf =




I −P1

I −P2

. . .
...

I −P
j

I







fF1

fF2

...
fFj

fCj




The inverse transform (multiresolution basis → standard basis)

f = M−1γ =




I −P1

. . .
...

I −P
j

I




−1




γ1

...
γj

λj




Lu(xi) = 0 using the coarse nodes as specified “boundary” data.

Similarly, the β transform is applied to the rows of A−1, which are discrete so-
lutions to the adjoint problems, so β may be constructed with the adjoint operator
L∗ in mind. In particular, for self-adjoint problems it makes sense to take α = β; for
highly non-self-adjoint problems it will be important to have α 6= β.

Finally it should be noted that for some problems—e.g. with oscillatory coeffi-
cients, strong indefiniteness, or complicated convection streamlines—it may be too
difficult to construct very coarse yet useful representations of the Green’s function.
Though ideas from homogenization theory may help, it’s likely that there will be a
lower limit to the resolutions that are useful to consider. In this case, it is proba-
bly wisest to limit the multiresolution bases to a few levels and instead concentrate
resources on the approximate inverse.

3.2. The Approximate Inverse. The transformed operator M−T
β AM−1

α may
be multiplied out explicitly at which point any approximate inverse algorithm may
be used. However, in doing so substantial extra fill-in is incurred, increasing the cost
of the preconditioner construction and application as well as storage requirements. A
more attractive route is to use an approximate inverse algorithm that doesn’t require
explicit knowledge of the matrix, and thus can precondition an operator known only
in this factored form.

Many popular algorithms can, in their simplest form, be adapted to this context.
One example is the MR method of [19] which requires no modification. However, other
approximate inverses require more thought. For example, a sparsity pattern must be
specified a priori for some methods, and it is not clear how to do so for efficient and
robust performance here. Avoiding this issue, we have chosen to adopt SAINV[5, 6, 7]
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Fig. 3.3. The SAINV algorithm, using MATLAB colon notation for submatrices.

• Take as input matrix A of dimension n and a drop tolerance δ, generally
around 0.1 or 0.01.

• Set W← I and Z← I.

• for j = 1 to n do
• Compute l = AZ:,j and u = AT W:,j .

• Set Djj ← (uT Z:,j)
−1, the inverse pivot.

• Rescale L = lDjj and U = uDjj .

• Compute the biconjugation coefficients
CW = LT W:,j+1:n and CZ = UT Z:,j+1:n.

• Update the remaining columns of W and Z with sparsified outer-
products (i.e. only updating with the entries of magnitude greater
than δ): W:,j+1:n ←W:,j+1:n − sparsify(W:,jCW )
and Z:,j+1:n ← Z:,j+1:n − sparsify(Z:,jCZ)

for this first study, which constructs the sparsity pattern during construction. In
particular we use an outer-product based version of the algorithm[13] that doesn’t
require any knowledge of the sparsity pattern of the operator for efficient performance.
We note that for efficiency during the construction phase, the basis transforms and
matrix multiplies must be done in fully sparse mode. Figure 3.3 gives the algorithm,
which by biconjugation (along the lines of Modified Gram-Schmidt) applied to two
copies of the identity matrix constructs upper triangular matrices W and Z and a
diagonal matrix D such that A−1 ≈ ZDWT . It can be simplified in the case of
symmetric matrices to construct just Z (which is equal to W) with half the work
and storage. It has the advantage that for positive definite matrices it is guaranteed
to produce a positive definite preconditioner, though breakdown is possible in the
general case, and has generally been shown to be very robust[7].

One important issue for factored approximate inverses is the ordering of the rows
and columns of the matrix. As demonstrated in [8, 12, 13], performance can be sig-
nificantly improved by an appropriate reordering—e.g. nested dissection (we use the
Metis routine[29]). On the other hand, one might argue that if the multiresolution
bases here are constructed correctly, the transformed A will be well enough condi-
tioned that ordering isn’t needed. However, it seems doubtful that the multiresolution
framework will be robust enough to handle all problems on its own. What we de-
sire for tough problems is a multiresolution basis construction algorithm which “fails
gracefully”, i.e. never makes A worse conditioned even though it may not provide ad-
equate improvement. In this case, the power of the approximate inverse will hopefully
show through, provided we have taken care of the ordering.

3.2.1. Ordering. Unfortunately, typical ordering algorithms require the explicit
structure of the matrix so this is a nontrivial step in this context; some analysis is
required.

Before going further, recall the graph theory notation often used in sparse matrix
ordering. With a given n × n matrix B, associate the graph GB, or simply G if the
context makes it clear, defined on nodes {1, . . . , n} with a directed edge i→ j if and
only if Bij 6= 0 (for i 6= j). Thus the nonzero structure of B and the graph GB

may be identified. As an abbreviation, write i → j to mean the statement that the
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directed edge i→ j exists in G. The neighbourhood of a node i is the set of nodes j

such that i→ j. A path is a sequence of distinct nodes i1, . . . , ik such that i1 → i2,
i2 → i3, . . . , and ik−1 → ik, often written i1 → · · · → ik, or simply i1 ; ik. The
transitive closure G∗ of a graph G is one constructed on the same nodes but having
i→ j whenever i ; j in G. For a fuller treatment, see [25, 26].

As is shown in [26], assuming here and for the rest of this section that there is no
felicitous cancellation, the structure of B−1 is given by the transitive closure of the
graph of GB. As shown before, the forward transform Mα can be simply expressed as
a triangular matrix (when there are no update steps). Then the graph of Mα satisfies
i → j if and only if at some level i is a fine node whose prediction uses coarse node
j. Therefore the graph of M−1

α has i→ j if and only if there is a chain of prediction
dependencies i ; j.

Define the support of a node j to be the set supp(j) of nodes i such that (M−1
α )ij 6=

0—this is actually the support of the j’th multiresolution basis function. From the
transitive closure characterization of inverses, observe that the supports have a nested
structure: if i ∈ supp(j) then supp(i) ⊂ supp(j). Notice that if j is a fine node at the
highest resolution level, supp(j) = {j}, but that if j is at the lowest resolution level
its support may be very dense—showing that it is important to not multiply out the
inverse transform explicitly.

Now examine the structure of M−T
β AM−1

α . Assume that A has symmetric struc-
ture (Aij 6= 0 if and only if Aji 6= 0) and Mβ and Mα have the same structure, i.e. that
the two bases have the same hierarchy of levels and the same prediction dependen-
cies4. Then the product has symmetric structure, and one can speak unambiguously
about coarse/fine nodes and the support of a node. Observe

(M−T
β AM−1

α )ij =

n∑

k=1

n∑

l=1

(M−T
β )ikAkl(M

−1
α )lj

=

n∑

k=1

n∑

l=1

(M−1
β )kiAkl(M

−1
α )lj

Then (M−T
β AM−1

α )ij 6= 0 if and only if there exist nodes k and l with k ∈ supp(i),
l ∈ supp(j), and k → l in A. In other words, i→ j in the product if and only if their
supports are adjacent in A. Using the nested structure of the supports, it is then
clear that the neighbourhood of any node j contains the neighbourhoods of all nodes
in supp(j).

Now, the location of nonzeros in column i of the upper inverse triangular factor
Z of a symmetrically-structured matrix B can be characterized as follows[12]: Z has
a nonzero for each node before i and reachable from i via paths in B using nodes
before i.

Consider the effect of swapping the positions of i 6= j in some ordering, when
i ∈ supp(j). Clearly the number of nonzeros in columns in Z ordered before both i

and j or after both will not be changed. However, the columns in between may be
altered. Since the neighbourhood of j contains the neighbourhood of i, any nodes
reachable on paths through i are reachable through j, but not necessarily the other

4So far, relatively good results have been obtained under this assumption, which makes the
following analysis much easier. However, it may prove useful to relax this requirement for convection-
dominated problems, where predicting from the upwind nodes suggests that the structure of Mα and
Mβ should be different: convection for the adjoint problem (handled by β) is in the opposite direction
from the original problem (handled by α).
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Fig. 3.4. Modifying an ordering to respect the multiresolution basis.

• Take as input the structure of Mα or Mβ (multiplied out).

• For i = 1, . . . , n
• Set numdep(i) = number of nodes j with j → i, not including i

itself.

• Set waiting(i) to false.

• Initialize a queue with room for n entries, empty at first.

• Set i = 1, the first node to attempt to order.

• Set j = 1, the first index into the modified ordering p.

• While j ≤ n

• If the queue is not empty then
• Remove the first node k from the front of the queue.

• Set pj = k and j ← j + 1.

• Consider, in order, each l 6= k with k → l and waiting(l) true;
decrement numdep(l), and if this is 0 set waiting(l) to false and
append l to the queue.

• Else if numdep(i) = 0 then
• Set pj = i, j ← j + 1, and i← i + 1.

• Consider, in order, each l 6= i with i → l and waiting(l) true;
decrement numdep(l), and if this is 0 set waiting(l) to false and
append l to the queue.

• Else (numdep(i) > 0)
• Set waiting(i) to true, and i← i + 1.

• Return the modified ordering p.

way around. Therefore ordering i before j can’t result in more nonzeros in Z, but
putting j before i might.

Thus any ordering of the nodes should respect j ordered after all other nodes in
supp(j). Since supp(j) is the set of i such that (M−1

α )ij 6= 0, this is equivalent to
requiring that i be ordered before j whenever i ; j in Mα. This is clearly equivalent
to ordering i before j whenever i→ j in Mα, which can be enforced by the algorithm
in figure 3.4.

Essentially the algorithm outputs the nodes in the existing order except when a
coarse node comes before any of its fine dependents. Then the coarse node is made
to wait until all the fine dependents have been ordered, at which point it’s put on a
queue to be ordered as soon as possible. The value numdep(i) serves as a counter of
how many fine nodes dependent on i have yet to be ordered—since i is only put into
p when this reaches zero, the ordering must be consistent.

The initialization loop, assuming sparse storage of the matrix, takes time on the
order of the number of nonzeros in the matrix, which should be O(n). The complexity
of the main loop is a little more difficult to prove:

First note that both i and j begin at 1 and never are decremented. Let d =∑n
i=1 numdep(i), so before the main loop begins d = nnz(Mα) − n, the number of

off-diagonal nonzeros in Mα. Values in numdep are never incremented so d never
increases.

A node can only be marked as waiting in the final else clause, and since i is
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incremented there it can never be marked as waiting again. The only way an entry
in numdep can be decremented to zero is if it had been marked as waiting, and when
it hits 0 its marked as not waiting, so it can never be decremented past 0. Therefore
d is always non-negative.

Suppose i is incremented past n+1—this can only happen if i = n+1 at the start
of an iteration with the queue empty. There must be some unordered nodes left, as
otherwise j would have been incremented past n and the loop would have stopped. If
any of the unordered nodes had numdep equal to zero, they either would have started
at zero, in which case the first else clause would have been executed for that value of
i, or they would have been decremented to zero and added to the queue—in either
case implying that they must now be ordered, a contradiction. Thus all the unordered
nodes have positive numdep counters. However, some unordered node v must be from
the finest resolution level of all unordered nodes, and so cannot have any unordered
dependent fine nodes—and so must have numdep(v) = 0, a contradiction. Therefore
i never is incremented past n + 1.

Clearly j can never be incremented past n + 1 thanks to the loop condition.
Therefore, since in each iteration either j is incremented, i is incremented, or at
least one of the values in numdep is decremented, there can be at most n + nnz(Mα)
iterations. In fact, assuming constant time queue operations (e.g. as in a simple array
implementation) the time spent in the main loop is O(n)+O(nnz(Mα)), which again
should be O(n). Thus the entire algorithm runs in O(n) time.

Now consider the following simple scheme: order A with Nested Dissection, and
then run the above algorithm to make the ordering consistent with the multiresolution
basis. The only worry is that the modification will destroy the good fill-reducing
qualities of the original ordering. However, the bulk of the nodes should be at the finest
level and thus have trivial supports, so the modification can’t change their relative
order. The only nodes that can be greatly affected by the ordering modification
are the very coarse nodes, which are in a very small minority. Thus the potential
damage is very limited. Experiments have confirmed that this isn’t much worse (but
far cheaper) than applying Nested Dissection to the multiplied out M−T

β AM−1
α .

4. Relationships with Other Methods. Before proceeding to our actual im-
plementation and testing for unstructured two-dimensional problems, it is instructive
to compare the new algorithm with some other multiresolution methods.

As mentioned before, the basis transforms can be expressed as triangular matrices
with unit block diagonals, so the algorithm could be viewed as a highly-parallel variant
of multilevel ILU (e.g. [4, 3, 9, 32, 33, 34]) with an approximate inverse replacing D−1

for the approximate LDU factorization.

Another viewpoint comes from noting that the operators
(
Pα

I

)
and (PT

β I) within
the transforms for α and β correspond to node-nested multigrid’s prolongation and
restriction respectively. The application of the preconditioner then can be thought
of as the multigrid-like algorithm in figure 4.1. The key difference between this and
multigrid is that the smoothing is performed in one step, and only at the coarsest level
for each variable, instead of being interleaved with restriction and prolongation. (See
[36] for an example of approximate inverses used as smoothers in multigrid.) This is
similar to but not exactly the same as additive multigrid, i.e. BPX[10].

The hierarchical basis preconditioners (e.g. [1, 40]) are very similar to the new
preconditioner. In these, the original system is transformed into a new multiresolution
basis, and a simple preconditioner such as block Jacobi is applied. Extending this,
the multiresolution approximate inverse naturally works with unsymmetric bases (α 6=
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Fig. 4.1. A multigrid-like interpretation of the multiresolution approximate inverse algorithm.

• Successively restrict the function to coarser and coarser levels by M−T
β .

• Smooth all variables at their coarsest level only—including couplings be-
tween variables at different levels—by Q̃, possibly doing an exact solve
on the coarsest level if the approximate inverse is dense enough there.

• Prolong the smoothed multiresolution representation back to the original
variables by M−1

α .

β) better adapted to the problem and also allows for coupling between variables at

different levels in the preconditioner Q̃.

More sophisticated multiresolution bases (but otherwise essentially the same algo-
rithm as the hierarchical basis method) are used in wavelet methods, e.g. [15, 16, 21,
22, 23, 24, 37, 38]. In particular, these bases are more stable than simple hierarchical
bases, in the sense that the the multiresolution norm is equivalent to the standard
norm, which results in optimal scalability. As mentioned before when discussing the
update step in the present method this issue hasn’t been resolved here, and it appears
that we currently only achieve the suboptimal scalability of the hierarchical basis
method.

Finally, there have already been proposed wavelet–approximate inverse combina-
tions in [18] and [21]. Both of these works used classical wavelets, though the latter
featured a generalization which correctly treats non-periodic boundary conditions.

5. Implementation. This section illustrates two ways to generate the multires-
olution basis, one geometric and one algebraic. The important thing to keep in mind
here is not the exact heuristics used, but rather that exactly the same techniques
used for other node-nested unstructured multilevel methods are used here. The new
viewpoint of compressing the discrete Green’s function provides additional insight,
but this part of the problem is the same.

5.1. Geometric Implementation in Two Dimensions. In this section, we
describe a geometric-oriented implementation for scalar second order elliptic problems
on unstructured triangular meshes. We restrict ourselves to 2D since the geometric
complexity of remeshing in 3D is daunting.

The first issue to be dealt with is discretization. In this geometric implementation,
the PDE is rediscretized on coarser and coarser meshes, so it is imperative to have
a discretization which is stable and reasonably accurate even for large meshes. In
this paper upwinding is used for convection, and harmonic averaging for diffusion;
more accurate schemes such as [39] could be used instead. Obviously there could be
aliasing problems with highly oscillatory coefficients with the simple rediscretization
used here—without resorting to algebraic methods, the only solution would be an
analytic homogenization, but we have not investigated this.

The second issue is how to choose coarse nodes. Of course, in some applications
an appropriate hierarchy of nested meshes is already available, but in general an
automatic procedure for generating the hierarchy is needed. The simplest approach,
used for multigrid in [17], is to consider the graph of a triangulation of the current
set of nodes and to select a greedily-chosen maximal independent subset as the next
coarser level. These nodes can then be retriangulated for the next coarsening. Under
the assumption that the edges of the triangulation represent strong couplings between
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unknowns, the maximality condition ensures that every fine node has at least one
strongly coupled coarse node from which it can be predicted, and the independence
condition ensures that there won’t be too many coarse nodes.

This assumption breaks down for anisotropic PDE’s or anisotropic meshes; “semi-
coarsening” is needed here, where coarsening only takes place in the directions of
strong coupling. Heuristically this can be implemented by rediscretizing the PDE on
the coarser mesh, and then disregarding the edges corresponding to small offdiagonal
nonzeros when constructing the maximal independent set. Then every fine node is
guaranteed to have a strongly coupled coarse node, where the strength of coupling is
measured by the size of the nonzero in the discretization. A reasonable measure of
coupling strength is, for example:

|Aij |+ |Aji| > ε||(|Ai|+ |Aj |)||

for some norm of the matrix columns, and with ε = 0.1 say. All reasonable heuristics
appear to work equally well after a little tuning of ε on small test problems.

The other problem with anisotropic PDE’s lies in retriangulation of the coarse
nodes. At coarse levels with anisotropically distributed nodes, Delaunay triangulation
(which ignores the PDE of course) may produce very poor meshes which don’t reflect
the anisotropy. Some form of coefficient-adapted triangulation is needed, such as
breaking the region into subregions with more-or-less constant coefficients, changing
coordinates in each subregion to make the PDE isotropic, Delaunay triangulating in
the new coordinates, and then stitching the triangulated subregions back together.

The final issue is how to do prediction. The most robust technique is PDE-
prediction, where as discussed earlier the value at a fine node is taken from the
approximate solution of the homogeneous PDE or its adjoint with neighbouring coarse
nodes as Dirichlet boundary data. With unstructured triangular meshes this is easily
done by triangulating the fine node together with the few surrounding coarse nodes,
then rediscretizing the PDE at just the fine node to give a single linear equation for
the value there. To guarantee sparsity in the prediction operator, the coarse nodes
are selected as the vertices of the coarse triangle containing the fine node, possibly
with any of the three vertices on the other sides of the triangle’s edges according to
the Delaunay criterion for edge-swapping. If the fine node is on a convex boundary,
the coarse triangle that comes nearest to containing it is used. Note that these
neighbouring coarse nodes can be found in O(1) time by doing a breadth-first search
from the fine node in the fine mesh. Also we restrict the retriangulation so that at
most 6 coarse nodes are used to predict the fine node, thus guaranteeing a fast (linear
time) construction, sparse basis transforms, and agreement with stretched meshes (see
figure 5.1 for what could go wrong with unrestricted retriangulation).

These same issues appear in any unstructured multilevel algorithm, and in par-
ticular, algorithms developed for coarsening and interpolation in multigrid et. al. can
be used here, just as the algorithms given above could be used for other multilevel
methods.

5.1.1. Sample Results. In [11] several example problems were given, showing
that for a variety of 2D problems the new method is superior to a plain approxi-
mate inverse. For the same storage (including the basis transforms as well as the
approximate inverse) and similar flop counts per iteration, the multiresolution algo-
rithm provided several times faster convergence, even on the smallest problems. As
problem sizes increased, the number of iterations for the multiresolution method grew
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Fig. 5.1. When retriangulating around a fine node in a stretched mesh (a), problems can
arise if no limits are put on the Delaunay insertion algorithm since many distant coarse nodes are
connected to the fine node (b), but a restricted retriangulation solves this issue as well as being far
more efficient (c).

(a)

fine node 

(b)

(c)

much more slowly than for the plain approximate inverse. (Regrettably the conver-
gence still wasn’t mesh-independent, but appeared to grow like the number of levels
squared, similar to hierarchical basis methods. As noted in the first part, perhaps
further analysis of the update step will produce an optimal preconditioner.)

We first present results for three problems from [11] in 5.1. HEAT is a large (10
units) backwards Euler timestep of the heat equation ut = ∇2u on the unit disc with
Neumann boundary conditions ∇u · n̂ = sign(cos(20θ)) and a previous timestep of
u = 0 for x < 0 and u = 1 for x > 0, on an exponentially stretched mesh. ANISO is
an anisotropic discontinuous problem from [20], with 1000uxx +uyy = f on the south-
west and north-east quarters of the unit square, uxx + 1000uyy = f on the others,
f = sin(10πy), homogenous Neumann boundaries for y > 0.25, and the Dirichlet
boundary condition u = x for y < 0.25. REACTOR is a discontinuous indefinite
problem on the unit disc of the form ∇ ·K∇u + cu = f , with K = 1, c = 0.3, f = −1
in 21 small interior discs, K = 0.005, c = −0.2, f = −1 for the rest of the inner disc
r < 0.9, and K = 10−6, c = 0, f = 0 for r > 0.9.

The multiresolution bases included enough levels so that the coarsest had about
100 nodes. Drop tolerances in AINV were selected to give approximately the same
storage (including prediction operators) for each preconditioner: ≈ 7n nonzeros for a
problem with n nodes. CG was used for the SPD problems and BiCGstab for the rest,
with convergence flagged when the 2-norm of the residual was reduced by a factor of
10−6 from a starting guess of all zeros, giving up at 1000 iterations.

However, two examples of difficulties for the geometric approach arose in ANISO
without the special coefficient-adapted retriangulation, and in ROTATE. The latter
is a non-self-adjoint, convection-dominated problem based on a solid-body rotation
of a disc (circular streamlines): see table 5.2. ROTATE couldn’t be effectively solved
with a complete hierarchy; the best results were obtained with only two coarse levels,
precluding any improvement in the asymptotic rate of convergence.

5.2. An Algebraic Alternative. Some of the difficulties encountered in solving
ANISO and ROTATE are really just artifacts of trying to rediscretize the problem
on very coarse triangular meshes. A simple triangular mesh cannot easily match the
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Table 5.1

Iteration counts for example problems of varying sizes, with the standard basis and a problem-
adapted multiresolution basis for AINV. The number of unknowns starts at n = 4939 for HEAT,
n = 900 for ANISO and at n = 4195 for REACTOR.

Problem Method n ≈ 4n ≈ 16n

HEAT Standard 125 215 432
Multiresolution 23 25 28

ANISO Standard 37 67 111
Multiresolution 12 14 18

REACTOR Standard 181 355 744
Multiresolution 89 141 132

Table 5.2

Iteration counts for examples of difficulties in geometric approach. Delaunay retriangulation
ignoring anisotropy causes problems for ANISO; attempting to coarsely discretize curved streamlines
causes problems for ROTATE. The number of unknowns starts at n = 900 for ANISO and at
n = 1195 for ROTATE.

Problem n ≈ 4n ≈ 16n ≈ 64n

ANISO 350 545 * *
ROTATE 73 135 297 879

changing anisotropies of ANISO or curved streamlines of ROTATE yet both of these
problems would appear to permit very coarse representations. This motivates the
use of algebraic methods for basis construction, where no auxiliary meshes are used;
everything is generated from the original matrix alone, hopefully avoiding geometric
pitfalls in doing so. This is also an advantage in 3D, where unstructured remeshing
can be difficult.

For the prediction operators, we first decide which coarse nodes will be used to
predict each fine node: we select the strongly coupled coarse nodes that are either
adjacent to the fine node or one of its fine neighbours. Next we determine the weights
for each coarse node in the prediction.

The simplest method we try, labelled M1, is to predict the fine node value as a
weighted mean of the coarse node values, with (positive) weights proportional to the
magnitude of the appropriate off-diagonal entries in the matrix A.

A potentially more accurate method, M2, is based on solving the homogeneous
PDE at the fine node with boundary values specified at the surrounding coarse nodes,
as in the geometric approach. In fact, the matrix gives us an equation for each node
involving it and its neighbours. Unfortunately, the equation at the fine node in general
involves neighbouring fine nodes as well as coarse nodes, and so we cannot stop here.
Including the equations at those fine nodes would again, in general, involve more fine
nodes or coarse nodes we’re not using in the prediction, so the system still won’t be
closed. However, we can use method M1 to interpolate these unknown values from
the coarse neighbours instead, and then solve the closed system for the desired fine
value. This is similar to element-free AMGe[28], where an additional layer of nodes
is used.

The next issue is how to generate the discretized matrix at coarser levels than the
original. While these matrices are not used in the preconditioner, they are required
to generate the prediction operators using the above schemes, and allow us to use
the maximal independent set algorithm for coarse node selection from the previous
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section. The most natural choice for these coarser versions of A is the Petrov-Galerkin
approximation to the Schur complement, as in multigrid:

Acoarse = (PT
β I)A

(
Pα

I

)

Unfortunately we encountered a difficulty with this approach: for unstructured prob-
lems with a reasonable number of coarse nodes used to predict each fine node, the
coarse versions of A quickly become dense. From a finite element perspective, the
supports of the coarse basis functions have too much overlap. Perhaps with more
tuning of the strong connection heuristic in the coarse node selection this could have
been averted, but we looked for a more automatic approach instead.

The bulk of the extra nonzeros in the coarse versions of A are very small, and thus
a viable approach is to simply filter out the small nonzeros at each level (perhaps with
diagonal compensation) as is done in multilevel ILU[4, 3, 9, 32, 33, 32]. However, for
anisotropic problems such a filter may be unreliable, destroying essential topology in
the problem—it cannot distinguish between the small, negligible entries resulting from
excessive overlap of coarse basis functions, and the small but non-negligible entries
representing weak couplings in the original PDE (that increase in relative strength as
semi-coarsening proceeds).

Our solution is to use two sets of prediction operators. One is stored for the basis
transform, and the other is used temporarily just to generate the coarsened matrices.
The prediction operators in the second set are much sparser, with structures chosen so
that excessive fill-in is impossible (e.g. if the initial matrix has a planar graph, so do
the coarsened matrices). They are poorer quality than the operators in the first set,
but since they are better adapted to the problem than simple polynomial interpolation
they should be superior to a standard rediscretization on the coarse nodes.

The nonzero structure of the second set of prediction operators is determined in
two stages. In the first stage, each fine node is assigned the coarse node to which it is
most strongly coupled, giving one nonzero per row in the prediction operator. In this
way, the fine nodes are disjointly partitioned into clusters around the coarse nodes.
From the FEM perspective this guarantees at most unit element overlap between
coarse basis functions. From the graph theory perspective this guarantees that the
graph of the coarse matrix is the result of a sequence of edge contractions (the edges
coupling each fine node to its chosen coarse node) from the original matrix—and this
means that graph properties such as planarity or being a triangulation are preserved.
In the second stage, additional nonzeros are added to improve the quality of prediction,
but only when they don’t incur any extra fill in the coarse matrix. A greedy algorithm
is used, considering the coarse nodes in order of how few fine dependencies they have,
adding as many connections to the neighbouring fine nodes (in order of connection
strength) as possible.

5.2.1. Sample Results. We now present the results of using the algebraic ap-
proach in solving ANISO and ROTATE. Table 5.3 gives iteration counts for these
problems with both prediction methods. Clearly there is more research to be done as
M2 is better than M1 for ANISO, but unexpectedly worse for ROTATE.

6. Conclusions. We have presented a new preconditioner designed for the high-
performance solution of linear systems derived from elliptic PDE’s. We combine the
scalability of multiresolution methods with the robustness of approximate inverses to
give something useful for large problems on unstructured meshes with anisotropies,



16 R. BRIDSON, W.-P. TANG

Table 5.3

Iteration counts for example problems of varying sizes, solved with algebraic methods. The
number of unknowns starts at n = 961 for ANISO and at n = 307 for ROTATE.

Problem Method n ≈ 2n ≈ 4n ≈ 8n

ANISO M1 12 15 17 19
M2 10 10 13 13

ROTATE M1 10 14 19 23
M2 24 32 41 63

strong convection, or even indefinite reaction terms. The key idea is to create a
sparse approximate inverse expressed in a multiresolution basis which compresses the
discrete Green’s function.

In implementing the method we have worked with a factored approximate inverse
algorithm, solving the problem of ordering the unknowns in the new basis. We have
also investigated both geometrical and algebraic methods for constructing the basis
for unstructured problems.

Unfortunately it appears that the method doesn’t scale any better than hierar-
chical basis methods; while this is much better than simple approximate inverses, it is
sub-optimal. However, the power of the approximate inverse in addition to problem
adapted interpolation means convergence is generally better than hierarchical basis
methods. Robustness is particularly gained for problems where an effective complete
multilevel decomposition cannot be found: the new method can truncate the hierarchy
at an appropriate level and the approximate inverse can take care of the rest.

As a result, we don’t expect the method to be competitive with a well tuned
multigrid algorithm for well-behaved problems, but it may be of use for more difficult
problems where robustness is critical.

REFERENCES

[1] R. E. Bank and T. Dupont, Analysis of a two-level scheme for solving finite element equations,
report CNA-159, Center for Numerical Analysis, The University of Texas at Austin, Austin,
TX (1980).

[2] R. E. Bank, T. Dupont, and H. Yserentant, The hierarchical basis multigrid method, Numer.
Math., 52 (1988), pp. 427–458.

[3] R. Bank and R. Smith, The incomplete factorization multigraph algorithm, SIAM J. Sci. Com-
put., vol. 20, no. 4, pp. 1349–1364.

[4] R. Bank and C. Wagner, Multilevel ILU decomposition, Numer. Math., vol. 82, no. 4, 1999, pp.
543–576.
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