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Abstract
We present a novel approach to fluid simulation, allowing us to take into account the surface energy in a pre-
cise manner. This new approach combines a novel, topology-adaptive approach to deformable interface track-
ing, called the deformable simplicial complexes method (DSC) with an optimization-based, linear finite element
method for solving the incompressible Euler equations. The deformable simplicial complexes track the surface of
the fluid: the fluid-air interface is represented explicitly as a piecewise linear surface which is a subset of tetra-
hedralization of the space, such that the interface can be also represented implicitly as a set of faces separating
tetrahedra marked as inside from the ones marked as outside. This representation introduces insignificant and con-
trollable numerical diffusion, allows robust topological adaptivity and provides both a volumetric finite element
mesh for solving the fluid dynamics equations as well as direct access to the interface geometry data, making in-
clusion of a new surface energy term feasible. Furthermore, using an unstructured mesh makes it straightforward
to handle curved solid boundaries and gives us a possibility to explore several fluid-solid interaction scenarios.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling —Physically based modeling Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism —Animation

1. Introduction

Since the mid-nineties of the previous century, fluid simu-
lation has been extensively used in computer animated se-
quences of major motion pictures. Moreover, fluid simula-
tion is important in many scientific applications, and sim-
plistic fluid dynamics is even beginning to appear in real-
time graphics applications.

Despite this rapid development, some problems remain
with existing methods. Most existing methods are based on
Eulerian simulations on fixed grids. These are prone to intro-
ducing gratuitous artificial viscosity in the simulations, vol-
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ume loss, grid artifacts and, due to the lack of an explicit
surface representation, surface tension is not easy to incor-
porate.

In the present paper, we propose a novel method for free-
surface fluid simulation based on an irregular grid which dy-
namically adapts to the fluid volume. Our method is based
on another recent technique for deformable interface track-
ing which we call deformable simplicial complexes (DSC,
[Mis10]). The gist of the DSC method is that the tracked sur-
face is represented as a subcomplex (e.g. triangle mesh) of a
simplicial complex (tetrahedral grid) which covers the entire
computational domain. Tetrahedra are labelled according to
which side of the interface they reside in, and the surface (in-
terface) itself is the set of faces shared by a pair of tetrahedra
belonging to opposite sides.

In this paper, we focus on how fluid simulation can be im-
plemented on top of the DSC method, using the tetrahedral
grid of the DSC method also as the computational grid for
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the fluid simulation. Our new method has at least two impor-
tant benefits compared to previous methods:

• Because the grid changes only little to adapt to the
changes in the water volume, we have very little numeri-
cal diffusion.
• Since we have an explicit representation of the water-air

interface, it is very easy to add a surface energy term.

2. Related Works on Fluid Solvers

Many works are based on regular grids; as a general refer-
ence to grid-based incompressible flow in graphics we re-
fer to the book [Bri08]. Some of the foundations for grid-
based works include an Eulerian approach to 3D fluid sim-
ulation [FM96] that demonstrated advantages over earlier
work using particle systems, and 2D simulations and a semi-
Lagrangian implicit time stepping method [Sta99]. Recent
work addresses irregular boundaries on grids [BBB10].

Fluid animation on unstructured meshes, like our method,
has been gaining popularity in the last five years. [FOK05]
simulated gases on static tetrahedral meshes to model the in-
teraction of fluids with irregularly shaped obstacles, based
on a finite volume method discretization of the divergence
operator with a projection method to enforce incompressibil-
ity. On their staggered mesh only normal components of ve-
locities are stored at the face centers, making it easy to apply
solid boundary conditions. The main difficulty is the non-
trivial reconstruction of the full velocity field from the face
normal components. In comparison we use a finite element
approach on a moving and deforming tethrehedral mesh and
we store the full velocity vector at the vertices.

Deforming unstructured tetrahedral meshes were intro-
duced in [FOKG05]. Here a moving mesh is used where
the deformation is limited to preserve mesh quality. Our
approach to advection uses the same generalized semi-
Lagrangian method from this work. In comparison to our
work we emphasize the topological operations needed when
deforming the mesh.

Remeshing of the entire computational domain in each
simulation step was used in [KFCO06]. The authors ad-
dressed two-way coupling of fluids and rigid bodies. Heuris-
tics were used to generate high resolution meshes in visually
important regions; our mesh refinement and improvement
are based on mesh quality only. (The coupling was later ex-
tended to deformable objects as well [CGFO06]; in our pa-
per we do not address two-way coupling.)

Liquid simulation on unstructured tetrahedral meshes
is presented in [CFL∗07]. A semi-Lagrangian contouring
method is used to extract the free surface and rebuild a tetra-
hedral mesh in every time step, and a body centered cubic
lattice is used for the structure of the tetrahedral mesh. The
liquid surface is embedded as a discrete submanifold in the
tetrahedral mesh as in our case. However, rather than com-
pletely rebuilding a new mesh in each time step our approach

is based on making local topological changes to remesh and
improve mesh quality.

In [ETK∗07] a new fluid simulation method is presented.
A static staggered grid is used where velocities are stored
at vertices and scalar fields at volume centers. The auhors
apply a vorticity formulation of the Navier–Stokes equation
whereas we use a momentum formulation. The authors em-
ploy discrete differential methods to guarantee a circulation-
preserving flow, but do not handle liquids/free surfaces.

Another finite volume method is presented in [WBOL07].
Here full velocity vectors are stored at the face centers which
add some problems to the pressure correction, necessitating
an additional projection each time step.

While not strictly a fluid solver (focusing instead on
elastoplastic materials) the work presented in [WT08] com-
bines a highly detailed surface mesh with a non-conforming
tetrahedral finite element simulator that makes frequent use
of remeshing. In constrast we use a boundary-conforming
tetrahedral mesh in our fluid solver.

In summary, past work is based on staggered meshes us-
ing face-centered velocity grid layouts. Most work on un-
structured meshes deal with free surfaces using contouring
and complete remeshing. Deforming meshes have been con-
sidered to control visual quality but in a deformation-limited
manner; our approach follows the physical simulation and
has no such limits. Further our work uses a finite element
method for fluid simulation whereas previous work on fluid
simulation on unstructured mehses use finite volume meth-
ods.

3. Deformable Interface Tracking

Traditionally, methods for deformable interface tracking fall
into two categories: explicit (Lagrangian) and implicit (Eu-
lerian). Traditional Lagrangian methods, such as active con-
tours or snakes, use parametrisation of the interface and ap-
ply the deforming velocity field (u) directly to the interface
points (x):

dx
dt

= u(x).

This approach leads to trouble once the topology of the in-
terface changes. An efficient collision detection mechanism
is needed to detect self-intersections of the interface, and
once it happens, costly reparametrisation is needed, along
with surgical cuts (as in [GGL∗95], although in recent work
by [BB09] this problem is mitigated by not allowing self-
intersections). Those problems do not occur in Eulerian
methods, such as the level set method (LSM, [OF02]). LSM
represents a n-dimensional interface as the 0-level set of a
(n+1)-dimensional function f (x1, . . . ,xn,xn+1) (signed dis-
tance function is usually the choice), defined on the nodes of
a regular grid. The evolution of the interface due to the ve-
locity field u is then described by the following partial dif-
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Figure 1: Interface representation in deformable simplicial complexes (2D on the left, 3D on the right). Exterior triangles
(tetrahedra) are light gray, interior – blue. Simplices belonging to the interface (edges and vertices in 2D; faces, edges and
vertices in 3D) are highlighted in dark blue. On the left, the red arrow indicates where topology changes take place. Note also
the difference in scale between the largest and the smallest triangles.

ferential equation, also known as that level set equation:

∂ f
∂t

+u ·∇ f = 0.

This approach provides trivial and robust topological adap-
tivity. However, the LSM also exhibits several drawbacks: it
is bound to a certain scale, it suffers from significant nu-
merical diffusion for features near the sampling rate irre-
spective of discretization, it does not allow explicit interface
representation and it relies on calculations in one dimension
greater than the interface itself.

The work most directly related to ours is the method pre-
sented in [PB07]. The authors proposed a method which is
based on a triangle mesh representation of the interface, but
once the vertices have been moved, a restricted Delaunay
tetrahedralization of the interface is performed. A test is per-
formed on each of the new tetrahedra in order to label them
as interior or exterior. If a vertex is found to be shared only
by identically labeled tetrahedra, it is removed. This method
shares a number of advantages with our method. In partic-
ular, it can be extended to multi-phase simulations, and it
suffers only little from numerical diffusion, but there is no
detection of what happens between time steps. Arguably a
small object could pass through a thin wall if the time step
was not properly tuned, and the precise points where inter-
face collisions occur are not detected. Lastly, it would be
difficult to extend their method to do topology control which
is simple with our approach.

In the deformable simplicial complexes (DSC), the inter-
face is represented explicitly as a set of faces of simplices
belonging to a simplicial complex one dimension higher.
These simplices belong either to the object or the exterior.
Simplices never straddle object boundaries. Thus, in 2D, the
computational domain is divided into triangles, and the de-
forming interface is the set of line segments which divide
interior triangles from exterior triangles. Similarly, in 3D,
the interface is the set of triangles dividing interior tetrahe-

dra from exterior tetrahedra. Both the 2D and 3D case are
illustrated in Figure 1.

The interface deformation is performed by moving the
vertices, and this means that the method preserves the ad-
vantages of the Lagrangian methods: It suffers from little
numerical diffusion, and there is an explicit representation
of the interface which, furthermore, does not change gratu-
itously between time steps. Moreover, the simplicial com-
plex does not have to be regular meaning that we can allow
details of significantly different scale in the same grid (c.f.
Figure 1 left).

On the other hand, our approach also shares what we
perceive as the biggest advantage of the Eulerian methods.
Whenever the interface moves, the triangulation is updated
to accommodate the change. If two different interface com-
ponents collide, this change causes them to merge. Thus,
topology is allowed to change transparently to the user—
although with our method it would also be possible to disal-
low topological changes.

The DSC in described in detail, together with some of its
other applications in [Mis10].

4. Fluid Simulation

In DSC we attempt to keep the quality of the volume mesh
high for the finite element computations, so it is natural to
use it directly in the incompressible Euler equations solver.
The fluid mass can be represented as the set of interior sim-
plices, which can be treated as first order, conforming lin-
ear elements (meaning that velocity values in a vertex agree
for each element sharing that vertex). These are subject to
locking in the incompressible limit [IGLF06,EB08,ZTT05].
Locking means inability of a given finite element space to
offer good approximate solutions, due to the fact that vol-
ume constraint on each tetrahedron may leave us with a so-
lution space of very low dimension, or even an overcon-
strained problem (depending on the boundary conditions).
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Figure 2: DSC setup for fluid simulation (observe this is
analogical to a staggered mesh). The velocity values u are
sampled at the vertices of the DSC mesh and the pressure
values p are sampled per element (triangle in 2D, tetrahe-
dron in 3D).

This can manifest itself by, for example: only allowing glob-
ally affine divergence-free deformations of the fluid volume.
However, locking can be avoided by using pressure stabi-
lization [FP02], as presented in Section 4.4, in exchange
for slighly violating the incompressibility constraint. Mean-
while, the simplicity of the linear elements facilitates easy
implementation of advection and optimization-based im-
plicit surface tension.

In such a setup, presented in the Figure 2, fluid velocity
values are sampled in the vertices (both interface and inte-
rior ones) and pressure values are sampled in the centers of
volume elements (triangles in the 2D case and tetrahedra in
the 3D case). The velocity field is then defined as:

u(x) =
NV

∑
i=1

uiϕi(x), (1)

where NV is the number of vertices in the mesh and ϕi is the
linear interpolant (hat function defined on the star of vertex
vi).

Our method loosely follows the steps of a fractional step
method, known from the regular-grid based fluid solvers
[Bri08].

4.1. Advection

In a Lagrangian setup (such as DSC) advection of the mesh
vertices is trivial. Having vertex positions {vt

i}
NV
i=1 and ve-

locities {ut
i}

NV
i=1 at the time-step t, one can compute the posi-

tions at the next time-step t +∆t using simple forward Euler
integration:

vt+∆t
i = vt

i +ut
i∆t.

One could also try to use a simple, Lagrangian approach

Figure 3: Advection of the velocity field. If the new vertex
position is inside the old fluid volume (vertices e, f , g, h, i
and j), we find its new velocity as the linear interpolation
of old vertex velocities at this point. In order to find new
velocity values at the vertices a, b, c and d, we find their
projections onto the interface and sample the velocity there.

in order to advect the velocity field. However, since we ad-
ditionally perform smoothing on the mesh vertices, we have
to use a slightly more complex, semi-Lagrangian method.

In order to advect the velocity field (or any other quantity
sampled at the vertices) we interpolate or extrapolate the val-
ues from the previous time-step at the new vertex positions
(see Figure 3). If the point vt+∆t

i lies inside the fluid volume
at the time-step t, we localize the element σ inside which it
lies and compute the new velocity value as the linear combi-
nation of the velocities in the vertices of σ with barycentric
coordinates of vt+∆t

i as linear coefficients:

ut+∆t
i = ut(vt+∆t

i ).

If vt+∆t
i lies outside the fluid volume at the time-step t, we

find its projection v̄t+∆t
i onto the interface and sample the

velocity at this point:

ut+∆t
i = ut(v̄t+∆t

i ). (2)

4.2. Enforcing Incompressibility

Incompressibility of the fluid yields that the divergence of
the velocity field vanishes everywhere:

∇·u = 0.

In our setup (see equation 1):

∇·u =
NV

∑
i=1

ui ·∇ϕi.

The gradient∇ϕi is constant over every element (triangle in
2D, tetrahedron in 3D). Let us denote it by:

∇ϕi ≡ d j,i over element σ j.
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The incompressibility condition is then fulfilled iff:

NV

∑
i=1

d j,i ·ui = 0 for j = 1, . . . ,NT ,

where NT is the number of elements (triangles in 2D, tetra-
hedra in 3D) in the mesh. The last equation can be written in
matrix form:

Du = 0,

where u is a size d ·NV (where the dimension d = 2 or 3)
vector containing the coordinates of the vertex velocities and
D is an NT ×d ·NV sparse matrix.

To enforce incompressibility of the velocity field {ũi}NV
i=1

after advection, we introduce a pressure field {pi}NT
i=1, such

that:

u = ũ−M−1DTp, (3)

where u is divergence free, p is a size NT vector containing
the pressure values in each face and M is a size d ·NV ×d ·NV
diagonal mass matrix, with diagonal values:

Md·i−d+1,d·i−d+1 = . . .= Md·i,d·i = mi,

for i = 1, . . . ,NV , where:

mi =
1
3

ρ ∑
σ∈star(vi)

volume(σ),

with ρ the fluid density. The incompressibility condition
yields:

Du = Dũ−DM−1DTp = 0.

Therefore:

DM−1DTp = Dũ,
Ap = b,

where A = DM−1DT and b = Dũ. By solving this linear
system, we can compute the pressure field and then, by using
equation 3, the divergence-free velocity field u.

Solid Boundaries Solid boundaries put extra constraints on
vertex velocity values. If the vertex vi is in contact with the
solid (see Figure 4), we force the projection of the vertex’s
velocity onto the solid normal at the point of collision to
match the projection of the solids own velocity onto its nor-
mal:

〈ui,n(pi)〉= 〈usolid ,n(pi)〉, (4)

while the tangent coordinates of vi remain unconstrained.
In order to compute the new divergence-free velocity field
{u}NV

i=0 we first need to express the global velocity vector ũ
and the matrix D in new coordinates (n and t in 2D or n, t1
and t2 in 3D, whenever a vertex is in contact with the solid).
Then we permute the rows of ũ and the columns of D, so
that:

ũ =

[
ũ f
ũc

]
, D =

[
D f Dc

]
(5)

Figure 4: Collision of the fluid with the solid boundary. n is
the normal and t is the tangent vector to the solid bound-
ary at the point of collision. usolid is the velocity of the
solid boundary and ui is constrained in the normal direc-
tion: 〈ui,n〉= 〈usolid ,n〉.

where ũ f contains the free and ũc the constrained coordi-
nates of ũ. The incompressibility condition 3 can be then
written as:

Du = 0,[
D f Dc

][ u f
uc

]
= 0,

D f u f +Dcuc = 0,

but since uc = ũc (as they are forced to match the velocity of
the solid projected onto the solid normal), we obtain:

D f u f =−Dcũc. (6)

In order to ensure incompressibility of the velocity field u,
we again introduce a pressure field p:

u f = ũ f −M−1
f DT

f p.

Multiplying both sides by D f and using eq. 6 gives:

D f u f = D f ũ f −D f M−1
f DT

f p,

−Dcũc = D f ũ f −D f M−1
f DT

f p,

which can be used to evaluate p by solving a linear system:

D f M−1
f DT

f p = D f ũ f +Dcũc,

A f p = D f ũ f +Dcũc.

Gravity Including gravity in our fluid dynamics solver is
trivial and can be performed by adding g∆t to the velocity
field in every time step, where g is the gravitational acceler-
ation.
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4.3. Optimization Based Approach

Surface Tension In order to make our fluid simulation more
plausible we include surface tension. Surface tension is de-
rived from surface energy Uγ defined as:

Uγ = γA,

where γ is the surface energy density (material constant) and
A is the free surface area. Surface tension forces alone yield
a highly divergent velocity field and our experiments have
shown that integrating them before enforcing incompress-
ibility step can give very poor results. Instead, we fully cou-
ple them with incompressibility by solving the following op-
timization problem:

minimize 1
2 (u− ũ)TM(u− ũ)+Uγ(x+u∆t),

subject to Du = 0,
(7)

which is consistent as the first-order KKT conditions for the
optimality of its solution is the backward Euler step:

u = ũ−∆tM−1∇Uγ(u)−M−1DTp,

where the pressure values p play the role of Lagrange mul-
tipliers (see that for γ = 0 this is identical with eq. 3). In
our work so far we only use first-order approximation of the
surface energy function:

Uγ(x+u∆t) = γA(x+u∆t)≈

≈ γA(x)+ γ∆tkTu,

where kT is the area gradient ∇A. Substituting this into op-
timization problem 7 and dropping constant terms leads to a
simple quadratic programming problem with linear equality
constraints:

minimize 1
2 uTMu+(−Mũ+ γ∆tk)Tu,

subject to Du = 0.

In this fashion we avoid having to explicitly estimate surface
curvature, automatically conserve linear and angular mo-
mentum by virtue of translation and rotation-independence
of the objective function and naturally capture minimum-
surface-area equilibrium. We do, however, realize that this
setup does not allow for non-linear surface phenomena in
our simulations.

Solid Boundaries Incorporating solid boundaries into the
new setting is relatively straightforward. However, one has
to take into account the fact that the surface energy density
for the fluid-air surface γ is usually different from the surface
energy density for the fluid-solid surface α1γ and from the
surface energy density for the air-solid surface α2γ. Hence,
we multiply the area of the solid-liquid contact surface by
α1−α2. Using the notation from the previous section, the
zero-divergence constraint is decribed by the eq. 6. Also, the
surface energy has to be expressed in the new variables:

Uγ(x+u∆t) = γA(x+u∆t)≈

≈ γA(x)+ γ∆tkT
f u f + γ∆tkT

c uc,

where k f is a vector containing those coordinates of the area
gradient ∇A, which correspond to the free coordinates of u
(put together in a vector u f ) and kc contains those cordinates
of ∇A, which correspond to the constrained coordinates of
u (put together in a vector uc). Finally, after dropping con-
stant terms and terms depending only on uc, we can state our
optimization problem in the following form:

minimize 1
2 uT

f M f u f +(−M f ũ f + γ∆tk f )
Tu f ,

subject to D f u f =−Dcũc.
(8)

Solution For sake of simplicity, let us rewrite the optimiza-
tion problem 8 as:

minimize 1
2 uT

f M f u f −bu f ,

subject to D f u f = c,

where b = M f ũ f − γ∆tk f and c = −Dcũc. The solution of
this optimization problem can be found by solving the fol-
lowing linear equation[

M f DT
f

D f 0

][
u f
p

]
=

[
b
c

]
. (9)

We are doing this by applying Schur complement method
for solving linear systems with block matrices [Zha05]. It
produces the following linear equation:

−D f M−1
f DT

f p = c−D f M−1
f b.

Then, having found p:

u f = M−1
f b−M−1

f DT
f p.

This way, we are only required to solve a linear equation
with a size NT ×NT matrix (instead of size d ·NV +NT ×d ·
NV +NT original problem), as computing the inverse of the
diagonal matrix M f is trivial.

4.4. Pressure Stabilization

As we previously mentioned, presented finite element setup
is subject to locking. This problem can be solved by adding
a stabilization term S (size NT ×NT ) to the linear equation
9: [

M f DT
f

D f −S

][
u f
p

]
=

[
b
c

]
. (10)

such that:

Si j =

{
−δ ·ai j if i 6= j
δ ·∑k 6=i aik if i = j (11)

where δ is a positive stabilization parameter and ai j is the
area of the face shared by tetrahedra i and j, if they do
have a common face, or otherwise 0. Stabilization term of
this form acts like Laplacian smoothing of the pressure field
in exchange for slightly violating the incompressibility con-
straint.
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In order to solve equation 10, we again apply Schur com-
plement method and solve the following equation:

−(S+D f M−1
f DT

f )p = c−D f M−1
f b.

Then, having found p:

u f = M−1
f b−M−1

f DT
f p.

Even though the velocity field u computed this way is
not divergence-free in each individual tetrahedron, it is still
globally volume preserving for a stabilization term S defined
as above. It is easy to notice that the form of stabilization
term 11 yields that the sum of all coordinates of the vector
Sp equals 0. Since:

Sp = D f u f − c
= D f u f +Dcũc

= D f u f +Dcuc = Du,

that means that the integral of the divergence of the velocity
field over the fluid volume equals 0, hence it preserves global
volume.

4.5. Volume Loss Compensation

If the volume loss due to the truncation errors is visually
noticeable, one can compensate for that by adding a constant
term:

τ · V0−Vc

∆t ·Vc

to the desired divergence c, where V0 is the original volume
of the fluid, Vc is the current volume and τ is a relaxation
parameter (τ = 0.5 being a good choice).

5. Tests and Results

Stationary Volume of Fluid We first tested our solver on a
regular sphere model obtained by subdiving an icosahedron
4 times using

√
3-subdivision scheme [Kob00] and repro-

jecting the vertices onto a sphere. The initial velocity of all
vertices are set to zero and there is no gravity – the only
forces in this setup are due to surface tension and incom-
pressibility.

After 10000 iterations the changes in volume and surface
area are below floating point truncation error and there is no
visible displacement of the mesh vertices, as expected for
this symmetric situation.

Droplets Colliding Our next test involves two water
droplets in 0-gravity conditions. In the first experiment (see
Figure 5) they collide head-on, and in the second (see Figure
6) they collide obliquely. In the first case droplets merge and
the resulting volume begins to oscillate between flattened
and elongated shape, according to the energy conservation
principle. In the second case droplets first merge, but as two
big fractions of volume keep moving in original directions

they detach, leaving a trace of small droplets, which soon
start to oscillating around the spherical equilibrium.

Fluid-Solid Interaction In the first test, we examined the
behavior of a droplet of fluid put on a flat surface, subject
to gravitational force. Let γ be the surface energy density for
the fluid-air interface, α1γ – for the fluid-solid interface and
α2γ – for the air-solid interface. Then the contact angle θ

between the fluid-air surface and the solid surface equals:

cosθ =−(α1−α2).

A concave meniscus has contact angle less than 90◦ (e.g. wa-
ter on glass) and a convex meniscus has contact angle greater
than 90◦ (e.g. water on paraffin wax or mercury on glass).
We ran tests for α1−α2 = 0.75 and α1−α2 =−0.75. The
results, presented in Figure 7 demonstrate physical sound-
ness of our method.

We also tested our fluid simulation in scenarios involving
curved solid boundaries. The results, presented in Figures 8
and 9, demonstrate that the curved boundaries are handled
correctly in our setup.

Performance In all of our experiments the number of tetra-
hedra was on the order of 10000. Simulation time ranged
from about 10 to 30 iterations per minute (on 64-bit Intel R©
Xeon R© CPU W5590 @ 3.33 GHz, 6 GB RAM) – not in-
cluding rendering which was done in a subsequent step.

6. Conclusions and Future Work

In this paper, we have demonstrated the feasibility of fluid
simulation in a framework where the computational grid
evolves over time, maintaining the fluid interface as a sub-
complex of the tetrahedral grid. This is in contrast to the few
examples of previous work which used unstructured grids.
In these methods, the computational grid is either fixed or,
essentially, rebuilt every time step.

Because of this, we have an explicit fluid surface repre-
sentation in the form of a triangle mesh which is also not
rebuilt every time step since it is a subcomplex of the tetra-
hedral grid. From this we derive one of the big advantages
of the method, namely that we can easily formulate surface
energy in terms of the surface geometry.

Since, arguably, this method is qualitatively different from
previous unstructured mesh based methods for fluid simula-
tion, it is unsurprising that there is room for future improve-
ment.

It is clear from our screenshots and animations that the
fluid surface is quite rough in some cases. This is due to the
lack of a viscosity term which should be straightforward to
add and make it faster to reach the equilibrium state. Note
also that in grid based methods, unintentional viscosity is
quite common due to numerical diffusion. In fact, one of the
strengths of our method is that there is very little numerical
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Figure 5: Head-on collision of two water droplets in 0-gravity conditions.

Figure 6: Oblique collision of two water droplets in 0-gravity conditions.

Figure 7: Shape aquired by a droplet of liquid put on a flat surface. On the left-hand side: α1−α2 = −0.75, and indeed the
contact angle θ < 90◦. On the right-hand side: α1−α2 = 0.75, and indeed the contact angle θ > 90◦. Note that the pond shape
is more irregular when θ < 90◦. This is the case also in the physical world, e.g.: ponds of water on the glass usually acquire
quite irregular shapes, while ponds of mercury on the glass are usually round. This is due to the fact, that increasing the contact
surface between water and glass decreases the total energy of the system, unlike in the latter case.
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Figure 8: Two drops of water splashing inside a solid sphere.

Figure 9: Large drop of water splashing inside a solid sphere. α1−α2 = 0 (corresponding to contact angle θ = 90◦, charac-
teristic for e.g. water on silver), surface energy density exagerrated.

diffusion since we only change the mesh when parts of the
surface collide (to change topology of the fluid volume) or
when we need to remove poor quality tetrahedra.

One of the direct and straight-forward short term goals is
investigating the influence of using second-order surface en-
ergy approximation, which can easily be included in the ex-
isting framework. We are also planning to try using Sequen-
tial Quadratic Programming in order to investigate the influ-
ence of higher-order terms (although we believe this might
require using more elaborate mesh refinement schemes).

The other way of improving our method could be by using
more sophisticated linear elements.

Furthermore, our method can be extended by adding vis-
cosity, allowing compressible fluids and multiple phases
(supported naturally by the DSC). Ultimately, we would like
to include solid (rigid, ellastic and deformable) objects in an
unified physis simulation setup.
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