
Compressible Subsonic Flow on a
Staggered Grid

by

Michael Patrick Bonner

B.Sc., California Polytechnic State University, San Luis Obispo, 2002

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

October, 2007

c© Michael Patrick Bonner 2007

Abstract

This work focuses on numerically modelling the dynamics of a single phase
fluid at varying densities and pressures. We explore the potential of in-
compressible flow simulation methods in modelling compressible flow, with
an eye towards computer animation applications. The methods developed
capture the interesting thermodynamic effects of compressible flow, and re-
duce to the standard Marker and Cell incompressible flow Poisson matrix
in the incompressible limit. The method works well in modelling flows in
the subsonic range that normal incompressible techniques do not capture
and where compressible methods are inefficient. We have also investigated
adapting these techniques to granular elastic-plastic flow.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Figures . v

1 Introduction - Background on Fluid and Material Simula-
tion . 1
1.1 Incompressible Flow . 3
1.2 Compressible Flow . 4
1.3 Elasto-Plastic Flow . 7

2 Review of Incompressible Flow Simulation 10
2.1 The Marker and Cell (MAC) Grid 10
2.2 Operator Splitting . 11
2.3 Semi-Lagrangian Advection 12
2.4 Operator Discretization . 12
2.5 Boundary Conditions . 13
2.6 Finite Difference Solution . 14

3 Compressible Flow on Staggered Grids 16
3.1 ICE . 16
3.2 A Simplified ICE Technique 17
3.3 Adding Simple Thermodynamics 20
3.4 A Change in Primary Variables 23
3.5 Boundary Conditions and Grid Aligned Solids 27
3.6 The Incompressible Limit . 27
3.7 Implementation and Results 28

4 Towards Eulerian Granular Flow 30
4.1 Complementarity . 31
4.2 Finite Difference Solution . 33

iii

Table of Contents

4.3 Implementation . 34

Bibliography . 36

iv

List of Figures

2.1 A 2D Marker and Cell (MAC) cell with density and pressure
defined at the cell center and the vertical component of veloc-
ity defined on horizontal faces and the horizontal component
of velocity defined on the vertical cell faces. 11

2.2 An illustration of semi-Lagrangian advection of a horizontal
velocity unknown. 13

3.1 Results obtained using the method presented in section 3.3. A
heat source is located in the middle of the domain in between
two walls. 23

3.2 The figure on the left uses the upwinding scheme in equation
3.28, while the figure on the right uses the zipped scheme (eq.
3.32)for the (ρu)2

ρ and the upwinded terms for the v(ρu) terms. 24
3.3 Illustration of the cells and vectors involved in the upwinding

scheme used in equations 3.31 and 3.6. 25
3.4 Results of a simulation run in which a circular area of higher

density (one order of magnitude) is brought to equilibrium. . 28

4.1 Plots showing sand settle under gravity. 35

v

Chapter 1

Introduction - Background
on Fluid and Material
Simulation

This work focuses on modelling the dynamics of a single fluid flow. How
fast a fluid is flowing determines how a fluid is modeled. Scientists use a
dimensionless number called the Mach number, defined as

M =
v

c
(1.1)

to quantify the speed of the flow (v) relative to the speed of sound (c) in
the fluid. Depending on the Mach number desired to reproduce, completely
different solution techniques tracking different properties may be required.

We can use the Mach number to classify three regions of flow. Flows with
M < 1 are subsonic, M = 1 sonic, and flows with a Mach number greater
than one are supersonic. Fluids begin to behave radically different when ob-
jects in the fluid or parts of the fluid approach or exceed the speed of sound
in the fluid. The partial differential equations that govern the behaviour
of each flow region may loosely be classified as elliptic, parabolic, and hy-
perbolic. For this work we are primarily interested in subsonic flow and
elliptical PDEs, but it is important to note that higher speed flows require
drastically different solution techniques. For this work we are concerned with
a further delineation of subsonic flow, that between incompressible flow and
compressible flow. Typically, flows with Mach numbers less than 0.3 can be
modeled as incompressible, while flows with Mach numbers greater than 0.3
must be modeled as compressible. However, this is merely a rule of thumb;
compressible effects have been noted with Mach numbers as low as 0.1, but
it depends on changes in pressure and density relative to the speed of sound
[15].

Although flows and solution methods can differ drastically they all start
with the same underlying Navier-Stokes equations, defined continuously for
a differential element. We begin with conservation of momentum, written

1

Chapter 1. Introduction - Background on Fluid and Material Simulation

in non-conservative velocity form as

∂u

∂t
+ u · ∇u +

1
ρ
∇p− 1

ρ
∇ · σv − Fj = 0, (1.2)

the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0, (1.3)

and conservation of energy

ρ(
∂E

∂t
+ u · ∇E)−∇ · (Kh∇T) + p∇ · u = 0. (1.4)

Here u is the velocity vector, ρ is density, p is pressure, σv is the viscous stress
tensor, F represents body forces such as gravity, E is internal energy, and
Kh is a heat conduction coefficient. Note that this system is not closed; an
equation of state that relates two or more of the variables—such as pressure
and density or pressure and temperature—like the ideal gas law, is needed.
In many cases, certain terms in the equations can be neglected because their
physical and/or numerical effects are negligible; later we will be dropping the
viscous stress term and heat conduction term in particular, since numerical
viscosity from the treatment of advection terms (u · ∇u or u · ∇E) will
dominate them.

Equations 1.2 through 1.4 are described in a continuous setting. In order
to solve them we must discretize our computational domain in a discrete
way and solve the equations at points in our domain. There are two ways
to discretize the domain. The Lagrangian approach attaches a mesh or
unstructured particles to the fluid, i.e. the discrete elements move with the
fluid velocity. In the Eulerian approach the domain is voxelized into fixed
discrete elements and fluid is free to move between them: fluid properties
are tracked at nodes between cells or at cell centers. Lagrangian models
are not as popular for fluids as they are for solids. Obviously a fluid can
move and distort a great deal—if you imagine a mesh moving with a fluid,
the mesh will become entangled beyond recognition. For this reason regular
staggered or collocated grids, irregular grids, or adaptive grids are usually
used to model fluids in an Eulerian setting. We will see in the subsequent
sections that the type of grid used is also dependent on the type of flow
being modeled.

Since we are interested in producing data sets to be used in production
computer graphics environments, one of our most stringent constraints is
time. We seek visually believable simulations as quickly as possible. In

2

Chapter 1. Introduction - Background on Fluid and Material Simulation

contrast, engineers and physicists care that the simulation is correct, not
that it just looks correct. So long as the results ”look” correct, the accuracy
that physicists and engineers obsess over is often sacrificed for improvements
in efficiency and run time. We also need a complete representation of our
domain; physicists and engineers will often take advantage of symmetry in
order to reduce the problem size, figuring why simulate the entire domain
if a subset will do? Also, the time frame in which important physics take
place is usually not macroscopic as it is in a movie; nobody wants to animate
something that is hardly perceivable. Therefore, scientific simulations usu-
ally span a much shorter time span than those needed for computer graphics
applications which may run for several seconds. Conversely, physicists may
be interested most in the first several milliseconds of an explosion.

We will now introduce the different flow regimes we are interested in and
the modelling techniques that are used to model a particular flow regime.

1.1 Incompressible Flow

If the relative speeds within a flow are low enough (typically Mach number
less than 0.3), thermodynamic effects and density changes due to changes
in pressure become negligible. If density is constant and mass is conserved
so is volume. This condition is expressed mathematically as the divergence
of velocity is zero

∇ · u = 0 (1.5)

Essentially what goes into a differential volume must exit it simultaneously.
Coupling this equation with conservation of momentum 1.2 makes the sys-
tem fully determined, without need of the energy equation or an equation of
state, and yields extremely efficient simulations. Pioneering research in the
computational modelling of incompressible flow began in the 1950’s. The
primitive variable approach1 favoured in computer graphics was pioneered
by Harlow and Welch who developed the Marker and Cell method (MAC)
in 1965 [27], Chorin who developed the artificial compressibility method in
1967 [14], Patankar and Spalding who developed the semi-implicit method
for pressure linked equations (SIMPLE) in 1972 [43], and Issa who devel-
oped the pressure implicit with splitting of operators (PISA) method in 1985
[31]. The computer graphics industry has primarily focused on the work of

1 Primitive variable refers to using velocity and pressure as the chief unknowns, as
opposed to other techniques such as vorticity methods; readers can consult [15] for a more
in-depth consideration.

3

Chapter 1. Introduction - Background on Fluid and Material Simulation

Harlow and Welch and the use of MAC grids. You will see in the subse-
quent chapter that it is ideally suited for efficient solutions of incompressible
flow problems. MAC grids store the field variables in a staggered fashion,
whereas collocated grids store all data at cell centers. Collocated methods
for incompressible flow that use central differences are sensitive to checker-
board instabilities. This problem can be dealt with by using complicated
filtering schemes, but they have the disadvantage of adding additional nu-
merical dissipation on coarse grids. Therefore, collocated methods are not
popularly used for applications in computer graphics. MAC methods typi-
cally treat the advection term explicitly but the pressure term as an implicit
constraint—and thus can use time steps restricted by the material velocity
only, not the speed of sound (which, for low Mach numbers, is obviously
desirable).

A vast amount of research in graphics has started with simple incom-
pressible flow and tweaked it with the goal that some physical process which
is normally difficult to model can be approximated: this is the general spirit
behind this work. Starting with Foster and Metaxes in 1996 [24], the amount
of graphics research in modelling the Navier-Stokes with incompressible flow
has included semi-Lagrangian advection [49], vorticity confinement [20, 41],
surface tracking [19], [18], [7], surface tension [33], surface flow [50], dy-
namic meshes [32], fire [41], viscosity [12, 45], viscoelastic modelling [25],
coupling with rigid and deformable solids [26], efficient implementations [33],
[30], smooth-particle hydrodynamics ([38, 48], irregular boundaries [9], mul-
tiple fluid flow [34], large bodies of water [35], and of course, explosions
[22, 40, 46, 54] , and sand [10, 56].

1.2 Compressible Flow

While in low speed flows, temperature, energy, and changes in density may
be insignificant, and thus efficient incompressible flow solvers can be used,
for higher speed scenarios more complex compressible methods must be
used. Consider a small element of fluid, v, under pressure, p, from all
sides. If we increase the pressure by a tiny amount, dp, the element will
compress by a corresponding amount, dρ. The compressibility of a fluid is
defined as τ = dρ

ρdp . Compressibility measures how much a static material
deforms subjected to a unit of pressure. Under a change in pressure the
corresponding change in density is then

dρ = ρτdp (1.6)

4

Chapter 1. Introduction - Background on Fluid and Material Simulation

Compressibility is a material property; water has a value of 5× 10−10 while
air has a value of 1 × 10−5 [1]. Air is easier to compress than water—not
surprising. Things become interesting as the fluid is subjected to forces or
loads and begins to move. It can be seen plainly in equation 1.6 that if large
pressure changes are present, than the change in density is significant. This
is usually the case for flows with Mach speeds greater than 0.3, which in
air corresponds to a flow speed of 100m

s . Further flow classification begins
within the envelope of compressible flow: subsonic flow (0.3 ≥ M ≥ 0.8),
transonic flow (0.8 ≥ M ≥ 1.2), supersonic flow (1.2 ≥ M ≥ 5), and hyper-
sonic (M > 5). Each region warrants special consideration and may benefit
from specialized methods. Typically in all cases, in order to accurately
capture the interesting effects of compressible flow, the conservative variables
ρ, ρu, and ρE, are used—in fact it’s generally considered essential to use
these variables, and the conservative form of the equations, to capture shock
waves at transonic and higher speeds. In contrast, incompressible methods
track the non-conservative variables p and v; while the focus of this thesis
will be on modelling the compressible effects present in sub-sonic flow that
incompressible simulators cannot approximate, we will find that the non-
conservative variables will do fine.

In order to take into account the compressibility and capture the vari-
ations in density we now need all of the equations listed in the previous
chapter (1.2 to 1.4)2 and an equation of state, such as the ideal gas law
(pv = nRT), that relates pressure, density, and temperature3.

As airplanes approached the speed of sound and as scientists began to
model explosions accurately computational fluid dynamics has evolved from
modelling incompressible flows to modelling fully compressible fluid dynam-
ics. In supersonic flows containing shocks, information about conditions
downstream of a shock cannot propagate back upstream past the shock;
this effect produces large gradients in energy and pressure. Understandably
higher resolution solution techniques are needed. Currently, two methods
for solving the hyperbolic partial differential equation conservation laws in-
volved in compressible flow are commonly used. The first and most common
are Riemann solvers. Riemann solvers capture shock formation and evolu-
tion by solving simplified scalar conservation laws with constants for x < 0
and x > 0 (the shock face or front is located at x = 0). In order to reduce the
PDEs to separate scalar equations the variables must be collocated so that

2Though as noted modified to use the conservative variables, and written in “conser-
vation law” form.

3This is the traditional approach. We will see later other approaches exist, although
they may not be as physically accurate.

5

Chapter 1. Introduction - Background on Fluid and Material Simulation

the flux matrix can be diagonalized. The second and less popular approach,
but still extensively researched, is epitomized by the Lax-Friedrichs method.
Variables are again collocated but every other time step is staggered by half
a grid cell. The staggering allows central differences to be used without
concerns about stability, so long as a CFL-like condition is obeyed. Lax-
Friedrichs methods avoid Riemann problems and do not require the matrix
to be diagonalized. The latter method is closest in spirit to the approach
taken in this thesis.

As mentioned before, incompressible flow methods employ operator split-
ting to separate an explicit and implicit part of the solution. This allows
much larger time steps to be used which means simulations can be produced
quicker. This is a huge advantage in a production computer graphics en-
vironment. In contrast, the Riemann solvers and Lax-Friedrichs methods
use fully explicit methods. In supersonic flows the time step restrictions
are from the material velocity, not from the speed of sound. There is no
reason to treat the advection and pressure separately. However, since these
compressible methods are explicit, the conservation equations are very stiff
in the low speed limit. The usual solution for stiffness is to treat pressure
implicitly, but because the spatial discretization is highly non-linear and po-
tentially non-smooth, doing this for a Riemann solver is extremely difficult.
Lax-Friedrichs type methods also do not fare well with this flow regime and
have a similar stiffness problem—but since the space and time discretiza-
tions are tightly integrated in staggering, there is no obvious way to make
these methods implicit. On the other hand, incompressible solvers cannot
model flows where the divergence of velocity is not zero. Another concern
when modelling compressible flow is that a region of the flow will be moving
slow enough to be theoretically incompressible. When the difference between
flow speeds and the speed of sound is very large it can lead to a poorly con-
ditioned system which may not converge using iterative procedures. This
problem has been extensively researched in [44], [13], and elsewhere. In fact
flowfield-dependent variation methods have been developed motivated by
the difficulty in modelling very low velocities on one side of a shock and the
very high velocities on the other side of a shock.

In contrast to the large amount of work done in the computer graphics
community on incompressible flow, compressible flow and the conservative
Navier-Stokes system has received little attention. A surprising fact noting
the prevalence of explosions in movies and video games. Yngve el al. [55]
have produced the most notable work modelling the full compressibility
of a shocked fluid. The work used two simplifying assumptions used by
engineers and although they did capture the effects of temperature and the

6

Chapter 1. Introduction - Background on Fluid and Material Simulation

conservation of internal energy, the method is inefficient as the flow speed
decreases [22].

The methods developed for this thesis model both low and relatively
high speed flows and capture some of the visual effects of compressible flow.
Because neither standard compressible or incompressible techniques han-
dle flow speeds in the sub-sonic range above M = 0.3 we have aimed our
research at this flow regime and are not primarily concerned with conserva-
tion of energy and momentum or with modelling shock creation and prop-
agation. Specifically, we will never attempt to conserve energy, instead we
make simplifying assumptions that allow us to forgo energy conservation
and to provide a robust and quick method.

1.3 Elasto-Plastic Flow

Another type of flow we are interested in, elasto-plastic flow, isn’t actually
fluid flow. In particular we are interested in the flow of sand. The dynamic
behaviour of sand under load resembles the behaviour of a fluid, but, unlike
a fluid and more like a classic elastic-plastic material such as steel, sand
stops flowing—it has a strength associated with it. Classic elastic-plastic
materials will yield or deform under load. If the strength of the material is
not exceeded, the deformation or strain, is recoverable: upon unloading the
material will return to its initial configuration. If the material’s strength is
exceeded, it deforms plastically—plastic strain is not recoverable. If we con-
sider a pile of sand we know that if it is too steep it will fail and flow—some
sort of sand inter-grain strength has been exceeded—and it will continue
to flow until it reaches a stable configuration. Once the grains move, that
“deformation” is not recoverable: they will not return to their original con-
figuration. This fact makes classic plasticity an obvious choice for modelling
the dynamics of granular materials—clearly, regular fluids do not behave
this way. Elastic-plastic techniques like those in [39] were developed by
adapting known methods for dealing with classic problems in solid mechan-
ics to things that flow like sand. Unfortunately, the deformations seen in
typical solid mechanics problems are relatively small, and thus numerical
work has focused on mesh-based Lagrangian techniques—which suffer from
entanglement and require re-meshing in order to handle realistic sand flows.
For this reason, Eulerian techniques, which are underdeveloped, are very
attractive for sand.

Continuum methods that calculate the dynamics of granular materials
are very similar to the compressible and incompressible fluid dynamic models

7

Chapter 1. Introduction - Background on Fluid and Material Simulation

mentioned in the previous sections4. Instead of solving for v and p or ρ,
ρu, and ρE, they solve for v, ε (strain), and σ (stress). The models used
consist of partial differential equation conservative laws for mass, energy and
momentum. The most prominent differences with the Navier-Stokes system
of equations we have seen are present in the conservation of momentum,
which now relate stress and strain. One models used is

Ti,j = σ(δi,j + k
Vi,j

|V |
)

where Vi,j = −(∂u
∂x + ∂v

∂y) is the strain rate tensor5, |V |2 ≡
∑

V 2
i,j , k is a

material constant, and δ is the angle of internal friction. This equation,
and others like it, essentially replaces the viscous term in the Navier-Stokes
equation with a shear rate independent term. This rate independence makes
these equations generally more difficult to solve than the Navier-Stokes equa-
tion. These conservative laws are combined with a yield condition such as
Mohr-Coulomb or Drucker-Prager and a flow rule. Normal plastic materi-
als flow in a direction in strain-space that corresponds with the gradient of
the yield condition (a so-called “associated” flow rule); however, doing this
would make the dilation part of plastic strain to be non-zero, an unphysical
case for granular dynamics, and thus a more complicated “non-associative”
flow rule must be used.

Another popular technique for modelling elastic-plastic flow of sand is
to use a discrete element method (DEM). DEMs use Newton’s law to model
the interaction of individual grains or clumps of sand. The simulations
progress by detecting “contacts” between particles and then calculating the
resultant forces. The proper and efficient detection of contacts is key to the
success of discrete element methods. Even with an optimal technique, DEMs
track individual particles; with sand this can means tracking the interaction
of millions of grains of sand, clearly, a daunting computational task. In
applications where knowing the exact location of particles is paramount
this expense is worthwhile; this is not the case with computer graphics and
DEM methods are often too costly. Bell et. al. used discrete elements in
[10] specifically aimed at producing effects for movies, but their sand grains
appear too large, most likely the effect of trying to reduce the problem to a
manageable size.

4At least, they are similar to fluids when considering low-speed, high-density flows; in
contrast rapid “gaseous” flows are modeled using kinetic theory methods.

5The negative sign in the strain rate tensor is there because sand spreads apart when
subjected to a tensile load.

8

Chapter 1. Introduction - Background on Fluid and Material Simulation

Both elastic-plastic and discrete element techniques require more re-
sources and are significantly more computationally complex than incom-
pressible simulation methods. Treating the dynamics of flowing sand using
an incompressible flow technique is an attractive alternative; the work of
Zhu and Bridson [56] was in this spirit. Although the method is more ef-
ficient than competing techniques and does produce realistic simulations in
many cases, for some basic granular physics their results are incorrect. In
particular, the effects of internal friction are not accounted for in the pres-
sure calculation and could lead to inconsistencies when pressure is corrected
to account for zero divergence. Additionally, cohesion is handled incorrectly;
when subjected to a tensile load the grains of sand do not come apart as in
real life. In Chapter Four we introduce a method that attempts
to improve Zhu’s work and ultimately move toward a quick and
accurate Eulerian granular dynamics model.

We have introduced three types of fluid dynamics; modelling each tradi-
tionally requires wildly different techniques. In order to capture the physics
of compressible subsonic and elastic-plastic flow we have modified the sim-
plest and most efficient techniques, those used to model incompressible
flow—while maintaining the ability to accurately and efficiently model in-
compressible flow.

9

Chapter 2

Review of Incompressible
Flow Simulation

We mentioned before that if the relative speed of flow is low enough temper-
ature and pressure effects on density can be neglected. Essentially, density
can be regarded as constant throughout our fluid. This allows us to subject
our system to the following constraint:

∇ · u = 0 (2.1)

∇· is the divergence operator. This equation simply states that all points in
our velocity field must be divergence-free. In simpler terms, what goes into
a point must go out and vice versa.

Assuming that a flow is incompressible allows density to be treated as a
constant—this eliminates the need to use the continuity equation. Further-
more, as we will see in the following sections viscosity can also be neglected.
This essentially leads us with equation 1.2 and 2.1; we will see how these
equations are combined to model fluid dynamics efficiently.

2.1 The Marker and Cell (MAC) Grid

The Navier-Stokes system of equations are defined continuously for all points
within a volume of fluid. Practically, this is not solvable; it becomes nec-
essary to solve the equations using finite differences defined on a Eulerian
grid where our domain is divided into a finite set of voxels of equal volume.
The Navier-Stokes PDEs are sampled at cell centers and cell faces in the
domain. For reasons that will be clear later we will use a Marker and Cell
(MAC) grid [27]. A two-dimensional MAC grid cell (figure 2.1) defines the x
component of a cell’s velocity vector on the vertical faces of the cell and the
y component on the horizontal faces. Pressure and density are defined at
the center of the MAC cells. We use a half index notation, so for cell (i, j) in
two dimensions we have ρi,j and pi,j at the center, and ui− 1

2
,j , ui+ 1

2
,j , vi,j− 1

2
,

10

Chapter 2. Review of Incompressible Flow Simulation

and vi,j+ 1
2

normal to the faces. Most of the graphics research mentioned in
the incompressible section of Chapter One uses a staggered MAC grid.

Figure 2.1: A 2D Marker and Cell (MAC) cell with density and pressure
defined at the cell center and the vertical component of velocity defined on
horizontal faces and the horizontal component of velocity defined on the
vertical cell faces.

2.2 Operator Splitting

In order to solve our PDEs on our grid we need to introduce the idea of
operator splitting. Consider the continuity equation: ρt + ∇ · (ρu) = 0.
Expanding the∇· operator yields ρ∇·u+u∇ρ. The idea of operator splitting
is just substitution: solve for the u∇ρ as ρ̃t = −u∇ρ and then solve ρt =
ρ̃− ρ∇ · u. We do this with equation 1.2 and equation 1 by solving for the
advection term first, that is ũt = −u∇u. In the momentum equation it is
advantageous to treat the advection part of the equation with an explicit
technique, for reasons of efficiency, accuracy, and simplicity [11]. We will
see in the subsequent sections that the advection algorithm commonly used
behaves well for arbitrarily large time steps. Treating the pressure term
in the momentum equation implicitly produces a well conditioned system.
If in contrast the pressure term were to be dealt with explicitly, the CFL
condition6 would require that the speed of sound be taken into account when
determining a safe time step—doing so is extremely inefficient for low speed
flow.

6The CFL condition will be defined later, but for now it is important to know that it
is a restriction on the size of the time steps taken during the simulation.

11

Chapter 2. Review of Incompressible Flow Simulation

2.3 Semi-Lagrangian Advection

In graphics a first order accurate7 technique called semi-Lagrangian advec-
tion [49] is used to determine the advection term in our conservation of
momentum equation. We are seeking the value or quantity, in this case u,
that will be present at this quantity’s current location at the end of the cur-
rent time step. This is done by determining a velocity vector at our position
x (interpolated from nearby u and v velocity components). The vector is
then negated and multiplied by ∆t. We trace back to the location (x−∆t~v)
where we estimate the fluid came from in our domain, and then interpolate
(linearly, bi-linearly, and tri-linearly in 1d, 2d, and 3d) from nearby values
to determine our final value (see figure 2.2 for an illustration of this process).
This technique is stable with arbitrarily large time steps—a great quality for
a computer graphics application. Unfortunately, this process involves aver-
aging operations that have the effect of smoothing out high frequency (or
sharp) features in our data set. In some situation this is acceptable because
it can be shown to be mathematically similar to viscosity [11]. The excessive
dissipation has a positive side effect: we are now justified in dropping the
ν∇ · ∇u term from our momentum equation. Semi-Lagrangian advection
still damps out too much detail for many applications, which has prompted
the research in more complex methods, e.g. [20, 41].

2.4 Operator Discretization

Before we consider solutions to our PDEs we need to look at the discretiza-
tion of the gradient operator (∇p) and the divergence operator (∇ · u) on
a MAC grid. Since our velocities are stored at cell faces and pressure at
cell centers it is easy to solve for the pressure gradient across a cell face. If
we had used a collocated grid we could have used a second order accurate
central scheme such as ∇p = pi+1−pi−1

2∆x . Unfortunately, this scheme ignores
information stored at location i (were we are calculating ∇p and ut) which
can lead to poor numerical results—known as a checkerboard instability [11].
The staggered positions of our unknowns in the MAC grid yield a second
order accurate central scheme without introducing inaccuracy or instability.
Ultimately the gradient is approximated as ∇p = pi+1−pi

∆x . Similarly, if we
consider our constraint ∇ · u = 0 for cell i, this equation in two dimensions
is

7A second order accurate version has been developed, but the simple version is pre-
sented here.

12

Chapter 2. Review of Incompressible Flow Simulation

Figure 2.2: Illustration of semi-Lagrangian advection for a horizontal veloc-
ity unknown.

∇ · ui = (ui− 1
2
− ui+ 1

2
+ vi− 1

2
− vi+ 1

2
)/∆x (2.2)

which, like the gradient operator, is second-order accurate. It can be shown
that if the divergence is calculated on a collocated grid the same problems
present with the pressure gradient arise.

2.5 Boundary Conditions

The most simple and most common boundary conditions used in computer
graphics simulations are solid wall boundaries and free surface boundaries.
In the inviscid case solid wall boundaries involve simply setting the normal
velocity on a boundary to zero or ~u · n̂ = 0. This is trivial for grid aligned
solids on a MAC grid since velocities are stored perpendicular to cell faces.
The issue of accurately handling curved un-grid aligned boundaries is more
difficult, but recent work by Batty et. al. in [9], in which the pressure
projection step is rephrased as a kinetic energy minimization, has proven to
be accurate and efficient. In computer graphics, air is usually not modeled
since it is so much lighter than water and has little effect on the dynamics
of our fluid flow. Instead of actually calculating the pressures in the air it

13

Chapter 2. Review of Incompressible Flow Simulation

is taken to be at atmospheric pressure, or, since only differences in pressure
are important, simply zero. This is the free surface boundary condition.

2.6 Finite Difference Solution

As was mentioned before, density is constant and the continuity equation
can be neglected. If we use a forward Euler approximation to ut, substitute
in ũ (section 2.3), and neglect viscosity (section 2.3), the conservation of
momentum equation becomes8

un+1 = ũ +
1
ρ
∇p (2.3)

Now applying the constraint ∇ · u = 0 and re-arranging yields:

∇ · un+1 = ∇ · ũ +
1
ρ
∇ · ∇p

1
ρ
∇ · ∇p = ∇ · ũ (2.4)

We now have a system of linear equations in pressure, p, involving the Lapla-
cian ∇·∇ or ∇2, the divergence of the gradient of pressure. Once discretized
as described above, a single row in the linear system9 looks like

δt2

∆x2ρi

(
− pi,j−1 − pi−1,j + 4pi,j − pi+1,j + pi,j+1

)
=

(ũi− 1
2
,j − ũi+ 1

2
,j + ṽi,j− 1

2
− ṽi,j+ 1

2
)/∆x (2.5)

All other entries in the ith row are zero—it is a sparse system of equations.
The Laplacian operator discretized using our MAC grid is symmetric posi-
tive semidefinite10, and in fact, if at least one pressure value is constrained to
zero, positive definite. Moreover it is a diagonally dominant M -matrix, i.e.
the off-diagonal entries are non-positive and the row-sums are non-negative.
Large amounts of research have gone into solving this particular system and

8In order to ensure the final system is symmetric the equation has been divided through
by ρ.

9Note that we have multiplied both sides of 2.4 by −1 to make the matrix positive
definite. A matrix is positive definite (PD) if xT Ax > 0 ∀ x ∈ Rn.

10 A matrix is positive semidefinite (PSD) if xT Ax ≥ 0 ∀ x ∈ Rn.

14

Chapter 2. Review of Incompressible Flow Simulation

systems like it very quickly. We solve for p and then correct the intermediate
(advection only) velocities according to un+1 = ũ−∇p.

The standard algorithm proceeds by advecting velocities and other quan-
tities according to section 2.3; solving for pressure according to 2.5; and
enforcing boundary conditions and updating secondary quantities with the
new velocity field.

As was seen in the previous sections the amount of computer graphics
research in incompressible flow is staggering (as referenced in section 1.1).
However, the question of modelling explosions well is still largely open and
the question of modelling granular flow has been largely untouched. The
following chapters will present methods that use a MAC grid, conservation
of momentum, and rather than a divergence restraint, include conservation
of mass, and an equation of state to close the Navier-Stokes system of equa-
tions. We feel that this approach allows us to quickly and efficiently capture
some important aspects of compressible and granular flow.

15

Chapter 3

Compressible Flow on
Staggered Grids

Our hope in modelling compressible flow on a staggered grid is to capture
some of the visual effects of thermodynamics while maintaining the com-
putational efficiency of incompressible methods. Explosions produce the
dynamic loads required to make density changes visually important. Signifi-
cant effort has been spent in the computer graphics community in modelling
explosions; that effort has almost exclusively focused on modifying incom-
pressible methods. Many production applications use heuristic rules; many
physics based techniques replace or adapt a heuristic with more physically
motivated heuristics. Starting with Reeves in 1983 [47] particle systems
have been used exhaustively to model fire effects and explosions in com-
puter graphics. Mazarak et. al. [37], Martins et. al. [36], and Neff [40] used
analytical approximations to experimental data to model the blast wave as-
sociated with an explosion. Feldman et. al. [22] model the blast wave using
incompressible techniques but place a constraint on the divergence of veloc-
ity, that is ∇ · u = 0 becomes ∇ · u = φ. Rasmussen et. al. [46] use a tiled
Kolmogorov velocity field combined with standard incompressible methods
to produce appealing large explosions. The methods mentioned all require
extensive artistic control and experienced users to achieve appealing results.
Only Yngve et. al. [55], as mentioned in Chapter One, attempts to model
the fully compressible Navier-stokes system of equations. Their method is
inefficient compared to incompressible methods—our hope has been to pro-
duce the most visually and physically accurate explosions in the computer
graphics community.

3.1 ICE

Seeking inspiration for adapting incompressible techniques as well as the
MAC grid towards modelling compressible flow led us, once again, to work
by Harlow. In 1968 Harlow and Amsdan published “Numerical Calcula-

16

Chapter 3. Compressible Flow on Staggered Grids

tions of Almost Incompressible Flow” and refined this work in “A Numeri-
cal Fluid Dynamics Calculation Method for All Flow Speeds” [28] published
in 1972. In these two papers Harlow and Amsden described an Implicit
Continuous-fluid Eulerian (ICE) technique for modelling single phase fluid
dynamic problems. They start with the differential equations for conserva-
tion of momentum and of mass, and solve them using central differences de-
fined on a MAC grid. The momentum discretization includes both previous
time step (multiplied by 1− φ) and forward time step pressures (multiplied
by φ). The scalar φ (with values between 0 and 1) determines the time cen-
tering of the pressure term. Similarly the continuity equation includes both
previous and forward time values, this time weighted by θ− 1 and θ. These
two equations with unknown densities and velocities are combined to create
a system for pressure that includes the product of the scalars φ and θ. The
resulting linear system is positive definite and reduces to a Poisson matrix
as the speed of sound approaches infinity: the incompressible limit. This
system is actually better conditioned than the incompressible Poisson ma-
trix due to the presence of an additional pi term making it more diagonally
dominant.

ICE was unique because flows occurring over a wide range of Mach num-
bers could be modeled. It incorporated the two scalars φ and θ, that de-
termine how explicit or implicit the solution technique is. If the two scalars
are set to zero the method is fully explicit; if both scalars are 1. the method
is fully implicit. In essence, changing the two independent of one another
in between the two extremes becomes a knob a simulator can turn to tailor
the outcome to their desires. Our experience in implementing the method
presented was that the large number of parameters made the simulations
fussy. We felt many of the parameters were not necessary to meet our goals.
ICE also supported arbitrary equations of state—we felt a simple linear EOS
would suffice. In the end we did not feel there was a great need to have an
arbitrary amount of explicitness versus implicitness. Instead, we developed a
much simpler method that more closely resembles classical computer graph-
ics incompressible flow methods. Advection and pressure are fully separated
into an explicit and implicit step; doing this allows any advection scheme to
be used, further adding to the overall robustness of the method.

3.2 A Simplified ICE Technique

Like Harlow and Amsden, our initial developments used velocity and density
as our primary variables. In one dimension the method begins with the

17

Chapter 3. Compressible Flow on Staggered Grids

conservation of mass and momentum we have seen before:

∂ρ

∂t
+

∂ρu

∂x
= 0 (3.1)

∂ρu

∂t
+

∂(ρu2)
∂x

= −∂p

∂x
(3.2)

p = c2ρ (3.3)

Equation 3.2 is an equation of state (EOS), where c is the speed of sound.
The EOS is needed to close the system, as equations 3.1 and 3.2 are not
enough to fully determine the variables present.

In one dimension we begin by expressing continuity explicitly as

ρn+1
i = ρn

i +
∆t

∆x

[1
2
(ρn

i−1 + ρn
i)un

i− 1
2

− 1
2
(ρn

i + ρn
i+1)u

n
i+ 1

2

]
(3.4)

and velocity as

un+1
i+ 1

2

= un
i+ 1

2

+
1

1
2(ρn

i + ρn
i+1)

∆t

∆x

[
c2(ρn

i − ρn
i+1) + ρun

i
2 − ρun

i+1)
2] (3.5)

Notice that c2(ρn
i − ρn

i+1) is pressure via a linear equation of state (equation
3.2). The convective fluxes, (un

i)2 and (un
i+1)

2 (which are needed at cell
centers), are upwinded as

u2
i =

{
u2

i− 1
2
,j

if (ui− 1
2

+ ui+ 1
2
) < 0

u2
i+ 1

2
,j

if (ui− 1
2

+ ui+ 1
2
) ≥ 0

(3.6)

This is a first order upwinding approach, but could easily be replaced by a
higher resolution method or semi-Lagrangian formulas.

This explicit step is limited by

∆t = α
∆x

c + max(|~u|)
(3.7)

This is an expression of what is known as the Courant-Friedrichs-Lewy con-
dition (CFL condition). The CFL condition states that the time step must
be small enough in order to make the numerical domain of dependence of
a solution point include the true physical domain of dependence, i.e. not
miss any significant propagation of information. In our case this is partly
dictated by fluid velocity: obviously we do not want anything to be advected

18

Chapter 3. Compressible Flow on Staggered Grids

a distance greater than a cell length as we would lose the density associated
with that cell. In addition, the sound speed c appears in the denominator
of equation 3.7, since in this explicit treatment of pressure the CFL condi-
tion dictates that sound waves must not travel further than a cell length in
one time step. Using pn+1 instead of pn in 3.5 and solving for p implicitly
removes the sound speed c from equation 3.7. Doing this is attractive for
any flow where the flow speed is significantly slower than the speed of sound
and is the approach taken in the next section.

Solving for pressure implicitly requires the operator splitting technique
presented in Chapter Two. The previous equation for un+1 becomes, as
the pressure is now dealt with implicitly, an equation for an intermediate
velocity value that only includes advection, ũ:

ũi+ 1
2

= un
i+ 1

2

+
1

1
2(ρn

i + ρn
i+1)

∆t

∆x

[
ρun

i
2 − ρun

i+1
2
]

(3.8)

The u2 terms are upwinded as before in equation 3.6. Like velocity, we
calculate an intermediate density that includes the advection term from the
continuity equation

ρ̃i = ρn
i +

∆t

∆x
[(ρu)i− 1

2
− (ρu)i+ 1

2
] (3.9)

where now the ρi± 1
2

densities are upwinded as

ρi+ 1
2

=

{
ρi+1 if ui+ 1

2
< 0

ρi if ui+ 1
2
≥ 0

Using these advected values the final velocity and density are

un+1
i+ 1

2

= ũi+ 1
2

+
1

1
2(ρ̃n

i + ρ̃n
i+1)

∆t

∆x
(pn+1

i − pn+1
i+1) (3.10)

ρn+1
i = ρ̃i +

∆t

∆x

[
(
1
2
(˜ρi−1 + ρ̃i)∆ui− 1

2
− 1

2
(ρ̃i + ˜ρi+1)∆ui+ 1

2

]
(3.11)

where ∆ui− 1
2

is simply un+1
i+ 1

2

− ũi+ 1
2

from equation 3.10. After substituting

the equation for ∆u into the equation for ρn+1
i and then substituting that

into our constitutive relation p = c2ρ gives us our linear system to solve for

19

Chapter 3. Compressible Flow on Staggered Grids

in pn+1. This system is tridiagonal in one dimension with non-zero bands in
two and three dimensions. Moreover it is positive definite, and an M -matrix.
From the layout of the matrix we can see that when the speed of sound goes
to infinity (the incompressible limit) we are left with the incompressible
Poisson matrix.
If we let α = c2∆t2

∆x2 a single row of the matrix (in one dimension) looks like[
αpi−1 + (1 + 2α)pi − αpi+1

]
= c2ρ̃i (3.12)

This system is identical to the linear system formed in the original ICE
method without the dependence on φ and θ. Again it reduces to the MAC
matrix in the limit, but it is better conditioned because of the additional pi

term.

3.3 Adding Simple Thermodynamics

The previous method performed well but we felt it could easily be extended
in order to better capture thermodynamic expansion and contraction effects.
We begin like most compressible flow simulators by using the equation of
state p = nRT (the ideal gas law), instead of p = c2ρ which does not relate
pressure to temperature. We assumed that viscosity and heat conduction
were negligible in our flow and that the flow was isentropic: entropy is
conserved. It can be shown [8] for an ideal isentropic gas flow that

p = e
S
cv ργ (3.13)

where S is entropy and cv is the specific heat, and γ is the heat capacity
ratio (which is constant for an ideal gas, with γ ≈ 1.4 for air). Since entropy
is conserved, the first term, e

S
cv , is constant; for our purposes we will refer

to it is as the entropy factor or F . Furthermore, since entropy remains
constant the material derivative of F is zero—this means it can be advected
like density in [21]. For air at regular conditions in an isentropic setting, the
temperature can be shown to be:

T = Fργ−1 (3.14)

We manipulate the entropy factor field by adding heat sources during the
calculation. The simplest heat source we used was to set F = Ttarget

ργ−1 where
Ttarget was a target temperature for a given cell. Temperatures were set to
Ttarget for cells located within a heat source region of the domain.

20

Chapter 3. Compressible Flow on Staggered Grids

Using the preceding simplifications we get the following equations11

(which are the non-conservative form of the Navier-Stokes system of equa-
tions)

~un+1 = ũ− ∆t

ρ̃
∇p (3.15)

ρn+1 = ρ̃−∆tρ̃∇ · ~un+1 (3.16)

pn+1 = RTρn+1 (3.17)

Notice that in this equation of state 3.17 the sound speed is RT—it depends
on temperature. By using a “lagged” T calculated from intermediate explicit
values of F and ρ, the equations are linear, but no longer uniform throughout
the domain.

The finite difference solution begins similarly by computing the interme-
diate density and velocity values that account for advection:

ρ̃i,j = ρn
i,j −

∆t

∆x

(
un

i,j(∇ρ)x + vn
i,j(∇ρ)y

)
(3.18)

and
ũi+ 1

2
,j = un

i+ 1
2
,j
− ∆t

∆x

(
ui+ 1

2
,j(∇u)x + vi+ 1

2
,j(∇u)y

)
(3.19)

where un
i,j and vn

i,j are averaged to the cell centers from the neighbouring
two face values and vi+ 1

2
,j is averaged from the neighbouring four vertical

velocity values. The (∇ρ)x values are calculated as:

(∇ρ)x =
{

(ρn
i+1,j − ρn

i,j) if ui,j < 0
(ρn

i,j − ρn
i−1,j) if ui,j ≥ 0

(3.20)

Similarly the (∇u)x values from 3.19 are calculated as:

(∇u)x =

{
(un

i+ 3
2
,j
− un

i+ 1
2
,j
) if ui+ i

2
,j < 0

(un
i+ 1

2
,j
− un

i− 1
2
,j
) if ui+ 1

2
,j ≥ 0

(3.21)

Like density, our entropy factor (F) can be advected around in the same
velocity field as:

F̃i,j = Fn
i,j −

∆t

∆x

(
un

i,j(∇F)x + vn
i,j(∇F)y

)
(3.22)

11 Where again, the˜values are intermediate values that account for advection.

21

Chapter 3. Compressible Flow on Staggered Grids

The temperature value used in the equation of state is calculated as Ti,j =
F̃i,j ρ̃

γ−1
i,j . Since our EOS is a function of the temperature, using ρn+1 in-

stead of ρn would produce a more difficult, although more accurate, non-
linear problem to solve. We felt using ρn and having a linear system in
pressure, rather than a non-linear system in density (ργ), was a reasonable
and attractive simplification.

In the explicit version, ρn+1 is simply taken to be ρ̃ and un+1 is updated
using our equation of state 3.17, as:

un+1
i+ 1

2

= ũi+ 1
2
−R

∆t

∆x

(
Ti,j ρ̃i,j − Ti+1,j ρ̃i+1,j

)
(3.23)

In the implicit version a linear system in pressure is built by substituting

un+1
i+ 1

2

= ũi+ 1
2
− ∆t

∆xρi+ 1
2
,j

(
pn+1

i,j − pn+1
i+1,j

)
(3.24)

into

ρn+1
i,j = ρ̃i,j −

ρ̃i,j∆t

∆x

(
un+1

i+ 1
2
,j
− un+1

i− 1
2
,j

+ vn+1
i,j+ 1

2

− vn+1
i,j− 1

2

)
(3.25)

ρn+1
i,j in 3.25 is taken to be

pn+1
i,j

RT (i,j) . In order to ensure the system is symmet-
ric we divide 3.25 by ∆tρi,j . A row in the resulting linear system looks like:

∆t

∆x2

[
− pi+1,j

ρ̃i+ 1
2
,j

− pi−1,j

ρ̃i− 1
2
,j

− pi,j+1

ρ̃i,j+ 1
2

− pi,j−1

ρ̃i,j− 1
2

+

(1
RTi,j ρ̃i,j

+
1

ρ̃i− 1
2
,j

+
1

ρ̃i+ 1
2
,j

+
1

ρ̃i,j− 1
2

+
1

ρ̃i,j+ 1
2

)
pi,j

]
=

1
∆t

− (ũn+1
i+ 1

2
,j
− ũn+1

i− 1
2
,j

+ ṽn+1
i,j+ 1

2

− ṽn+1
i,j− 1

2

) (3.26)

The ρi± 1
2
,j values are averaged to the cell faces from the adjacent cells. This

system is symmetric, positive definite, and reduces in the incompressible
limit to the incompressible Poisson matrix. Although it is positive defi-
nite the incorporation of the averaged densities into the matrix makes it
more difficult to deal with than the previous system. The potential for
ill-conditioning is now present.

This leads to the following solution algorithm:

• Advect ρ, entropy factor, and velocity according to 3.19-3.22

22

Chapter 3. Compressible Flow on Staggered Grids

Figure 3.1: Results obtained using the method presented in section 3.3. A
heat source is located in the middle of the domain in between two walls.
The plots on top are of the density profile while the bottom plots depict the
temperatures. The pressure wave can be seen in the density plot and, as
expected, travels much faster than the plume of hotter, less dense air.

• Add heat sources (increase entropy factor in a specified region) and
calculate temperature as Ti,j = F̃i,j ρ̃

γ−1
i,j

• Determine the pressure according to 3.26

• Update ρ and velocity according to 3.25 and 3.24. Let Fn+1 = F̃

Additional steps pertaining to boundary conditions and solids inside the
domain have been neglected for simplicity and will be addressed in section
3.5.

3.4 A Change in Primary Variables

The previous methods, although simple, are not guaranteed to conserve
momentum. This fact prompted us to investigate a change in primary vari-
ables from velocity to momentum, and using the conservative form of the
Navier-Stokes equations to perfectly conserve momentum. In contrast to
calculating fluxes when needed, velocities are now calculated by dividing
the momentum by a density averaged between the two cells that share the
face where the velocity is being calculated. In the presence of shocks this
calculation would produce unphysical spikes in the velocity field because of
the sharp gradients present when shocks occur. As before, our focus is on
subsonic flow. Velocities are calculated without concern for the presence of
sharp discontinuities in the density field. The method is presented in two
dimensions because the upwinding terms require more attention.

23

Chapter 3. Compressible Flow on Staggered Grids

Our explicit formulation begins as before by calculating densities as

ρ̃i,j = ρn
i,j +

∆t

∆x

(
(ρu)n

i− 1
2
,j
− (ρu)n

i+ 1
2
,j

+ (ρv)n
i,j− 1

2

− (ρv)n
i,j+ 1

2

)
(3.27)

Since we store momentum values, ρu directly on cell faces, it is possible to
calculate equation 3.27 without any upwinding. Unfortunately, we found
this gives rise to spurious oscillations, and so found the following upwind
scheme for calculating (ρu)i± 1

2
,j and (ρv)i,j± 1

2
.

(ρu)i+ 1
2
,j =

{
ui+ 1

2
,jρi+1,j if ui+ 1

2
,j < 0

ui+ 1
2
,jρi,j if ui+ 1

2
,j ≥ 0

(3.28)

necessary. The velocity ui+ 1
2

in 3.28 is calculated as mentioned previously:

ui+ 1
2
,j =

(ρu)i+ 1
2
,j

1
2(ρi,j + ρi+1,j)

(3.29)

and has the previously mentioned problems in the presence of shocks.

Figure 3.2: Results at t=0.005 for two simulations in which a circular region
of higher density (one order of magnitude) is brought to equilibrium. The
figure on the left uses the upwinding scheme in equation 3.28, while the
figure on the right uses the zipped scheme (eq. 3.32) for the (ρu)2

ρ and the
upwinded terms for the v(ρu) terms.

In contrast to the previous method where we would update velocity, we

24

Chapter 3. Compressible Flow on Staggered Grids

now update our momentum in the horizontal direction with

˜(ρu)i+ 1
2
,j =

∆t

∆x

((ρu)n
i,j

2

ρn
i,j

−
(ρu)n

i+1,j
2

ρn
i+1,j

+ (vρu)n
i+ 1

2
,j+ 1

2

− (vρu)n
i+ 1

2
,j− 1

2

)
(3.30)

The (vρu)i+ 1
2
,j± 1

2
values are calculated at the horizontally-aligned red points

in 3.3 and are upwinded according to:

(vρu)i+ 1
2
,j+ 1

2
=

{
vi+ 1

2
,j+ 1

2
(ρu)i+ 1

2
,j+1 if vi+ 1

2
,j+ 1

2
< 0

vi+ 1
2
,j+ 1

2
(ρu)i+ 1

2
,j if vi+ 1

2
,j+ 1

2
≥ 0

(3.31)

where vi+ 1
2
,j+ 1

2
is calculated as

(v
i,j+1

2
+v

i−1,j+1
2
)

2 . The (ρu)2i,j and (ρu)2i+1,j

terms are calculated at the vertically-aligned red points in 3.3 and are up-
winded as in 3.6.

We are considering the flux into the cell of size ∆x by ∆y centered around
position (i + 1

2 , j). These flux locations are the red dots in figure 3.3, while
the green arrows are the positions to which we average v values, and the
blue arrows are the momentum values we use to upwind (ρu)2 terms. The
(vρu) and (ρu)2

ρ terms reduce to ρu when multiplied by ∆t
∆x .

Figure 3.3: Illustration of the cells and vectors involved in the upwinding
scheme used in equations 3.31 and 3.6.

Harlow and Amsden describe a different way to calculate the (ρu)2 terms,
a form they called zip fluxes:

(ρu)2i,j = (ui− 1
2
,j)(ui+ 1

2
,j) (3.32)

25

Chapter 3. Compressible Flow on Staggered Grids

Similarly the v and the ρu values in equation 3.31 can become vi,j =
(vi,j− 1

2
vi,j+ 1

2
)

1
2 and ((ρu)i− 1

2
,j(ρu)i+ 1

2
)

1
2 . However, this too gives rise to

unstable oscillations without adding artificial viscosity, which we have tried
to avoid.

Using equation 3.2 the final step in our explicit formulation is to update
our momentum values as:

(ρu)n+1
i+ 1

2

= ˜(ρu)i+ 1
2
,j −

∆tc2

∆x

(
ρ̃i+1,j − ρ̃i,j

)
(3.33)

For the time being we ignored the pressure effects on density and simply let
ρn+1 = ρ̃.

As in the explicit formulation, we solve equation 3.27 and equation 3.30
that account for the advection of density and momentum. Our next time
step density and momentum are:

ρn+1
i,j = ρ̃i,j−

∆t

∆x

(
(∆ρu)i− 1

2
,j−(∆ρu)i+ 1

2
,j+(∆ρv)i,j− 1

2
−(∆ρv)i,j+ 1

2

)
(3.34)

(ρu)n+1
i+ 1

2
,j

= ˜(ρu)i+ 1
2
,j −

∆t

∆x

(
pn+1

i+1,j − pn+1
i,j

)
(3.35)

where (∆ρu)i− 1
2
,j = (ρu)i− 1

2
,j − ˜(ρu)i− 1

2
,j (from equation 3.35). As opposed

to the previous technique from section 3.2 in which our equation for ρn+1
i

was substituted into our constitutive relationship, we now substitute pn+1 =
c2ρn+1 into equation 3.35 which is then substituted into equation 3.34. This
produces a linear system in ρn+1

i as opposed to pn+1. With α = c2(∆t
∆x)2 a

row in this linear system looks like

[
− αρi,j−1 − αρi−1,j + (1 + 4α)ρi,j − αρi+1,j − αρi,j+1

]
= ρ̃i (3.36)

Since ρ and pressure are linearly related, this system is identical to the one
in the previous formulation. It is sparse, symmetric, and positive definite
and reduces, in the limit, to the incompressible Poisson matrix.

The solution algorithm is identical to the algorithm listed in section 3.2,
only now the variables and upwinding procedures differ.

26

Chapter 3. Compressible Flow on Staggered Grids

3.5 Boundary Conditions and Grid Aligned
Solids

Both solid wall and periodic boundary conditions were used with the preced-
ing methods. Values needed for periodic boundaries are taken from the other
side of the domain when needed. The solid wall boundaries and interior grid
aligned solids were modeled by skipping density calculations (setting them
to zero) and setting the velocity or momentum values into and out of solid
cells to be zero. For cells bordering on solid cells, the matrix entries in equa-
tion 3.36 must account for the pressure in the wall equalling the pressure
within the current cell. For example, for a cell on the top boundary, its
corresponding row in the matrix becomes:[

− αρi,j−1 − αρi−1,j + (1 + 3α)ρi,j − αρi+1,j

]
= ρ̃i (3.37)

The only difference being that the ρi,j+1 entry is gone and (1 + 4α)ρi,j has
become (1 + 3α)ρi,j , because pi,j+1 = pi,j .

3.6 The Incompressible Limit

As we saw in Chapter Two, enforcing the divergence of velocity to be zero
results in the following linear system of equations:

∇ · ∇p = ∇ · ũ (3.38)

The systems shown in 3.12, 3.26, and 3.36 all reduce as the speed of sound
approaches infinity to the incompressible Poisson matrix: the ∇·∇ matrix in
3.38. This means that these methods will model incompressible flows as well
as the compressible flows they have been designed to model. Since we track
variations in density using the continuity equation and use it to construct our
linear systems, the right hand side vectors differ from the vectors in 3.38.
The incompressible methods assume density to be constant–a reasonable,
but incorrect, assumption. Changes in pressure can actually lead to changes
in density, if for no other reason than numerical error. If an incompressible
simulator did track these minuscule deviations in density space and included
a drift correction term, the incompressible system would resemble the ones
presented in the previous sections. In contrast, our models directly use the
continuity equation to track and respond to changes in density in a fully
physical way.

27

Chapter 3. Compressible Flow on Staggered Grids

Figure 3.4: Results of a simulation run in which a circular area of higher
density (one order of magnitude) is brought to equilibrium.

3.7 Implementation and Results

The preceding methods were implemented using C++ in two dimensions
with both solid wall and periodic boundaries for a square domain that in-
cluded solid objects. The momentum formulation was also implemented in
three dimensions. A preconditioned conjugate gradient solver and a sparse
matrix class were used to solve and represent the linear systems presented
in 3.12, 3.26, and in 3.36. Solutions are usually found in a single iteration
when a warm start is used.

Figure 3.3 shows the results of a simulation that included the heat source
defined in section 3.3. The heat source is located in between the walls in
the center of the domain and ends at approximately three quarters of the
wall height. It continually sets the temperature in the heat source region
to 1000K. The figure contains density profiles (top plots) and temperature
profiles (bottom plots). The initial pressure wave can been seen in the
density plots, and, as expected, travels much faster than the plume of hot
air which rises out of the heat source.

In figure 3.6 a circular region within the center of the domain with density
one order of magnitude larger than the surrounding cells is brought to equi-
librium. On the left portion of the domain is a wall. This simulation used
the method presented in section 3.4 and the upwinding scheme for fluxes
presented in 3.31 and 3.6 (as opposed to the zipped procedure). Notice the
diffraction and reflection waves in the last frames of the figure. Although
these results look fine, often the results obtained when using momentum val-
ues directly in equation 3.27 as opposed to the upwinding scheme presented
in 3.28 were incorrect. At other times the simulations simply crashed. Es-
sentially, the upwinding scheme is, as expected, more stable as we begin to

28

Chapter 3. Compressible Flow on Staggered Grids

push the limits of the simulation. For the same initial conditions, if we begin
to increase the CFL factor from 0.1 to 1.0, the simulation using 3.27 will
produce unphysical results at a lower CFL factor. Although, in the cases
where this occurs we are also pushing the theoretical limits of the method,
unphysical results occur when the Mach number approaches and exceeds
1.0. This failure is inconsequential since we freely admit our method will
not produce physically accurate results for supersonic flow.

The zipped fluxes presented in 3.32 are second order accurate, and with
this accuracy comes less stability. As can be seen in figure 3.4, the results
obtained using the zipped fluxes are more detailed, but these simulations are
more likely to crash or produce small time-steps. Like the semi-lagrangian
techniques, the first order accurate upwinding scheme adds diffusion and al-
lows us to neglect viscosity. Incorporating viscosity would make the zipped
method more stable, but it would add considerable computational cost. Har-
low and Amsden favour the higher order schemes combined with viscosity
because they favour more physically accurate simulations. We are willing
to sacrifice physical accuracy for an improvement in run time. In practice,
neither upwinded nor zipped fluxes worked better all of the time. As we
changed the CFL factor and/or the initial density gradient, one method
would produce more spherical results than the other, or in some cases, es-
pecially when directly using the momentum values in equation 3.27, the
simulation would become unstable and crash.

29

Chapter 4

Towards Eulerian Granular
Flow

Granular material dynamics, like those of sand, are essentially macroscopic
fluid flows. At the microscopic level the molecules that make up a regular
fluid collide and interact, transferring kinetic energy from one molecule to
another. The time and length scales over which a fluid is modeled cover an
enormous number of molecular interactions. Individual collisions are aver-
aged over these significantly larger scales: modelling the flow as a continuum
makes sense. Granular flows also behave in this way, but the time and length
scales are significantly closer to the scales that are significant in individual
grain interactions. Treating these flows as a continuum is not as straightfor-
ward or as plausible; some phenomena, such as force “bridging” where force
is transferred through discrete chains of grains in contact and not averaged
through the volume, are out of reach of the continuum approach. That
said, the continuum approach has been successfully applied in engineering
to solve soil mechanics problems, for example, and appears to be the most
promising approach12 to efficiently solve large-scale problems.

We have all seen sand flow on a dune or a beach like it was water, yet
sand always settles in a way that water never does. The primary reason
for this response is the presence of friction between the individual grains of
sand. As mentioned in Chapter Two, scientists who model granular flow
often use mesh-free methods like discrete elements where the response of
every single grain is tracked, or with Lagrangian mesh-based elasto-plastic
continuum methods that are strictly limited to small amounts of flow. We
feel that an Eulerian continuum approach would be an ideal third possibility
for applications in computer graphics or as quick analysis tools for engineers.

While this research was ultimately unsuccessful in effectively simulating
granular material with an Eulerian continuum formulation, we here report
on our first steps towards this goal. Rather than tackle the full problem

12As opposed to the previously mentioned elasto-plastic Lagrangian or discrete element
techniques

30

Chapter 4. Towards Eulerian Granular Flow

with a Mohr-Coulomb constitutive law, which relates shear stress and strain
rate in the continuum to inter-particle friction, we restricted attention to
just the pressure/density relationship of an idealized frictionless granular
material. This is in line with the previous chapters’ work on improved
handling of pressure/density changes in low speed flow, but also exposes a
key distinction of granular flow from fluid flow: the presence of inequality
constraints, expressed as complementarity conditions.

Our continuum model for sand is created by averaging properties onto
a MAC grid. The density in a cell essentially measures the number of sand
particles in a cell, and the pressure measures the normal contact force be-
tween them. This approximation is obviously isotropic; direction and ori-
entation of individual contacting particles is lost. The cells that represent
an unsettled flowing region of sand may have density values less than the
cells of a settled region of sand. As a simplified first approximation, when
the density is less than the settled value, we take the pressure (the average
normal contact force) to be zero. Similarly, if the sand in an area of our
domain has settled, its density will exactly equal some ideal settled density
and the pressure will be allowed to be positive to resist applied compressive
load (e.g. from gravity). This relationship is known as a complementarity
relationship; one quantity (pressure) is positive while the other (the differ-
ence between current density and the settled density) is zero, but they are
never positive at the same time. Mathematically this is expressed as

0 ≤ p ⊥ ρsettled − ρ ≥ 0 (4.1)

This constraint replaces the divergence-free condition of incompressible flow
(where p can be both positive and negative, but density is always held con-
stant), or the equation of state relating pressure and density in compressible
flow.

4.1 Complementarity

Complementarity problems are a broad class of problems, with the simplest
case being the linear complementarity problem (LCP). In its simplest form,
the LCP can be stated as the goal of determining p ∈ Rn such that

p ≥ 0 (4.2)
Ap + b ≥ 0 (4.3)

pT (Ap + b) = 0 (4.4)

31

Chapter 4. Towards Eulerian Granular Flow

which can also be written as before, 0 ≤ p ⊥ Ap + b ≥ 0 [16]. To clar-
ify, this can be thought of as a relationship where two quantities cannot be
greater than zero at the same time. A vector p that satisfies the first two
inequalities in 4.2 is said to be feasible. Another way of expressing this is
to let w = Ap + b, then for all i = 1, ..., n, piwi = 0. Depending on the
matrix A and vector b the LCP may have zero, one, or an infinite number
of solutions. This complementarity relationship has been used to describe
phenomena in a large number of fields including economics, civil engineer-
ing, and computer graphics. LCPs are a specialized version of a mixed
complementarity problem: a more general formulation that combines the
previous complementarity problem, possible with a nonlinear relationship
between the two non-negative quantities, with additional equations that do
not involve complementarity[2, 51]. LCPs are not the only complementarity
problem, but since we have a linear system we will only mention LCPs.

The LCP can also be expressed as the following inequality quadratic
program (QP):

minimize
x

xT (Ax + b)

subject to Ax + b ≥ 0
subject to x ≥ 0

(4.5)

If the matrix is positive definite the problem has a unique solution. If the
matrix A is positive semidefinite, it can be shown that the problem has a
solution (potentially non-unique). Using this expression of the LCP can be
advantageous since QP problems have been extensively researched over a
long period of time. Additionally, they do not necessarily suffer from the
same shortcomings as competing LCP algorithms.

Frequently in video games or in movie animation it is necessary to model
the dynamic response of contacting rigid bodies. Rigid body contact (as
it’s known) can be formulated as a linear complementarity or mixed com-
plementarity problem. If we consider two rigid bodies the idea is easy to
conceptualize. When two bodies are not in contact there is no impulse (force
integrated over time) between them, but the distance is greater than zero.
When two bodies are in contact the force between them is positive, while the
distance separating them is zero. If we solve for the position and velocity of
our rigid bodies using the following scheme

vn+1 = vn +
n∑

i=0

hi + ∆t g (4.6)

xn+1 = xn + ∆t vn+1 (4.7)

32

Chapter 4. Towards Eulerian Granular Flow

the following LCP can be formulated 0 ≤ h ⊥ |xi − xj | ≥ 0 where |xi − xj |
represents the distance between two rigid bodies13.

A great deal of research [2, 5, 6, 51, 53] has begun with this simple
idea. An obvious concern is that this analysis does not consider frictional
forces that develop between two contacting bodies. Incorporating frictional
constraints into our LCP is not as easy to visualize and is beyond the scope
of this work. The interested reader can consult [2, 5, 29, 51] for details
concerning frictional constraints. The simple argument begins with Coulomb
friction. If the tangential friction impulse is less than a yield value Iy = µIN

where µ is the coefficient of friction and IN is the normal impulse between
the two bodies, i.e. if Iy−I > 0, then the two contacting bodies will not slide
past each other. On the other hand, if I = Iy, then the friction impulse I
cannot exceed Iy and there is tangential movement between the two bodies.
This argument is analogous to our initial argument for approximating Mohr-
Coulomb friction (the tensor stress/strain version of Coulomb’s law) on an
Eulerian grid phrased as a complementarity problem.

4.2 Finite Difference Solution

The linear complementarity problem using pressure as the driving variable
was initially built by discretizing, like before, the non-conservative momen-
tum equation 1.2 and the continuity equation 1. We again employed operator
splitting to separate the advection of density and velocity, but this time we
used semi-Lagrangian advection to calculate ρ̃ and ũ. The equations for
density and velocity become:

ρn+1
i,j = ρ̃i,j −∆tρ̃i,j

(un+1
i+ 1

2
,j
− un+1

i− 1
2
,j

∆x
+

vn+1
i,j+ 1

2

− vn+1
i,j− 1

2

∆x

)
(4.8)

un+1
i+ 1

2
,j

= ũi+ 1
2
,j −

∆t

ρi+ 1
2
,j

(pi+1,j − pi,j

∆x

)
(4.9)

The equations for the next time step velocities were then substituted into the
equation for the next time step density. This density was then subtracted
from ρsettled to create the linear system in pressure for the complementarity
problem p ≥ 0 ⊥ ρmax−ρ ≥ 0. After substitution a row in this system looks

13This is not the only way to formulate this general contact complementarity idea; a
great deal of research has gone into this and no method has shown to be the optimal
solution

33

Chapter 4. Towards Eulerian Granular Flow

like:

ρmax−
[
ρ̃i,j

∆t2

∆x2

(pi+1,j

ρ̃i+ 1
2
,j

+
pi−1,j

ρ̃i− 1
2
,j

+
pi,j+1

ρ̃i,j+ 1
2

+
pi,j−1

ρ̃i,j− 1
2

− pi,j

ρ̃i,j

)]
−

∆t

∆x
ρ̃i,j(ũi+ 1

2
,j − ũi− 1

2
,j + ṽi,j+ 1

2
− ṽi,j− 1

2
) ≥ 0 (4.10)

Here, as before, the ρ̃i± 1
2
,j and ρ̃i,j± 1

2
values are averaged to cell faces from

adjacent cell densities. The density that appears in equation 4.8 and 4.9 are
the same if the density in equation 4.8 is brought inside the parentheses by
using face averaged density. If this is done the densities cancel in the linear
system.

Similar to the method just outlined, we constructed the same system us-
ing the initial velocity-based compressible discretization outlined in Chapter
Three: ignore the constitutive relationship, substitute the equation for ve-
locity into the equation for density, and a system that is identical to the
one here is obtained. Since the advection is calculated in a different way,
the right hand side vector of the problem is not the same and the two dis-
cretizations produce different results.

The linear system constructed in 4.10 is positive semidefinite; the +1
term in the diagonal (4α + 1)pi,j from our previous systems is missing. As
a result this system is singular, with a null-space corresponding to constant
pressure values. Positive semidefinite (PSD) systems do not admit unique
solutions to the LCP, but do have unique w = Ap + b vectors (known as
the w-uniqueness property); that is, if p1 and p2 are solutions to the LCP,
then Ap1 = Ap2 [16]. This result means that although multiple feasible
pressure fields may exist, the density profile is unique. This singularity
could be resolved by constraining one pressure (for instance the pressure
value corresponding to the lowest density) to zero and thus eliminating it
from the matrix sent to our LCP algorithms. A regularization approach,
where a small amount is added along the diagonal, could also be used to
improve the conditioning of the system.

4.3 Implementation

The sand simulator using the LCP solution for pressures was implemented
in Matlab. We attempted to solve the LCP presented in section 4.2 using
the Path solver [17, 23], an implementation of Lemke’s algorithm [16], and
using a Gauss-Seidel method modified to use a clamped Newton step. For

34

Chapter 4. Towards Eulerian Granular Flow

Figure 4.1: Plots showing sand settle under gravity.

our application, the rich history and availability of robust QP methods is
attractive, but primarily we need a method that scales well. The perfor-
mance of Lemke degrades as the problem size increases, a trait we would
have liked to have avoided by using a QP method. Also, Lemke’s method
can not take advantage of previous solutions (a warm start) as certain QP
methods can. Despite its drawbacks Lemke’s method is commonly used
since, if the matrix is positive definite, it will find the solution if it exists.
For this reason, we used it primarily with test problems (which were never
passed). We assumed that the problem was poorly posed or an error existed
if Lemke’s algorithm failed to find a solution.

Although the matrix characteristics point to the existence of a solution
or solutions, the algorithms used frequently did not converge. The solutions
also depended on the initial vector used; often a zero vector did not work.
The system constructed from the method outline in section 3.2 behaved
similarly. We suspect cells with densities approaching zero are to blame, but
the question as to why the method failed is still an open one. Developing
an algorithm that correctly solves this LCP requires that this question is
answered.

We do feel the idea is sound and could lead to significant improvement
in quickly modelling granular dynamics, our stated goal. Unfortunately, we
did not achieve this. Hopefully, spending additional time—specifically to
develop a specialized QP algorithm for this problem—could lead to accurate
and reliable solutions to this LCP. Once the pressure LCP is solved the
framework can easily be extended to correctly model the physics between
settled grains of sand since there are no restrictions placed on the divergence
of velocity like in Zhu’s work.

35

Bibliography

[1] John D. Anderson. Modern Compressible Flow With Historical Per-
spective. McGraw-Hill, Inc., New York, NY, USA, 2003.

[2] M. Anitescu, F. Potra, and D. Stewart. Time-stepping for three-
dimensional rigid body dynamics. Computer Methods in Applied Me-
chanics and Engineering, 177(3–4):183–197, 1999.

[3] M. Anitescu and F.A. Potra. Formulating dynamic multi-rigid-body
contact problems with friction as solvable linear complementarity prob-
lems. Nonlinear Dynamics, 14(3):231–247, 1997.

[4] Mihai Anitescu, James F. Cremer, and Florian A. Potra. Formulating
3d contact dynamics problems. Reports on Computational Mathemat-
ics, 80, 1995.

[5] Mihai Anitescu and Gary D. Hart. A constraint-stabilized time-
stepping approach for rigid multibody dynamics with joints, contact,
and friction. International Journal for Numerical Methods in Engineer-
ing, 2002.

[6] David Baraff. Fast contact force computation for nonpenetrating rigid
bodies. In SIGGRAPH ’94: Proceedings of the 21st annual conference
on Computer graphics and interactive techniques, pages 23–34, New
York, NY, USA, 1994. ACM Press.

[7] Adam W. Bargteil, Tolga G. Goktekin, James F. O’brien, and John A.
Strain. A semi-lagrangian contouring method for fluid simulation. ACM
Trans. Graph., 25(1):19–38, 2006.

[8] G. K. Batchelor. An Introduction to Fluid Mechanics. Cambridge Uni-
versity Press, 1967.

[9] Christopher Batty, Florence Bertails, and Robert Bridson. A fast varia-
tional framework for accurate solid-fluid coupling. In SIGGRAPH ’07:
ACM SIGGRAPH 2007 papers, page 100, New York, NY, USA, 2007.
ACM Press.

36

Bibliography

[10] Nathan Bell, Yizhou Yu, and Peter J. Mucha. Particle-based simula-
tion of granular materials. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages
77–86, New York, NY, USA, 2005. ACM Press.

[11] Robert Bridson, Ronald Fedkiw, and Matthias Muller-Fischer. Fluid
simulation: Siggraph 2006 course notes fedkiw and muller-fischer prese-
nation videos are available from the citation page. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Courses, pages 1–87, New York, NY, USA,
2006. ACM Press.

[12] Mark Carlson, Peter J. Mucha, and Greg Turk. Rigid fluid: animating
the interplay between rigid bodies and fluid. In SIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers, pages 377–384, New York, NY, USA, 2004.
ACM Press.

[13] D. Choi and C.L. Merkle. The application of preconditioning for viscous
flows. J. Comp. Phys., 105:203–223, 1993.

[14] A. J. Chorin. A numerical method for solving incompressible viscous
flow problems. J. Comp. Phys., 2:12–26, 1967.

[15] T. Chung. Computational Fluid Dynamics. Cambridge University
Press, London, 2002.

[16] Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone. The Linear
Complementarity Problem. Academic Press,Inc., San Diego, CA, USA,
1992.

[17] S. P. Dirkse and M. C. Ferris. The path solver: A non-monotone sta-
bilization scheme for mixed complementarity problems. Optimization
Methods and Software, pages 123–156, 1995.

[18] Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. A
hybrid particle level set method for improved interface capturing. J.
Comput. Phys., 183(1):83–116, 2002.

[19] Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation
and rendering of complex water surfaces. In SIGGRAPH ’02: Proceed-
ings of the 29th annual conference on Computer graphics and interactive
techniques, pages 736–744, New York, NY, USA, 2002. ACM Press.

37

Bibliography

[20] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation
of smoke. In SIGGRAPH ’01: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, pages 15–22, New
York, NY, USA, 2001. ACM Press.

[21] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation
of smoke. In SIGGRAPH ’01: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, pages 15–22, New
York, NY, USA, 2001. ACM Press.

[22] Bryan E. Feldman, James F. O’Brien, and Okan Arikan. Animating
suspended particle explosions. In SIGGRAPH ’03: ACM SIGGRAPH
2003 Papers, pages 708–715, New York, NY, USA, 2003. ACM Press.

[23] Michael C. Ferris and Todd S. Munson. Interfaces to path 3.0: Design,
implementation and usage.

[24] Nick Foster and Dimitri Metaxas. Realistic animation of liquids. Graph.
Models Image Process., 58(5):471–483, 1996.

[25] Tolga G. Goktekin, Adam W. Bargteil, and James F. O’Brien. A
method for animating viscoelastic fluids. In SIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers, pages 463–468, New York, NY, USA, 2004.
ACM Press.

[26] Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw.
Coupling water and smoke to thin deformable and rigid shells. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages 973–981, New
York, NY, USA, 2005. ACM Press.

[27] F. Harlow and J. Welch. Numerical calculation of time-dependent vis-
cous incompressible flow of fluid with free surface. Phys. Fluids, 8:2182–
2189, 1965.

[28] F. H. Harlow and A. A. Amsden, editors. A numerical fluid dynamics
calculation method for all flow speeds, 1972.

[29] Gary D. Hart and Mihai Anitescu. A hard-constraint time-stepping
approach for rigid multibody dynamics with joints, contact, and fric-
tion. In TAPIA ’03: Proceedings of the 2003 conference on Diversity
in computing, pages 34–41, New York, NY, USA, 2003. ACM Press.

38

Bibliography

[30] Ben Houston, Michael B. Nielsen, Christopher Batty, Ola Nilsson, and
Ken Museth. Hierarchical rle level set: A compact and versatile de-
formable surface representation. ACM Trans. Graph., 25(1):151–175,
2006.

[31] R. Issa. Solution of the implicitly discretized fluid flow equations by
operator splitting. J. Comp. Phys., 62:40–65, 1985.

[32] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and
James F. O’Brien. Fluid animation with dynamic meshes. In Proceed-
ings of ACM SIGGRAPH 2006, August 2006.

[33] Frank Losasso, Frédéric Gibou, and Ron Fedkiw. Simulating water
and smoke with an octree data structure. In SIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers, pages 457–462, New York, NY, USA, 2004.
ACM Press.

[34] Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw. Mul-
tiple interacting liquids. ACM Trans. Graph., 25(3):812–819, 2006.

[35] Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw. Mul-
tiple interacting liquids. ACM Trans. Graph., 25(3):812–819, 2006.

[36] C. Martins, J. Buchanan, and J. Amanatides. Animating real-time
explosions. The Journal of Visualization and Computer Animation,
13(2):133–145, 2002.

[37] Oleg Mazarak, Claude Martins, and John Amanatides. Animating ex-
ploding objects. In Proceedings of the 1999 conference on Graphics
interface ’99, pages 211–218, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[38] Matthias Müller, Barbara Solenthaler, Richard Keiser, and Markus
Gross. Particle-based fluid-fluid interaction. In SCA ’05: Proceedings
of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 237–244, New York, NY, USA, 2005. ACM Press.

[39] G. C. Nayak and O. C. Zienkiewicz. Elasto-plastic stress analysis. a gen-
eralization for various constitutive relations including strain softening.
Int. J. Num. Meth. Eng., 5:113–135, 1972.

[40] Michael Neff and Eugene Fiume. A visual model for blast waves and
fracture. In Proceedings of the 1999 conference on Graphics interface

39

Bibliography

’99, pages 193–202, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc.

[41] Duc Quang Nguyen, Ronald Fedkiw, and Henrik Wann Jensen. Phys-
ically based modeling and animation of fire. In SIGGRAPH ’02: Pro-
ceedings of the 29th annual conference on Computer graphics and in-
teractive techniques, pages 721–728, New York, NY, USA, 2002. ACM
Press.

[42] J. Nocedal and S.J. Wright. Numerical Optimization. Springer-Verlag,
New York, NY, USA, 1999.

[43] S.V. Patankar and D.B. Spalding. A calculation procedure for heat,
mass and momentum transfer in three-dimensional parabolic flows. Int.
J. Heat Mass Transfer, 15:1787–1806, 1972.

[44] R. Peyret and H. Viviand. Pseudo-unsteady methods for inviscid or
viscous flow computations. Plenum, NY, USA, 1985. C. Casi (em).

[45] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner,
W. Geiger, S. Hoon, and R. Fedkiw. Directable photorealistic liquids.
In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 193–202, Aire-la-Ville,
Switzerland, Switzerland, 2004. Eurographics Association.

[46] Nick Rasmussen, Duc Quang Nguyen, Willi Geiger, and Ronald Fedkiw.
Smoke simulation for large scale phenomena. In SIGGRAPH ’03: ACM
SIGGRAPH 2003 Papers, pages 703–707, New York, NY, USA, 2003.
ACM Press.

[47] W. T. Reeves. Particle systemsa technique for modeling a class of fuzzy
objects. ACM Trans. Graph., 2(2):91–108, 1983.

[48] Premoze S., Tasdizen T., Bigler J., Lefohn A., and Whitaker R. Parti-
clebased simulation of fluids. In In Comp. Graph. Forum (Eurographics
Proc.), volume 22, pages 401–410, New York, NY, USA, 2003. ACM
Press.

[49] Jos Stam. Stable fluids. In SIGGRAPH ’99: Proceedings of the 26th an-
nual conference on Computer graphics and interactive techniques, pages
121–128, New York, NY, USA, 1999. ACM Press/Addison-Wesley Pub-
lishing Co.

40

Bibliography

[50] Jos Stam. Flows on surfaces of arbitrary topology. In SIGGRAPH ’03:
ACM SIGGRAPH 2003 Papers, pages 724–731, New York, NY, USA,
2003. ACM Press.

[51] D.E. Stewart. Rigid-body dynamics with friction and impact. SIAM
Review, pages 3–39, 2000.

[52] D.E. Stewart and J. C. Trinkle. An implicit time-stepping scheme
for rigid body dynamics with inelastic collisions and coulomb friction.
In International Journal for Numerical Methods in Engineering, pages
2673–2691, The Atrium, Southern Gate, Chichester P019 8SQ, Eng-
land, 1996. Wiley.

[53] D.E. Stewart and J. C. Trinkle. An implicit time-stepping scheme for
rigid body dynamics with coulomb friction. In IEEE International Con-
ference on Robotics and Automation, pages 162–196, 2000.

[54] Daiki Takeshita, Shin Ota, Machiko Tamura, Tadahiro Fujimoto,
Kazunobu Muraoka, and Norishige Chiba. Particle-based visual simu-
lation of explosive flames. In PG ’03: Proceedings of the 11th Pacific
Conference on Computer Graphics and Applications, page 482, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[55] Gary D. Yngve, James F. O’Brien, and Jessica K. Hodgins. Animating
explosions. In SIGGRAPH ’00: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques, pages 29–36,
New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing
Co.

[56] Yongning Zhu and Robert Bridson. Animating sand as a fluid. ACM
Trans. Graph., 24(3):965–972, 2005.

41

