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A high-order accurate particle-in-cell method
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SUMMARY

We propose the use of high-order weighted essentially rsoiilitory interpolation and moving-least-
squares approximation schemes alongside high-order titegration to enable high-order accurate patrticle-
in-cell methods. The key insight is to view the unstructusetiof particles as the underlying representation
of the continuous fields; the grid used to evaluate integfferéntial coupling terms is purely auxiliary. We
also include a novel regularization term to avoid the acdatian of noise in the particle samples without
harming the convergence rate. We include numerical exaripleseveral model problems: advection-
diffusion, shallow water, and incompressible Navier-8®kn vorticity formulation. The implementation
demonstrates fourth-order convergence, shows very lowenigai dissipation, and is competitive with high-
order Eulerian schemes. Copyright0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Particle-in-Cell (PIC) method [1] is over half a century old, and whileai a long history of
robustly handling transport problems [2], its limitation to first-order acouhes led to its eclipse
by modern Eulerian schemes and others (e.g. [3, 4]). In this paperemertstrate how to increase
the order of accuracy of PIC, leading to Higher-Order Particle-in-G¢OPIC), illustrated with
fourth-order accurate discretizations of a variety of equations. Wevketigs provides a fruitful
avenue of exploration for robust, efficient, and high-order accusettemes with remarkably low
numerical diffusion and dispersion.

The fundamental representation of the solution for HOPIC is a set ofustisted (albeit well-
distributed) particles that store the primary variables of the equations aldhgheir position.
Unlike many particle methods [5], we view these as massless samples of caostiinelds, rather
than actual “blobs” of material. Similar to the Method-of-Lines [6], we evdlve positions and
values of these particles with an arbitrary time integration scheme design@bDie’s, such as a
Runge-Kutta method. To evaluate integral or differential terms that coupheathes of the samples
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2 E. EDWARDS AND R. BRIDSON

through space (typically including the velocity field itself), we first approxerthe particle values
on an auxiliary background grid using high-order moving least squtres evaluate the terms on
the grid (using whatever is most convenient: finite differences, psepdotral methods, etc.), and
finally use a high-order method to interpolate those terms from the grid badk patticles. We also
include an artificial regularization term on the particles that dampens comizaofehe solution not
resolved on the grid, i.e. noise, without disturbing the convergence rate.

In section 2 we place HOPIC in the context of previous work before daiimg the details of
the algorithm in section 3 for generic equations. Sections 4, 5 and 6 prouiderical examples
of HOPIC applied to a variety of equations in 2D and 3D, demonstrating faudér accuracy.
The focus in this paper is on the core particle-grid transfer operatiahsetated regularization; we
defer an investigation of the interaction between HOPIC and boundanitmos to future work,
assuming periodicity for now.

2. RELATED WORK

Particle-in-cell methods [1] attempt to combine the advantages of both gridaatidie methods.
Particles are used to advect all transported quantities, while a more @amivegnd is used to solve
the non-advection portion of the problem.

The original PIC [1] and subsequent schemes treat the particles ass*bdd material. To
approximate the particles on a grid, the extensive properties of eachl@anticdistributed as a
weighted combination to nearby grid points. In its earliest incarnation, onlypeheest grid point
was used, but over time smoother schemes were adopted. These reglweidhting functions
improve the results, but do not raise the convergence of the algorithroadbéyst order.

The early PIC schemes interpolate the grid values to the particles after tepciBis causes
significant numerical diffusion, and prevents convergence with ot$péhe time step independent
of grid spacing. FLIP [7, 8] essentially eliminates this dissipation by interpglatia change in grid
values to the particles, rather than the new value itself. With the exception extiesive property
conservation principles described above, our HOPIC scheme rettuE&$sP when using forward
Euler and appropriate first-order interpolation schemes.

The Material Point Method (MPM) [9] is a finite element method developewh irdC and FLIP
and applied to solid mechanics problems; the Generalized Interpolation Mdeiid (GIMP)
method [10] later improved upon and provided a general framework ®8MMGIMP builds a
model of the particles as localized weighted integrals of the underlying comtindowever, the
GIMP method for converting between particles and the grid is only firstr@deurate beyond 1D
[11].

Within the context of MPM and GIMP, recent investigations [11, 12, 13jehanalysed the
errors due to spatial operators and time integration, and made various anpnts. Wallstedt
and Guilkey [14] recently used weighted least squares (WLS) to imprevadturacy of the spatial
interpolation in GIMP, and achieved second-order accuracy away froundaries. Their use of
WLS and their model of the particles as point samples of the continuum is simila@DRIE Their
work is focused on solid mechanics, while we present our work as a nemerg framework for
solving transport problems, with an emphasis on fluids.
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A HIGH-ORDER ACCURATE PARTICLE-IN-CELL METHOD 3

In the context of geophysical simulation, Moresi et al. [15] interpretddMVias a type of
finite element method with the particle locations as quadrature points. They tonppadrature
weights such that affine functions would be reconstructed exactly,gga&visecond-order accurate
reconstruction. However, their entire algorithm does not achieve demaer accuracy, due to
other low-order approximations. This interpretation of MPM, and the rehgig technique, do
not appear to have been picked up by the MPM community at large.

In parallel to the development of MPM and GIMP, modern PIC schemesHa®¢ also been
developed from vortex-particle methods [17]. Cottet and Weynan$jd8j analyzed the high-order
convergence properties of these methods in 1D. In 2D and 3D, the maiheerges at high-order
to a smoothed version of the problem, but high-order convergence taigedtution requires that
the particle resolution increases faster than the grid resolution [16], i.ewuimder of particles
must grow very quickly to see convergence. Regardless of this thednetguirement, high-order
convergence is sometimes observed in practice [19].

A common theme across all of these PIC methods (with the exception of the WL®dneth
[14]) is that the interpolation accuracy depends on how regular the lpadiitribution is. Since
accuracy is quickly lost when the particle distribution deviates from a reguild, vortex methods
use a remeshing scheme that frequently (typically every step) replacggrad! particles with new
particles located on a regular grid. This approach also solves the prebtemoise that develops
in PIC simulations, but adds some numerical diffusion.

In this context, we present several contributions:

e A method which extends the trend of increasing spatial accuracy in GIMRBibg MLS and
weighted essentially non-oscillitory (WENO) interpolation for arbitrarily haler spatial
interpolation

e High-order convergence to the PDE solution with simple convergencéeeunts

¢ Insensitivity to the regularity of the particle distribution, with no loss of cogeace with
irregular distributions

e A simple particle reseeding strategy, admitted by our insensitivity to irregulitdisons

e A regularization to handle the noise that accumulates in PIC schemes, witisouptohg
high-order convergence.

3. THE GENERIC METHOD

Consider a transport PDE of the form:

o7

S oo o 1
3t+u V§=Lq (1)

for time ¢ > 0 and over some spatial domaily whereq is a vector-valued field containing all
transported quantities, is the velocity field (possibly derived frog), and £ is an operator which
provides any spatial coupling or forcing terms such as diffusion. Wkeoelgoundary conditions on
Q, and assume initial conditions at= 0 are given. Sections 4, 5 and 6 provide specific examples:
advection-diffusion, shallow water, and vorticity respectively. In thespnt work we do not admit
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4 E. EDWARDS AND R. BRIDSON

additional constraint equations, such as incompressibility in the velocigspre form of the
Navier-Stokes equations.

Our method begins by sampling the entire domain with particles. Their distribution is
unstructured, but must be sufficiently dense, as described in sectioh @aBticle carries a valug
which is interpreted as the value of the continuous field at the particle’s pusigaog; = ¢(Z;), and
initial conditions are set this way. These particles are the complete refagserf the problem.

Concatenating all: particle values together we arrive at two long vecters; (74, ..., Z,,) and
a=(q,-..,qn) representing the state, which we evolve according to the system of ODEs
d |x u
—_— = = f X’ 2
p [q coer| = 1609 @)
whereu = (1, ..., 4,,) is the vector of all velocities for the particles. This is advanced using an

explicit time-integration scheme.

The core of our algorithm is in hof(x, q) is evaluated. We first approximate the figid?) on
a regular rectangular grid, using an approximation from the particlesibdeddn section 3.2. On
the grid, any technique can be applied to comgduethe grid vertices (e.g. finite differences); this
result is then interpolated back to the particles, as discussed in sectiomn2My, & regularization
termR is included in the evolution to prevent sub-grid noise (section 3.5).

3.1. Convergence Requirements

The interpolation steps, evaluation fifand time integration must all be high-order accurate for
the entire process to be high-order accurate. However, this alone mufiieient for high-order
convergence.

Consider any method, such as the one above, in whighit = g(r) is solved using a®(Ax?)
approximation tag and anO(AtP) time integration scheme. Letting the timest&p go to zero,
with fixed grid resolutionAz = O(1), the result converges to the discrete-space-continuous-time
solution which isO(Axz?) = O(1) different from the true solution. Likewise, converging only with
respect tdAz leaves arO(A#?) = O(1) error due to discrete time integration. Thus, for the method
to converge to the true solution at high-order, a necessary conditiontiansthand A¢ converge
together, subject td\xz < At. In practice, we use a CFL condition to enforce this, since it is an
intuitive way to set the ratio. However, the dependencéwhis not required by this argument.

The time integration scheme also puts certain requiremenfs fe use a fourth-order Runge
Kutta method (RK4), which requireisto be several times differentiable. Subject to the CFL-like
condition above, this smoothness condition does not appear to apply tatiesiocal approximation
to f, but only to the trud that it converges to. Thus, we restrict our attention to smooth problems.

3.2. Particle-to-Grid Approximation

Existing PIC methods use several approaches to approximate the parttblesgnid. One common
approach is to conserve extensive properties of the particles, sucitahsnass or momentum,
when transferred to the grid [1, 7, 8]. Another approach [20] axiprates the inverse of the grid-
to-particle interpolation by solving for grid values which minimize the mean squam®r when

interpolated back to the particles. The accuracy of this approach depenthe grid-to-particle
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A HIGH-ORDER ACCURATE PARTICLE-IN-CELL METHOD 5

interpolant, and could be of high order, but it comes at the cost of algolgotentially nonlinear
solve.

In this paper, we use moving least squares (MLS) [21] to approximate élte dampled by
the particles and evaluate it at the grid points. From scattered particles wsttiopse z; and
valuesq; = q(z;), MLS defines a field which approximates the functign). It depends on two
parameters: a weighting functiasn(r) and the basi® of functions to approximate with. The space
of k" order polynomials is a standard choice. The MLS approximant at a pdsp(z) where
p € span{P} minimizes the error term

n

Eerror = Z[w(m —x;)(p(z) — %)]2 (3)
=0

When a concrete choice of basis and weight function are determined, ethigtsr in an
overdetermined linear systed(x)c = b whereA(z); ; = Pj(z;)w(z — ;), by = ¢yw(z — x;), and
c is the coordinate o with respect to the basiB. For weight function with compact support, this
linear system is small and easily solved in a least squares sense. ThiagddlLS approximant
is of arbitrary order of accuracy and degree of smoothness degeadithe choice of basis, the
weighting function, and the smoothness of the field sampled by the particles.

The behaviour of the weight function at= 0 determines whether MLS interpolates the data
points, or smoothly approximates them. Since we interpret the grid verticesirtsspmples of
the continuum, analogous to the particles, interpolating MLS would seem to hAtuehchoice.
However, we use a simpler approximating MLS since interpolating would hesastsitive to any
noise that the particles may accumulate over time (see section 3.5).

The particular choice of weight function has little effect on our resultsaBse of its simplicity,
we use the following>? spline in 1D and tensor products of the same in higher dimensions.

~ 21t
) 1= ()] it <A
0 otherwise

Only the particles in cells adjacent to a grid vertex are in the support of érexs MLS kernel,
simplifying the implementation. In our experiments, results were essentially the wimether
kernels, including larger and spherically-symmetric kernels. Some peaifure benefit might be
attainable by increasing the size of the kernel while decreasing the paditlean density, but we
chose the simplicity of this compact kernel.

To achieve fourth-order accuracy in our examples, we use the basihif polynomials. This
leads to four degrees of freedom in the 1D local least-squares protelem™OF in 2D, and twenty
DOF in 3D. Clearly we need at least this many particles in the support of tinelkand not in a
degenerate configuration (e.g. all in a straight line), to get a well-posstt$guares problem. Our
reseeding strategy is designed to achieve this.

In the presence of shocks, kinks, or other sharp features, ML&aedrto severe overshoots and
thence instability; a nonlinear approach to limit overshoot would be requiteth as in Quasi-ENO
MLS [22]. However, in this paper we restrict our attention to problems withatimsolutions.
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6 E. EDWARDS AND R. BRIDSON

3.3. Particle Seeding and Reseeding

Toreliably reconstruct a continuous field from scattered particles, ffarsieles must be sufficiently
well distributed. In particular, we need a sufficient number in the sughtine moving least-squares
kernel at each grid point, arranged non-degenerately, to attain a esdddeast-squares problem.
However, quality distributions can be quickly destroyed by advection gir@udistorting velocity
field. Compressible flow fields naturally cause some areas to become samdpled, and even
incompressible flows with shearing can cause clumps and sparse areasltpdOur interpretation
of particles as mere samples of the underlying fields, as opposed to disloteteof material, gives
a method that is robust to minor variations in sampling density. Significant gagtsstillibe filled
and extreme oversampling is computationally wasteful.

The minimum number of particles in the neighborhood of each grid point is magatainadding
particles to any cell that approaches having too few. However, riggean only be done between
time-steps, not before each evaluationfdly RK4 (as that would change the length of the state-
vector being accumulated). So, to maintain this minimum density across multipldensh-se
maintain a higher particle density than strictly necessary. This also helps withtthstness of the
particle-to-grid approximation process.

On the simulation grid, we delete random particles from any cell with too many 10 in
3D), and add particles at jittered positions within any cell which has too few ¢ in 3D). New
particle valuesy; are interpolated from the grid. With incompressible 3D flow, typical turnaver
our examples is 0.5% of particles per step.

Because the interpolation procedure is fourth-order accurate, theakigles values are also
fourth order accurate. However, if the number of timesteps taken is piopal to the grid
resolution, and a constant fraction of the particles are updated onesexding, then these fourth-
order perturbations can add up to a third-order error over the cofitbe simulation. In practice,
we did not observe this problem with divergence-free flows, whereetbeeding rate is so low that
this is not usually the largest error term. With divergent flows, such akoghwater, reseeding is
much more significant, and a more careful reseeding strategy might besaegéere. One simple
solution might be to increase the order of approximation and interpolation relserding.

We emphasize the use of random sampling to seed patrticles, unlike othechd@es which
employ structured distributions. While for a single time step, structured distritsugifier slightly
higher quality reconstruction, they are much less robust to deformatigarticular, even a simple
shearing flow may compress a structured distribution along one axis whitengpep large gaps
along another; a uniform random distribution remains uniform under thee dtow. Figure 1
illustrates this phenomenon.

3.4. Grid-to-Particle Interpolation

Using a regular rectangular auxiliary grid admits a wide variety of existingpotation schemes.
The Weighted Essentially Non-Oscillitory (WENQO) schemes are particularlgcditte for their
simplicity and robust behaviour around sharp features. While we restricattention to smooth
problems, we believe that WENO is an important step towards handling nootisipimblems.
WENO works by building two lower-order interpolants and computing a comenbination
of them. The combination weights are determined from smoothness meastttes lofv-order
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A HIGH-ORDER ACCURATE PARTICLE-IN-CELL METHOD 7

function f = weno4(fl1,f2,f3,f4,x)
[wl,pl] = wenaparabola(fl,f2,f3, X);
[w2,p2] = wenaparabola(f4,f3,f2, 1x);
f = (wlxpl + w2«p2)/(wl+w2);

function [w,g] = weno_parabola(fl,6f2,f3,x)

d = (f3-f1)x0.5; % 1st derivative at O

dd = f1—2«xf2+f3; % 2nd derivative

S = d«x(d+dd) + 4/3dd"2; % smoothness over x=[0,1]
w = (2—x)/(le-6 + S)"2; % relative weight

g = f2 + xx(d + 0.5«xxdd); % value of parabola at x

Listing 1: Matlab code for efficient calculation of WENO interpolant.

interpolants such that the result is high-order accurate in smooth regimhbas minimal overshoot
in non-smooth regions.

In our examples, we use the fourth-order WENO scheme describegidanple, by Macdonald
and Ruuth [23]. This uses a four-point stencil in 1D, and in higher diinasst is computed one
dimension at a time, giving a 16-point stencil in 2D, and 64 points in 3D. Becatinonlinearities
in WENO, the order in which the dimensions are applied has an effect, bdiftbeence isO(Az*)
and thus may be neglected.

We present code for calculating the 1D interpolant in listing 1. For four tpdiocated at
{-1,0,1,2} with values{ f1, fo, f3, fa} andz € [0, 1], weno4calculates the interpolant at This
function uses roughly half as many floating-point operations as a diredenngmtation of the
expressions of Macdonald and Ruuth [23] (44 FLOPS versus ajppately 73 FLOPS).

3.5. Regularization

In any non-trivial situation, the particles in FLIP and similar variants of PI§ accumulate noise.
Variations of7 that are not resolved on the grid, and thus are invisible to the physisthe
problem, may persist, grow, and otherwise behave non-physically. Séthal§orithms suffer
additional noise due to instabilities and artifacts of the method [24]; howeegse is unavoidable
even in an ideal method simply due to the greater number of particles than grid.po

To prevent noise from continuing to accumulate, we include a regulariz@&tionin equation (1)
inspired by the original noise-free PIC method [1], creating the modifiedlpm

oq

Sy VT = L3+ 06(D) — D @

whereG applies MLS and WENO to sample the field on the grid and interpolate it back to the
particles. The modification adds a decay at fdie features on the particles that are not represented
on the grid, i.e. are not interpolated from the grid values.

This modification does not affect the rate of spatial convergence bedhe interpolation and
approximation schemes are high-order accuréte) — ¢ = O(Axz™). However, it does have the
potential to affect convergence with respect to the time step. By scaksg) (A"~ 1), the effect
is no more tharO(At™) and high-order convergence is not affected. In particular, we @sttm
0 = kAt? with user-supplied constant parameter
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8 E. EDWARDS AND R. BRIDSON

In practice, we choose a half-lifa for the decay which is approximately the same as the
time-scale of the interesting dynamics. This gives a rate In(2)/\ which we use in the
coarsest simulation of a convergence study. Higher resolution rursegoantly have even weaker
regularization. We never found this to be too weak to combat noise, altlibaghte at which noise
grows may be problem and resolution dependent.

This regularization contributes relatively minor numerical diffusion beedhe regularization
rate is chosen to be small, and the spatial term is a high-order approximatienotdhe maximum
numerical diffusion occurs when the regularization rate is very larfggtefely forcing the particles
to agree with the grid at all times. In this case, the regularization makes HO&Havé like
a high-order Eulerian scheme. This is demonstrated in figure 2 by advextsmgooth pulse
(f = tanh(3sin(27 (2 — 0.25)))) across the periodic unit interval ten times. The simulations use
a grid of twenty samples and three particles per cell.

4. ADVECTION-DIFFUSION

Our first demonstration of HOPIC is the advection-diffusion equation &wadar quantity;, given
velocity field#, and constant diffusion coefficient.

@Jrﬂ'qu:DV-Vq (5)
ot
With D = 0 and no regularization, HOPIC merely transports the initial particle valuamdro
the domain. The only error is in the trajectory of the particles through the itxelideld, which is
interpolated from the grid. With regularization, HOPIC smooths sub-gritifea depending ofi.
Relative to a Lagrangian approach, even high-order Eulerian methéids fsom severe numerical
diffusion in this case.
We measured convergence against the analytic solution of advectinguhierfoodey(x, y) =
sin(z + y) in an arbitrary constant velocity fiefdl= (v/2,v/5). We letD = 10~ and simulated time
t =0tot = 1. Consistent with the convergence requirements specified in section85,1/N,
Az =27 /N andf = 1/N3. The results show the expected fourth-order convergence (Figure 3
In a spatially varying velocity field, we performed a numerical convergestady starting with
a smooth fieldl — cos(z) advected and diffused within a vortex. The velocity field is given as the
curl of the stream function = (1 — cos(z))(1 — cos(y)). Simulation parameters are the same as
the previous example, and error was measured against-arb12 simulation. Convergence results
are shown in figure 4, and the transported field is shown in figure 5.

5. SHALLOW WATER

Our second demonstration of HOPIC is on the shallow water equations

D |u Vh
=== o0 |+s (6)
Dt |h h(V - @)
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A HIGH-ORDER ACCURATE PARTICLE-IN-CELL METHOD 9

where is the velocity,g is gravity, & is the height of the water’'s surface above a flat bottom,
D/Dt is the material derivative (i.¢/Dt = 9¢/0t + @ - V), andS is an arbitrary source term.
We evaluated the spatial derivative terms on a collocated grid using forath-central finite
differences.

We measured convergence using the method of manufactured solutionshwitors

VXx¢+(t—1/2)Vo
10+ ¢
= sin?(z)sin?(y + 1)

defined on the periodic domaj, 7)2. These functions make all of the terms in the shallow-water
equations non-zero and have moderately small divergence in the veletitydut are otherwise
arbitrary. Inital conditions and source terms were derived to be consigith this solution.
Simulation parameters wer&t = N, Az = n/N and § = 1/N?3. Without reseeding (simply
using a high particle density from the start), convergence is shown iref@gyurhe results confirm
the fourth-order accuracy of the method. When reseeding is dong s, convergence slows
down to third-order at higher resolutions due to the error term mentionee isetttion 3.3.
Although the shallow water equations are capable of generating andgatopa shocks, our
present method is not designed to handle them and our example doedund¢ ithem. In practice,
MLS produces large and noisy oscillations around shocks, and tsheck speed according to the
Rankine-Hugoniot condition is not enforced as it is in a finite volume sch&mexample.

6. VORTICITY

Our last demonstration of HOPIC is incompressible fluid flow, in vortigitiprmulation:

DY Vit ey vs @)

G=Vxi (8)

with viscosity coefficient.. In 2D, equation 7 simplifies to scalar vorticity and no vortex-stretching
term
— =vV-Vw 9

For this problem, we computed the right-hand-side derivatives on thegjrid a pseudo-spectral
method with 3/2-rule dealiasing [25]. The 3D problem has the propertyitehould be divergence-
free at all times, so every time was approximated on the grid, it was projected to be divergence-
free by the pseudo-spectral method. The regularization term used tigsted vorticity, keeping
the particles from accumulating a curl-free component.
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10 E. EDWARDS AND R. BRIDSON

6.1. 2D Test Problems

In 2D, we measured convergence against the 2D Taylor-Greenifi2éjtec solution

w = 2e" ! sin(z) sin(y).

This represents four alternately rotating vortices that decay exponemaitime, in the periodic

domain|0, 27)2. Simulation parameters wergt = 1/N, Az = 27/N, § = 1/N3, andv = 0.001.

Results are shown in figure 7, and display fourth-order convergamrea wide range of resolutions.
Our next test problem displays much more dynamic behaviour. The initiatipgr

w(Z) = k((Z — [0.7,0.2])/0.2) — k((Z — [0.3,0.2])/0.2)

exp(1—1/(1—[I7]%)) if 7] <1

otherwise

k() =

describes a vortex dipole starting at one end of the simulation domain. In éheaiution, the dipole
self-advects along a straight line and the individual vortices wobble @ettls slightly (figure 8).

We used inviscid = 0) conditions for this problem, so both enstrophy and kinetic energy should
be conserved, and the vortices should stay roughly the same size.

On this test problem, we compared HOPIC to an Eulerian scheme using fith-gpwinding
WENO [27] to compute the advection term. We kept the Eulerian scheme asaslpsssible to our
HOPIC scheme by using the same pseudo-spectral approach for thbaighside derivatives and
RK4 time-discretizations.

We simulated from time = 0 to ¢ = 50, in which time the dipole crossed half of the 1)?
domain. All simulations usedv x N grids, with time steps restricted to CFL number 1.0, and
6 = (10/N)3. Drift in kinetic energy and enstrophy were used to detect numericapeigm, with
the results shown in figure 9.

On equal size grids, HOPIC achieves much higher accuracy than WHEHNGgh it obviously
has additional overhead due to the particles. We attempted to quantify tioenpanice differences
with OpenMP-parallelized [28] C++ implementations of both running on a 4-8@€Hz Intel i5
machine with 3GB RAM, using the FFTW library [29] for pseudo-spectral gvaluations. HOPIC
is more time-efficient than the Eulerian scheme for achieving higher aéesyraespite being much
more computationally expensive per step.

The work done by HOPIC due to the use of particle®{sn) to transfer betweem grid cells
and the particles (since there apg1) particles per cell). However, the work done on the grid
by both methods is th&(mlogm) time of a FFT. Because of this, we expect that on problems
requiring higher resolution grids, Eulerian schemes will slow down evere madative to HOPIC.
For a problem requiring more than tligm logm) time of a FFT for solving the grid-terms, we
expect the particle overhead of HOPIC to be better amortized, increasamyastage.
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A HIGH-ORDER ACCURATE PARTICLE-IN-CELL METHOD 11

6.2. 3D Test Problems

Our first test problem in 3D is the Taylor-Green Vortex (TGV) [30]. TV decays into turbulence
from an initially simple vorticity field:

cos(z) sin(y )
os(y ) (10)

2sin(z) sin(y) sin(z)

) cos(z
&= | sin(z ) cos(

I

We measured convergence of HOPIC on the TGV simulated tottimneé. At this time, the flow
was distorted (figure 11) but had not yet decayed into turbulencanteders for all runs were
Az =27 /N, At = 1/N, 6 = 43300/N?3, andv = 1/1500. Error was measured against the result
from an N = 150 simulation, as higher resolution required too much memory. The results, shown
in figure 10, again display fourth-order convergence.

We also verified our results against a 3D pseudo-spectral code amdsihies from the large-
eddy simulation by Fauconnier et al. [31]. The pseudo-spectral codd_BS simulation were
indistinguishable to tim&, and we consider them to be following the true solution. HOPIC on
coarse grids loses energy faster than the true solution, but follows e gaalitative behaviour
(figure 12).

Our second test problem in 3D is a vortex ring. The initial vorticity is containeile the torus
constructed by tracing a tube of raditis= /4 about a circle of radiug /3. The initial vorticity
was tangent to the nearest point on the circle and had magritdder?)3/2v? wherer was the
distance to the circle. Finally, we projected this field to be divergence fieg the same pseudo-
spectral approach used to evaluate the coupling terms.

We compared our results of a simulated vortex ring to the theory and expésiimeMaxworthy
[32] and Widnall and Sullivan [33]. Maxworthy observed that at lowR&ds number, vortex rings
are stable but slow over time. With increasing Reynolds numé@r € Re < 1000), the vortex
rings become unstable and collapse in increasingly turbulent mannergyjPARRynolds numbers
(= 1000), the ring quickly collapses into a cloud of vorticity from which another stabktex ring
is ejected. Widnall and Sullivan explain the collapse as due to a wave-likeilitstaround the
ring, with a higher wavenumber at higher Reynolds number.

Our simulations captured all of these qualitative behaviours.Atl /500 ~ 1/Re, our simulated
vortex ring was stable. At = 1/5000, our vortex ring developed a wave-like instability with four
periods around the ring and subsequently collapsed at around’'Sitné\t » = 1,/50000, the ring
devloped an instability with seven periods and collapsed at approximatelytsitn®roduction of
a second vortex ring after collapse was observed :at1/50000, but was sensitive to the other
simulation parameters. TH& x 75 x 150 grid used in these simulations is too coarse be a direct
numerical simulation of the small turbulent details during high Re collapse. Howiese results
are suggestive, and demonstrate the stability, robustness, and low ralmifision of the method.

We compared HOPIC to two Eulerian methods in 3D. First, the same upwind WEN&
as in 2D and, second, a fully pseudo-spectral scheme. Howevemeoai@ered problems with
both of these methods. The WENO method was unstable when simulating the-Gagtar vortex
beyond the beginning of the turbulence cascade £), with unbounded growth in kinetic energy.
On the vortex-ring test problem, the pseudo-spectral code prodwedidadjvely wrong results at
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high Reynolds numbet; = 1/50,000. This appeared as noise growing from the ring to fill the
domain, presumably due to the grid not being refined enough for trug dinererical simulation.
HOPIC was robust under all tests.

In a simulation withm grid cells, the interpolation and approximation steps ar©éih), while
the physics step i©(m Inm) using the FFT. Ann = 75% 3D vorticity simulation is illustrative of
typical timings. The average step took 70 seconds to compute, with 50% of thegenein MLS
approximation, 20% in WENO interpolation, 14% computing physics on the gréichr@computing
acceleration structures, and the remaining time in 1O and other auxiliary fasctio

7. CONCLUSIONS

We present the HOPIC method that extends PIC techniques to high-arciamaay for general
transport problems. The core idea is to consider the particles as a sampling onderlying
continuous field. MLS approximation and WENO interpolation provide a higlelomeans to
transfer information between the particles and grid. Coupled with any hidgrecheme to compute
differential terms on the grid, the result is global high-order spatialraocgu Temporal accuracy is
supplied by a standard explicit time-integration method for ODEs. Furtherraaregularization
that decays particle values towards the grid interpolated values remoigeswithout affecting
convergence.

We implemented a fourth-order version of HOPIC and demonstrated it onedyvaf problems,
in both 2D and 3D. The results showed the designed fourth-order gamee and the low numerical
dissipation and dispersion expected from its similarity to FLIP. Quantifyingciagdacterizing the
nature of the error in more detail is left for future work. Although it comés wo guarantees about
conservation or stability, we found that HOPIC robustly handled all ofestrproblems. It produced
qualitatively reasonable results, even when the Eulerian schemes vatablenCompared to high-
order Eulerian schemes HOPIC produced superior results on the saengriiz and for high
accuracies, HOPIC also had lower compute time.

This initial investigation into HOPIC produced promising results and leaves rasagues
for future work. Handling more general classes of problems, espetialipdary conditions and
constraints (such as incompressibility in a velocity-pressure formulatioovey i clearly important
and we are investigating those. Similarly, extending the time integration to include iimpithods
could be critical for some applications. For problems with divergent floldgjea more careful
reseeding strategy is necessary to maintain convergence. We also dididress shocks, free
surfaces, or other discontinuities.
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(C .(d. .o H e . .

Figure 1. A comparison of structured and random samplinga)ira structured grid sampling is used, which

when deformed by a uniform shear flow results in (b), exhigisevere degradation of sampling quality. In

(c), the structured grid samples are randomly jitterednielating all directional bias. Under the same shear
flow, (d) illustrates how the random distribution remainasenable and unbiased.
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Figure 2. A smoothed pulse is advected across a periodiciddaratimes to demonstrate the low numerical

diffusion due to our regularization scheme. In (a), no rageétion is used and PIC maintains exactly the

correct solution. With a more typical half-life of one domairossing time, the PIC result (solid) shows

minor diffusion relative to the exact result (dashed). Whktes regularization is increased to its effective

limits (half-life on the order of a timestep) the result igweiffusive (c), but no worse than the fifth-order
Eulerian WENO scheme in (d).
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Figure 3. Convergence of HOPIC to the analytic solution efating and diffusingin(z + y) in a uniform
velocity field. Dashed lines show third-, fourth-, and fitihder convergence.

Copyright@© 0000 John Wiley & Sons, Ltd.
Prepared usingimeauth.cls

Int. J. Numer. Meth. Engn(000)
DOI: 10.1002/nme



A HIGH-ORDER ACCURATE PARTICLE-IN-CELL METHOD

Convergence
2r—=< w
AN e
R o Tl
N
of o - s lell,
NN AN o el
Py & <~ B~
PN RN N
% 2 = ~ \ai &
~ ~ N
VS ~ - \é < O
o 4l ~ RS :
Q ~ N
™ ~ \éi\ O
~
~ N\
-6 > 16\\ O
\\\\\§
_8 L L L
0.5 1 15 2 2.5
logo(N)

17

Figure 4. Convergence of HOPIC to a high resolution numesicktion of advection-diffusion in a vortex.
Dashed lines show third-, fourth-, and fifth-order converge

transported field at time 1.0

Figure 5. The final state at timte= 1 of the field1 — cos(x) following advection and diffusion in a vortex.
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Figure 6. Convergence of HOPIC to a manufactured solutionthfe shallow water equations. The dashed

lines show third-, fourth-, and fifth-order convergence.
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Figure 7. Convergence of HOPIC to the analytic Taylor-Grig@m in 2D. Dashed lines show third-, fourth-,
and fifth-order convergence.

vorticity at time t=50

> 05

X

Figure 8. Vorticity distribution in the 2D dipole advectidest problem. The initially radially-symmetric
vortices wobble and distort as they move.
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Figure 9. Performance comparison of HOPIC and Eulerian WEBI@me. Top row shows accuracy plotted
against the size of th& x N grid. Bottom row shows accuracy plotted against total satioh runtime.
Accuracy is presented in terms of drift in the conserved tties: kinetic energy (left) and enstrophy (right).
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Figure 10. Convergence of HOPIC on the 3D Taylor Green flowoEs measured at time= 1, against a
150 x 150 x 150 simulation. Dashed lines show third-, fourth-, and fiftlik@r convergence.

Taylor-Green Vortex
isosurface of unit magnitude vorticity at time 1

Figure 11. The isosurface of unit magnitude vorticity, e 8D Taylor-Green vortex, at time t=1.
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Figure 12. Kinetic energy of the decaying 3D Taylor Greent&for Truth’ is from a high resolution large
eddy simulation [31]

0 9

0 9 0 0

(@) v = 1/500, t = 600 (b) v = 1/5000, t = 800 () v = 1/50000, £ = 500

Figure 13. Vortex rings of varying vorticity. Plots show uate renderings of the magnitude of vorticity. At
high viscosity, the ring is stable (a). Decreasing visgosibduces unstable vortex rings (b) which collapse
more quickly and violently (c).
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