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Abstract. We present a novel analysis of the potential effectiveness of a matrix ordering for
IC in terms of just the sparsity structure. By looking at the structure of the approximate inverse
implicitly created by IC we can help to explain the success of Reverse Cuthill-McKee orderings, the
problems IC(0) has under Red-Black orderings that disappear when extra fill is included, and where
fill must be added to make fill-reducing orderings such as Minimum Degree effective.
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1. Introduction. The ILU class of preconditioners have proven to be very com-
petitive. However, like any algorithm that involves factoring a matrix into triangular
parts (exactly or only approximately), the ordering of the rows and columns can have
a crucial effect. The issue of how best to choose that ordering is an important area
of research continuing up to today[1, 3, 4, 5, 6, 8, 9].

A natural first choice for an ordering might be the best fill-reducing ordering
available—maybe a Minimum Degree variant or some kind of Nested Dissection. This
follows the intuition that if there are less fill entries to drop then the incomplete
factorization will be more accurate.

However, it often turns out that envelope orderings like Reverse Cuthill-McKee
orderings do better despite allowing more fill, at least for level-of-fill based incomplete
factorizations and for fairly symmetric problems (e.g. see [1] for discussion of highly
nonsymmetric matrices). Another puzzling observation is that Red-Black orderings
usually give poor performance for ILU(0) but competitive performance for higher
levels of fill.1 These and many other orderings were considered in depth in [8], but
the reasons for the varying performance are still not clear. Other papers have since
further explored the effect of ordering on ILU, usually with a view to explaining (and
minimizing) the typical trade-off between parallelism and convergence speed, but have
generally stuck to model PDE problems on uniform rectangular grids[6, 9].

The following analysis provides some justification for these phenomena that works
with the sparsity structure of the matrix, without considering the numerical values.
The new results may be used as a guide for the construction of high-quality orderings,
particularly in the common case where matrix entries may change from solve to solve
but the sparsity structure and ordering stays the same.

We restrict our attention to symmetric positive definite matrices A with an incom-
plete Cholesky factorization L̄L̄T approximating the exact factorization LLT . Our
analysis is purely structural however, so the results are equally applicable to matrices
with just symmetric structure and whose ILU factors have identical structure after
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transposition, as is the case with ILU(k). Extensions to the fully unsymmetric case
are possible, but we have yet to find satisfying, intuitive results there.

2. Inverse Structure. The goal of an incomplete factorization is that the ap-
plication of the preconditioner is close to the application of the true inverse of A. In
other words, we want (L̄L̄T )−1 close to A−1, viewing IC as a kind of implicit approx-
imate inverse. This study focusses just on what the sparsity structure of the matrix
can tell us; for orderings that consider numerical values, see [3, 4, 5, 6, 9] for example.

One obvious desirable property for the incomplete factorization is that (L̄L̄T )−1

at least should have the same nonzero structure as A−1 (e.g. fully dense for irreducible
matrices, such as those arising from elliptic PDE’s). If (L̄L̄T )−1 is constrained to have
zeros where A−1 has non-negligible entries, the approximation cannot be good—the
required coupling between nodes is absent.

Before proceeding, we will introduce some graph theory notation (see [10, 11] for
more details). The (directed) graph of an n × n matrix B is a graph with vertices
1, . . . , n, and an arc i → j if and only if Bij 6= 0. We will just write B instead of
“the graph of B” where it is clear. A dipath is an ordered set 〈i1, i2, . . . ip〉 such that
i1 → i2, i2 → i3, . . . , and ip−1 → ip, often written i1 → i2 → · · · → ip or simply
i1 ; ip. The transitive closure of a graph G is a graph G∗ on the same vertices but
with an arc i → j in G∗ whenever i ; j in G.

In [11] the nonzero structure of the inverse of a matrix, assuming no fortuitous
cancellation, is characterized in terms of its graph: the structure of B−1 is the tran-
sitive closure of B. In other words, (B−1)ij 6= 0 if and only if there is a dipath i ; j

in B.
We can immediately determine the structure of A−1 then. Assuming A is con-

nected, and making use of its symmetric structure, there is a dipath between any two
nodes. Hence A−1 is completely dense (first shown in [7]). We are thus interested in
having (L̄L̄T )−1

ij 6= 0 for all i, j. Observe that:

(L̄L̄T )−1
ij =

n∑

k=1

(L̄−1)ki(L̄
−1)kj

Thus (L̄L̄T )−1
ij 6= 0 if and only if there is some k such that k ; i and k ; j

in L̄ (assuming no fortuitous cancellation). Notice that since L̄ is lower triangular,
u → v in L̄ implies that u ≥ v, and so similarly u ; v implies u ≥ v (and in fact the
the nodes on the dipath are monotonically decreasing). Therefore it is necessary that
n ; i monotonically for all i since no k > n—and this is clearly sufficient too, since
then n ; i and n ; j for all i, j, which implies (L̄L̄T )−1

ij 6= 0 for all i, j.

Thus (L̄L̄T )−1 is fully dense if and only if node n−1 is adjacent to n (in L̄), node
n− 2 is adjacent to the set {n− 1, n}, node n− 3 is adjacent to {n− 2, n− 1, n}, etc.
Imagine selecting the ordering (the labelling of the nodes) in reverse order: choosing
which node will be n, then which will be n − 1, etc. Recall that a graph traversal is
a step-by-step selection of the graph’s nodes such that at each step, the next node
selected is adjacent to some previously selected node. Then what we have is:

Theorem 2.1. The implicit approximate inverse (L̄L̄T )−1 is fully dense if and
only if the ordering is a “reversed graph traversal” (RGT) of L̄, labelling the root n,
the next node visited n − 1, then the next one n − 2, and so on.

For IC(0), where the structure of L̄ is the same as the structure of the lower
triangle of A, we then are looking for a reversed graph traversal of A. A prime
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Fig. 2.1. True inverse and implicit approximate inverses for IC(0) and IC(1) of the 5-point
Laplacian under different orderings. Lighter grey indicates larger entries, except pure white indicates
exact zeros.

True inverse

ILU(0) / RCM

ILU(1) / RCM

ILU(0) / Red−Black

ILU(1) / Red−Black

ILU(0) / MinDegree

ILU(1) / MinDegree

example of this is Reverse Cuthill-McKee ordering, where a pseudo-peripheral node
is chosen as the root, a special breadth-first traversal is made from the root, and the
ordering is taken by reversing the traversal so the root is numbered n.

Parenthetically, this helps to explain why ILU can often give faster convergence
than an (explicit) approximate inverse with the same number of nonzeros. A non-
factored sparse approximate inverse is by definition far from dense—for an elliptic
PDE this means that the preconditioner can’t resolve low-frequency components of
the error and is bound to have slow convergence. Factored sparse approximate inverses
may have a dense product, but under more restrictive conditions than ILU: the last
row/column of the lower/upper triangular factors respectively must be dense, which
is often not the case.

Another result concerns Red-Black ordering on a 5-point grid. For IC(0) this is
far from being an RGT—every black node is numbered higher than all its neighbours
(which are red), and so there are no dipaths leading to a black node. However, for
IC(1) each black node is connected in L̄ to the eight nearest black nodes, and assuming
the usual row-ordering of the black nodes, this does give an RGT. This is one reason
why Red-Black orderings are only competitive at higher fill levels.

Unless special measures are taken, Minimum Degree, Nested Dissection, and sim-
ilar orderings are typically not RGT’s for low fill ILU. Figure 2.1 shows an example
from a 5-point Laplacian on a 31 × 31 square grid. Each plot is of a column of the
implicit approximate inverse (or the true inverse) appropriately matched to the PDE’s
domain—i.e. a 312 column vector reshaped into a grid function on the 31× 31 mesh.
These are in essence discretized views of “slices” of the Green’s function or its IC ap-
proximations. The shading of the squares show how big the nonzero entries are. It’s
clear that even if the numerical factorization were optimal, Red-Black ordered IC(0)
and the displayed low fill Minimum Degree ordered preconditioner must have serious
difficulties, whereas the RCM ordered factorization and Red-Black ordered ILU(1) at
least have the structural potential to be very effective.

However, orderings like Minimum Degree and Nested Dissection sometimes can
give RGT’s for low fill ILU. In particular, on square grids it is easy to determine
a Nested Dissection which is a reversed graph traversal as well—figure 2.2 gives an
example for a 7 × 7 grid. The key point is that each separator is itself ordered as
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Fig. 2.2. An example ordering on a 7 × 7 grid which is both a Nested Dissection and an RGT.

1 7 4 49 22 28 25
3 8 6 48 24 29 27
2 9 5 47 23 30 26
19 20 21 46 42 41 40

10 18 13 45 31 39 34
12 17 15 44 33 38 36
11 16 14 43 32 37 35

an RGT with its root adjacent to the highest numbered node from the highest level
separator possible. In this way there always exists a path in the underlying graph
between any node and node n that does not pass through a lower numbered node
than the starting node—in fact, a monotonic path that goes along the separators.

3. Inverse Factor Structure. For an even better simulation of the applica-
tion of A−1 = L−T L−1, one could demand that the structure of the inverses of the
incomplete factors match those of the true factors. Our intuition is that this will
allow increased global coupling; it can be seen as an intermediate step between the
full coupling of the exact factorization and the weakest global coupling discussed in
the previous section.

Requiring that L̄−1 is as full as L−1 is a stronger condition than requiring just
that L̄−T L̄−1 is as full as A−1, and so this narrows down which graph traversals can
be used. In particular, we will observe that this condition is not satisfied by RGT
Nested Dissection orderings with low fill-in, providing some explanation why they are
typically still not as effective as other orderings.

Recall that a depth-first search is a graph traversal where at each step the next
node to be visited is chosen to be adjacent to the most recently visited node possible.
The subgraph induced by the edges linking each successive node (the child) to the
most recently visited adjacent node (its parent) is the associated depth-first search
tree.

Define a deepening search to be a topological (or post-order) traversal of a depth-
first search tree, i.e. a traversal of a depth-first search tree beginning at the root and
visiting each parent node before any of its children. Alternatively put, at each step of
a deepening search consider the connected components of unvisited nodes, and select a
node from any of those components that is adjacent to the most recently visited node
possible for that component. (A depth-first search is a particular type of deepening
search.) This leads to the following result:

Theorem 3.1. Assume that there is no numerical cancellation and that the
structure of the lower triangle of A is a subset of the structure of L̄, which is in turn
a subset of the structure of the exact lower triangular factor L. Then the structure
of L̄−1 matches the structure of L−1 if and only if A has been ordered according to
a reversed deepening search (RDS) of L̄. In particular, any RDS of A fulfills this
condition.

Proof. Recall that the structure of the inverse B−1 of some matrix B is given by the
transitive closure of the graph of B, which is the same as the transitive closure of the
transitive reduction of B [11]. Since the structure of L̄ is a subset of the structure of
L, the structure of L̄−1 is a subset of the structure of L−1, and is equal to it if and
only if L̄ contains the transitive reduction of L.
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Further recall that the transitive reduction of L is the elimination tree of A[12].
Thus a necessary and sufficient condition for the result is that L̄ contain the elimina-
tion tree of A.

Note that augmenting the structure of A with any subset of edges from L (i.e.
adding “nonzeros” that are actually numerically zero) does not effect the structures of
its triangular factors, and hence also does not effect its elimination tree. Thus we can
simplify our argument by considering the structure of A augmented with the edges
from L̄ and L̄T , denoted by Ā, instead of A. The necessary and sufficient condition
is then reduced to Ā containing its own elimination tree.

Let E(i) denote the set of nodes reachable from i through paths in Ā using
only nodes {1, . . . , i − 1}, or in other words, the nodes reachable from i after all
higher numbered nodes have been removed from the graph of Ā. Partition each E(i)
according to the connected components it induces in the graph of Ā, giving subsets
E1(i), . . . , Ef(i)(i).

2 So each Ek(i) is a set of nodes numbered less than i that induces
a connected subgraph of Ā, with at least one node adjacent to i.

As characterized in [2] for example, the nonzeros in row i of L−1 correspond to
the set E(i). Observe that the elimination tree, the transitive reduction of L−1, has
an edge between i and the highest numbered node in each Ek(i), by the following
reasoning. Certainly these edges must be contained in the transitive reduction, since
there is no equivalent path to them in L−1: L−1 is triangular, so there can’t be a path
from i to the highest numbered node going through lower numbered nodes. These
edges also suffice to give the full transitive closure, since it is clear that for each such
edge (i, j) with j = max(Ek(i)), we have E(j) = Ek(i) \ {j}, so inductively a path
using just these exists from i to any node in E(i).

Therefore the necessary and sufficient condition becomes: for each i, there is an
edge in Ā from i to each of max(E1(i)), . . . , max(Ef(i)(i)). Imagine visiting the nodes
in reverse order, starting at n and ending at 1. The condition means that within a
connected component of unvisited nodes, the next node to visit must be a neighbour
of the most recently visited node adjacent to the component. In other words, the
condition is simply that the ordering must be a reversed deepening search of L̄ (and
the associated depth-first search tree is the elimination tree, consisting of the edges
between each i and max(E1(i)), . . . , max(Ef(i)(i)).

Finally, observe that barring numerical cancellation adding more fill to L̄ cannot
reduce the structure of its inverse. Thus if the ordering is an RDS of the original A,
i.e. of an IC(0) factor, then any higher fill incomplete factorizations L̄L̄T must satisfy
the condition. 2

An example of an RDS ordering that has already been investigated for ILU (and
shown to be fairly effective) is the spiral ordering of [8]. This illustrates a special case of
RDS orderings, where the associated depth-first search tree is actually a Hamiltonian
path (i.e. it doesn’t branch at all) and so the subdiagonal of A is all nonzero, which
guarantees that L−1 will be a fully dense lower-triangular matrix.

Although Reverse Cuthill-McKee orderings are always RGT orderings, they typi-
cally are not RDS orderings, at least for low-fill IC. However, it should be noted that
by rearranging each level set appropriately, they may always be converted into RDS
orderings—perhaps at the expense of increasing the envelope, but that is generally
inconsequential in modern sparse matrix packages for iterative methods.

2These may be called eliminated elements at step i of a complete factorization, and would cor-
respond to the quotient nodes adjacent to i in the quotient graph[10].
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On the other hand, though we observed in the previous section that seperator-
based fill-reducing orderings such as Nested Dissection can be made into RGT order-
ings by reordering separators, it is in general impossible to similarly convert them to
RDS orderings. Lower-level separators generally are adjacent to higher-level ones at
the wrong places, namely the middle nodes rather than an end node. This may help
to explain why these orderings, even if they are RGT’s, generally perform poorly with
low fill.3.

4. Conclusion. The two theorems in this paper provide some understanding of
already observed phenomena—the robust performance of RCM orderings, etc. How-
ever, we look forward to a constructive use in designing more effective orderings (and
fill patterns) for IC. It certainly seems likely that any ordering considered today can
be made into an RGT either by adding extra fill or reordering separators, for example,
and many can be further made into an RDS. Though this is no guarantee of a good
quality preconditioner, this at least removes structural impediments and paves the
way for an effective incomplete numerical factorization.
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