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SUMMARY

We propose the use of high-order weighted essentially non-oscillitory interpolation and moving-least-
squares approximation schemes alongside high-order time integration to enable high-order accurate particle-
in-cell methods. The key insight is to view the unstructuredset of particles as the underlying representation
of the continuous fields; the grid used to evaluate integro-differential coupling terms is purely auxiliary. We
also include a novel regularization term to avoid the accumulation of noise in the particle samples without
harming the convergence rate. We include numerical examples for several model problems: advection-
diffusion, shallow water, and incompressible Navier-Stokes in vorticity formulation. The implementation
demonstrates fourth-order convergence, shows very low numerical dissipation, and is competitive with high-
order Eulerian schemes. Copyrightc© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Particle-in-Cell (PIC) method [1] is over half a century old, and while ithas a long history of

robustly handling transport problems [2], its limitation to first-order accuracy has led to its eclipse

by modern Eulerian schemes and others (e.g. [3, 4]). In this paper, we demonstrate how to increase

the order of accuracy of PIC, leading to Higher-Order Particle-in-Cell(HOPIC), illustrated with

fourth-order accurate discretizations of a variety of equations. We believe this provides a fruitful

avenue of exploration for robust, efficient, and high-order accurateschemes with remarkably low

numerical diffusion and dispersion.

The fundamental representation of the solution for HOPIC is a set of unstructured (albeit well-

distributed) particles that store the primary variables of the equations along with their position.

Unlike many particle methods [5], we view these as massless samples of continuous fields, rather

than actual “blobs” of material. Similar to the Method-of-Lines [6], we evolvethe positions and

values of these particles with an arbitrary time integration scheme designed forODE’s, such as a

Runge-Kutta method. To evaluate integral or differential terms that couple the values of the samples
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2 E. EDWARDS AND R. BRIDSON

through space (typically including the velocity field itself), we first approximate the particle values

on an auxiliary background grid using high-order moving least squares, then evaluate the terms on

the grid (using whatever is most convenient: finite differences, pseudo-spectral methods, etc.), and

finally use a high-order method to interpolate those terms from the grid back to the particles. We also

include an artificial regularization term on the particles that dampens components of the solution not

resolved on the grid, i.e. noise, without disturbing the convergence rate.

In section 2 we place HOPIC in the context of previous work before delineating the details of

the algorithm in section 3 for generic equations. Sections 4, 5 and 6 providenumerical examples

of HOPIC applied to a variety of equations in 2D and 3D, demonstrating fourth-order accuracy.

The focus in this paper is on the core particle-grid transfer operations and related regularization; we

defer an investigation of the interaction between HOPIC and boundary conditions to future work,

assuming periodicity for now.

2. RELATED WORK

Particle-in-cell methods [1] attempt to combine the advantages of both grid andparticle methods.

Particles are used to advect all transported quantities, while a more convenient grid is used to solve

the non-advection portion of the problem.

The original PIC [1] and subsequent schemes treat the particles as “blobs” of material. To

approximate the particles on a grid, the extensive properties of each particle are distributed as a

weighted combination to nearby grid points. In its earliest incarnation, only thenearest grid point

was used, but over time smoother schemes were adopted. These high-order weighting functions

improve the results, but do not raise the convergence of the algorithms beyond first order.

The early PIC schemes interpolate the grid values to the particles after each step. This causes

significant numerical diffusion, and prevents convergence with respect to the time step independent

of grid spacing. FLIP [7, 8] essentially eliminates this dissipation by interpolating the change in grid

values to the particles, rather than the new value itself. With the exception of theextensive property

conservation principles described above, our HOPIC scheme reducesto FLIP when using forward

Euler and appropriate first-order interpolation schemes.

The Material Point Method (MPM) [9] is a finite element method developed from PIC and FLIP

and applied to solid mechanics problems; the Generalized Interpolation Material Point (GIMP)

method [10] later improved upon and provided a general framework for MPM. GIMP builds a

model of the particles as localized weighted integrals of the underlying continuum. However, the

GIMP method for converting between particles and the grid is only first-order accurate beyond 1D

[11].

Within the context of MPM and GIMP, recent investigations [11, 12, 13] have analysed the

errors due to spatial operators and time integration, and made various improvements. Wallstedt

and Guilkey [14] recently used weighted least squares (WLS) to improve the accuracy of the spatial

interpolation in GIMP, and achieved second-order accuracy away from boundaries. Their use of

WLS and their model of the particles as point samples of the continuum is similar to HOPIC. Their

work is focused on solid mechanics, while we present our work as a more general framework for

solving transport problems, with an emphasis on fluids.
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A HIGH-ORDER ACCURATE PARTICLE-IN-CELL METHOD 3

In the context of geophysical simulation, Moresi et al. [15] interpreted MPM as a type of

finite element method with the particle locations as quadrature points. They compute quadrature

weights such that affine functions would be reconstructed exactly, giving a second-order accurate

reconstruction. However, their entire algorithm does not achieve second-order accuracy, due to

other low-order approximations. This interpretation of MPM, and the reweighting technique, do

not appear to have been picked up by the MPM community at large.

In parallel to the development of MPM and GIMP, modern PIC schemes [16]have also been

developed from vortex-particle methods [17]. Cottet and Weynans [18]have analyzed the high-order

convergence properties of these methods in 1D. In 2D and 3D, the method converges at high-order

to a smoothed version of the problem, but high-order convergence to the true solution requires that

the particle resolution increases faster than the grid resolution [16], i.e. thenumber of particles

must grow very quickly to see convergence. Regardless of this theoretical requirement, high-order

convergence is sometimes observed in practice [19].

A common theme across all of these PIC methods (with the exception of the WLS method

[14]) is that the interpolation accuracy depends on how regular the particle distribution is. Since

accuracy is quickly lost when the particle distribution deviates from a regular grid, vortex methods

use a remeshing scheme that frequently (typically every step) replaces allof the particles with new

particles located on a regular grid. This approach also solves the problemwith noise that develops

in PIC simulations, but adds some numerical diffusion.

In this context, we present several contributions:

• A method which extends the trend of increasing spatial accuracy in GIMP byusing MLS and

weighted essentially non-oscillitory (WENO) interpolation for arbitrarily high-order spatial

interpolation

• High-order convergence to the PDE solution with simple convergence requirements

• Insensitivity to the regularity of the particle distribution, with no loss of convergence with

irregular distributions

• A simple particle reseeding strategy, admitted by our insensitivity to irregular distributions

• A regularization to handle the noise that accumulates in PIC schemes, without disrupting

high-order convergence.

3. THE GENERIC METHOD

Consider a transport PDE of the form:

∂~q

∂t
+ ~u · ∇~q = L~q (1)

for time t > 0 and over some spatial domainΩ, where~q is a vector-valued field containing all

transported quantities,~u is the velocity field (possibly derived from~q), andL is an operator which

provides any spatial coupling or forcing terms such as diffusion. We neglect boundary conditions on

Ω, and assume initial conditions att = 0 are given. Sections 4, 5 and 6 provide specific examples:

advection-diffusion, shallow water, and vorticity respectively. In the present work we do not admit
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4 E. EDWARDS AND R. BRIDSON

additional constraint equations, such as incompressibility in the velocity-pressure form of the

Navier-Stokes equations.

Our method begins by sampling the entire domain with particles. Their distribution is

unstructured, but must be sufficiently dense, as described in section 3.3. A particle carries a value~qi
which is interpreted as the value of the continuous field at the particle’s position, i.e.~qi = ~q(~xi), and

initial conditions are set this way. These particles are the complete representation of the problem.

Concatenating allm particle values together we arrive at two long vectors,x = (~x1, . . . , ~xm) and

q = (~q1, . . . , ~qm) representing the state, which we evolve according to the system of ODEs

d

dt

[

x

q

]

=

[

u

L~q +R

]

= f(x,q) (2)

whereu = (~u1, . . . , ~um) is the vector of all velocities for the particles. This is advanced using an

explicit time-integration scheme.

The core of our algorithm is in howf(x,q) is evaluated. We first approximate the field~q(~x) on

a regular rectangular grid, using an approximation from the particles described in section 3.2. On

the grid, any technique can be applied to computef at the grid vertices (e.g. finite differences); this

result is then interpolated back to the particles, as discussed in section 3.4. Finally, a regularization

termR is included in the evolution to prevent sub-grid noise (section 3.5).

3.1. Convergence Requirements

The interpolation steps, evaluation off , and time integration must all be high-order accurate for

the entire process to be high-order accurate. However, this alone is notsufficient for high-order

convergence.

Consider any method, such as the one above, in whichdr/dt = g(r) is solved using anO(∆xp)

approximation tog and anO(∆tp) time integration scheme. Letting the timestep∆t go to zero,

with fixed grid resolution∆x = O(1), the result converges to the discrete-space-continuous-time

solution which isO(∆xp) = O(1) different from the true solution. Likewise, converging only with

respect to∆x leaves anO(∆tp) = O(1) error due to discrete time integration. Thus, for the method

to converge to the true solution at high-order, a necessary condition is that ∆x and∆t converge

together, subject to∆x ∝ ∆t. In practice, we use a CFL condition to enforce this, since it is an

intuitive way to set the ratio. However, the dependence on‖u‖ is not required by this argument.

The time integration scheme also puts certain requirements onf . We use a fourth-order Runge

Kutta method (RK4), which requiresf to be several times differentiable. Subject to the CFL-like

condition above, this smoothness condition does not appear to apply to the numerical approximation

to f , but only to the truef that it converges to. Thus, we restrict our attention to smooth problems.

3.2. Particle-to-Grid Approximation

Existing PIC methods use several approaches to approximate the particles with a grid. One common

approach is to conserve extensive properties of the particles, such astotal mass or momentum,

when transferred to the grid [1, 7, 8]. Another approach [20] approximates the inverse of the grid-

to-particle interpolation by solving for grid values which minimize the mean squared error when

interpolated back to the particles. The accuracy of this approach depends on the grid-to-particle
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A HIGH-ORDER ACCURATE PARTICLE-IN-CELL METHOD 5

interpolant, and could be of high order, but it comes at the cost of a global and potentially nonlinear

solve.

In this paper, we use moving least squares (MLS) [21] to approximate the field sampled by

the particles and evaluate it at the grid points. From scattered particles with positions xi and

valuesqi = q(xi), MLS defines a field which approximates the functionq(x). It depends on two

parameters: a weighting functionw(r) and the basisP of functions to approximate with. The space

of kth order polynomials is a standard choice. The MLS approximant at a pointx is p(x) where

p ∈ span{P} minimizes the error term

Eerror =

n
∑

i=0

[w(x− xi)(p(x)− qi)]
2 (3)

When a concrete choice of basis and weight function are determined, this results in an

overdetermined linear systemA(x)c = b whereA(x)i,j = Pj(xi)w(x− xi), bi = qiw(x− xi), and

c is the coordinate ofp with respect to the basisP . For weight function with compact support, this

linear system is small and easily solved in a least squares sense. The resulting MLS approximant

is of arbitrary order of accuracy and degree of smoothness depending on the choice of basis, the

weighting function, and the smoothness of the field sampled by the particles.

The behaviour of the weight function atr = 0 determines whether MLS interpolates the data

points, or smoothly approximates them. Since we interpret the grid vertices as point samples of

the continuum, analogous to the particles, interpolating MLS would seem to be a natural choice.

However, we use a simpler approximating MLS since interpolating would be very sensitive to any

noise that the particles may accumulate over time (see section 3.5).

The particular choice of weight function has little effect on our results. Because of its simplicity,

we use the followingC3 spline in 1D and tensor products of the same in higher dimensions.

w(r) =







[

1−
(

r
∆x

)2
]4

if |r| ≤ ∆x

0 otherwise

Only the particles in cells adjacent to a grid vertex are in the support of that vertex’s MLS kernel,

simplifying the implementation. In our experiments, results were essentially the samewith other

kernels, including larger and spherically-symmetric kernels. Some performance benefit might be

attainable by increasing the size of the kernel while decreasing the particle number density, but we

chose the simplicity of this compact kernel.

To achieve fourth-order accuracy in our examples, we use the basis ofcubic polynomials. This

leads to four degrees of freedom in the 1D local least-squares problem,ten DOF in 2D, and twenty

DOF in 3D. Clearly we need at least this many particles in the support of the kernel, and not in a

degenerate configuration (e.g. all in a straight line), to get a well-posed least-squares problem. Our

reseeding strategy is designed to achieve this.

In the presence of shocks, kinks, or other sharp features, MLS canlead to severe overshoots and

thence instability; a nonlinear approach to limit overshoot would be required, such as in Quasi-ENO

MLS [22]. However, in this paper we restrict our attention to problems with smooth solutions.
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6 E. EDWARDS AND R. BRIDSON

3.3. Particle Seeding and Reseeding

To reliably reconstruct a continuous field from scattered particles, thoseparticles must be sufficiently

well distributed. In particular, we need a sufficient number in the supportof the moving least-squares

kernel at each grid point, arranged non-degenerately, to attain a well-posed least-squares problem.

However, quality distributions can be quickly destroyed by advection through a distorting velocity

field. Compressible flow fields naturally cause some areas to become under-sampled, and even

incompressible flows with shearing can cause clumps and sparse areas to develop. Our interpretation

of particles as mere samples of the underlying fields, as opposed to discreteblobs of material, gives

a method that is robust to minor variations in sampling density. Significant gaps must still be filled

and extreme oversampling is computationally wasteful.

The minimum number of particles in the neighborhood of each grid point is maintained by adding

particles to any cell that approaches having too few. However, reseeding can only be done between

time-steps, not before each evaluation off by RK4 (as that would change the length of the state-

vector being accumulated). So, to maintain this minimum density across multiple sub-steps, we

maintain a higher particle density than strictly necessary. This also helps with therobustness of the

particle-to-grid approximation process.

On the simulation grid, we delete random particles from any cell with too many (n > 10 in

3D), and add particles at jittered positions within any cell which has too few (n < 6 in 3D). New

particle values~qi are interpolated from the grid. With incompressible 3D flow, typical turnoverin

our examples is 0.5% of particles per step.

Because the interpolation procedure is fourth-order accurate, the newparticles values are also

fourth order accurate. However, if the number of timesteps taken is proportional to the grid

resolution, and a constant fraction of the particles are updated on each reseeding, then these fourth-

order perturbations can add up to a third-order error over the courseof the simulation. In practice,

we did not observe this problem with divergence-free flows, where thereseeding rate is so low that

this is not usually the largest error term. With divergent flows, such as shallow water, reseeding is

much more significant, and a more careful reseeding strategy might be necessary here. One simple

solution might be to increase the order of approximation and interpolation whenreseeding.

We emphasize the use of random sampling to seed particles, unlike other PIC schemes which

employ structured distributions. While for a single time step, structured distributions offer slightly

higher quality reconstruction, they are much less robust to deformation. Inparticular, even a simple

shearing flow may compress a structured distribution along one axis while opening up large gaps

along another; a uniform random distribution remains uniform under the same flow. Figure 1

illustrates this phenomenon.

3.4. Grid-to-Particle Interpolation

Using a regular rectangular auxiliary grid admits a wide variety of existing interpolation schemes.

The Weighted Essentially Non-Oscillitory (WENO) schemes are particularly attractive for their

simplicity and robust behaviour around sharp features. While we restrictour attention to smooth

problems, we believe that WENO is an important step towards handling non-smooth problems.

WENO works by building two lower-order interpolants and computing a convex combination

of them. The combination weights are determined from smoothness measures ofthe low-order
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f u n c t i o n f = weno4 ( f1 , f2 , f3 , f4 , x )
[w1 , p1 ] = weno parabo la ( f1 , f2 , f3 , x ) ;
[w2 , p2 ] = weno parabo la ( f4 , f3 , f2 , 1−x ) ;
f = (w1∗p1 + w2∗p2 ) / ( w1+w2 ) ;

f u n c t i o n [w, g ] = weno parabo la ( f1 , f2 , f3 , x )
d = ( f3−f1 ) ∗ 0 . 5 ; % 1 s t d e r i v a t i v e a t 0
dd = f1−2∗ f2 + f3 ; % 2nd d e r i v a t i v e
S = d∗ ( d+dd ) + 4 /3∗ dd ˆ 2 ; % smoothness over x =[0 ,1 ]
w = (2−x ) / ( 1 e−6 + S ) ˆ 2 ; % r e l a t i v e we igh t
g = f2 + x∗ ( d + 0 .5∗ x∗dd ) ; % va lue o f parabo la a t x

Listing 1: Matlab code for efficient calculation of WENO interpolant.

interpolants such that the result is high-order accurate in smooth regions,and has minimal overshoot

in non-smooth regions.

In our examples, we use the fourth-order WENO scheme described, forexample, by Macdonald

and Ruuth [23]. This uses a four-point stencil in 1D, and in higher dimensions it is computed one

dimension at a time, giving a 16-point stencil in 2D, and 64 points in 3D. Because of nonlinearities

in WENO, the order in which the dimensions are applied has an effect, but thedifference isO(∆x4)

and thus may be neglected.

We present code for calculating the 1D interpolant in listing 1. For four points located at

{−1, 0, 1, 2} with values{f1, f2, f3, f4} andx ∈ [0, 1], weno4calculates the interpolant atx. This

function uses roughly half as many floating-point operations as a direct implementation of the

expressions of Macdonald and Ruuth [23] (44 FLOPS versus approximately 73 FLOPS).

3.5. Regularization

In any non-trivial situation, the particles in FLIP and similar variants of PIC may accumulate noise.

Variations of~q that are not resolved on the grid, and thus are invisible to the physicsL of the

problem, may persist, grow, and otherwise behave non-physically. Some PIC algorithms suffer

additional noise due to instabilities and artifacts of the method [24]; however,noise is unavoidable

even in an ideal method simply due to the greater number of particles than grid points.

To prevent noise from continuing to accumulate, we include a regularizationterm in equation (1)

inspired by the original noise-free PIC method [1], creating the modified problem

∂~q

∂t
+ ~u · ∇~q = L~q + θ(G(~q)− ~q) (4)

whereG applies MLS and WENO to sample the field on the grid and interpolate it back to the

particles. The modification adds a decay at rateθ to features on the particles that are not represented

on the grid, i.e. are not interpolated from the grid values.

This modification does not affect the rate of spatial convergence because the interpolation and

approximation schemes are high-order accurate:G(q)− q = O(∆xn). However, it does have the

potential to affect convergence with respect to the time step. By scalingθ asO(∆tn−1), the effect

is no more thanO(∆tn) and high-order convergence is not affected. In particular, we use the form

θ = k∆t3 with user-supplied constant parameterk.
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8 E. EDWARDS AND R. BRIDSON

In practice, we choose a half-lifeλ for the decay which is approximately the same as the

time-scale of the interesting dynamics. This gives a rateθ = ln(2)/λ which we use in the

coarsest simulation of a convergence study. Higher resolution runs consequently have even weaker

regularization. We never found this to be too weak to combat noise, althoughthe rate at which noise

grows may be problem and resolution dependent.

This regularization contributes relatively minor numerical diffusion because the regularization

rate is chosen to be small, and the spatial term is a high-order approximation to zero. The maximum

numerical diffusion occurs when the regularization rate is very large, effectively forcing the particles

to agree with the grid at all times. In this case, the regularization makes HOPIC behave like

a high-order Eulerian scheme. This is demonstrated in figure 2 by advectinga smooth pulse

(f = tanh(3 sin(2π(x− 0.25)))) across the periodic unit interval ten times. The simulations use

a grid of twenty samples and three particles per cell.

4. ADVECTION-DIFFUSION

Our first demonstration of HOPIC is the advection-diffusion equation for ascalar quantityq, given

velocity field~u, and constant diffusion coefficientD.

∂q

∂t
+ ~u · ∇q = D∇ · ∇q (5)

With D = 0 and no regularization, HOPIC merely transports the initial particle values around

the domain. The only error is in the trajectory of the particles through the velocity field, which is

interpolated from the grid. With regularization, HOPIC smooths sub-grid features depending onθ.

Relative to a Lagrangian approach, even high-order Eulerian methods suffer from severe numerical

diffusion in this case.

We measured convergence against the analytic solution of advecting the Fourier modeq0(x, y) =

sin(x+ y) in an arbitrary constant velocity field~u = (
√
2,
√
5). We letD = 10−3 and simulated time

t = 0 to t = 1. Consistent with the convergence requirements specified in section 3.5,∆t = 1/N ,

∆x = 2π/N andθ = 1/N3. The results show the expected fourth-order convergence (Figure 3).

In a spatially varying velocity field, we performed a numerical convergence study starting with

a smooth field1− cos(x) advected and diffused within a vortex. The velocity field is given as the

curl of the stream functionψ = (1− cos(x))(1− cos(y)). Simulation parameters are the same as

the previous example, and error was measured against anN = 512 simulation. Convergence results

are shown in figure 4, and the transported field is shown in figure 5.

5. SHALLOW WATER

Our second demonstration of HOPIC is on the shallow water equations

D

Dt

[

~u

h

]

= −
[

g∇h
h(∇ · ~u)

]

+ S (6)
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A HIGH-ORDER ACCURATE PARTICLE-IN-CELL METHOD 9

where~u is the velocity,g is gravity, h is the height of the water’s surface above a flat bottom,

D/Dt is the material derivative (i.e.D~q/Dt = ∂~q/∂t+ ~u · ∇~q), andS is an arbitrary source term.

We evaluated the spatial derivative terms on a collocated grid using fourth-order central finite

differences.

We measured convergence using the method of manufactured solutions with solution

u = ∇× φ+ (t− 1/2)∇φ
h = 10 + φ

φ = sin2(x) sin2(y + t)

defined on the periodic domain[0, π)2. These functions make all of the terms in the shallow-water

equations non-zero and have moderately small divergence in the velocity field, but are otherwise

arbitrary. Inital conditions and source terms were derived to be consistent with this solution.

Simulation parameters were∆t = N , ∆x = π/N and θ = 1/N3. Without reseeding (simply

using a high particle density from the start), convergence is shown in figure 6. The results confirm

the fourth-order accuracy of the method. When reseeding is done every step, convergence slows

down to third-order at higher resolutions due to the error term mentioned in the section 3.3.

Although the shallow water equations are capable of generating and propagating shocks, our

present method is not designed to handle them and our example does not include them. In practice,

MLS produces large and noisy oscillations around shocks, and correct shock speed according to the

Rankine-Hugoniot condition is not enforced as it is in a finite volume scheme,for example.

6. VORTICITY

Our last demonstration of HOPIC is incompressible fluid flow, in vorticity~ω formulation:

D~ω

Dt
= ~ω · ∇~u+ ν∇ · ∇~ω (7)

~ω = ∇× ~u (8)

with viscosity coefficientν. In 2D, equation 7 simplifies to scalar vorticity and no vortex-stretching

term
Dω

Dt
= ν∇ · ∇ω (9)

For this problem, we computed the right-hand-side derivatives on the grid using a pseudo-spectral

method with 3/2-rule dealiasing [25]. The 3D problem has the property that~ω should be divergence-

free at all times, so every time~ω was approximated on the grid, it was projected to be divergence-

free by the pseudo-spectral method. The regularization term used this projected vorticity, keeping

the particles from accumulating a curl-free component.
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Prepared usingnmeauth.cls DOI: 10.1002/nme



10 E. EDWARDS AND R. BRIDSON

6.1. 2D Test Problems

In 2D, we measured convergence against the 2D Taylor-Green [26] analytic solution

ω = 2e−2νt sin(x) sin(y).

This represents four alternately rotating vortices that decay exponentiallyover time, in the periodic

domain[0, 2π)2. Simulation parameters were∆t = 1/N , ∆x = 2π/N , θ = 1/N3, andν = 0.001.

Results are shown in figure 7, and display fourth-order convergenceover a wide range of resolutions.

Our next test problem displays much more dynamic behaviour. The initial vorticity

ω(~x) = k((~x− [0.7, 0.2])/0.2)− k((~x− [0.3, 0.2])/0.2)

k(~r) =







exp(1− 1/(1− ‖~r‖2)) if ‖~r‖ < 1

0 otherwise

describes a vortex dipole starting at one end of the simulation domain. In the true solution, the dipole

self-advects along a straight line and the individual vortices wobble and stretch slightly (figure 8).

We used inviscid (ν = 0) conditions for this problem, so both enstrophy and kinetic energy should

be conserved, and the vortices should stay roughly the same size.

On this test problem, we compared HOPIC to an Eulerian scheme using fifth-order upwinding

WENO [27] to compute the advection term. We kept the Eulerian scheme as closeas possible to our

HOPIC scheme by using the same pseudo-spectral approach for the right-hand-side derivatives and

RK4 time-discretizations.

We simulated from timet = 0 to t = 50, in which time the dipole crossed half of the[0, 1)2

domain. All simulations usedN ×N grids, with time steps restricted to CFL number 1.0, and

θ = (10/N)3. Drift in kinetic energy and enstrophy were used to detect numerical dissipation, with

the results shown in figure 9.

On equal size grids, HOPIC achieves much higher accuracy than WENO,though it obviously

has additional overhead due to the particles. We attempted to quantify the performance differences

with OpenMP-parallelized [28] C++ implementations of both running on a 4-core3.2GHz Intel i5

machine with 3GB RAM, using the FFTW library [29] for pseudo-spectral grid evaluations. HOPIC

is more time-efficient than the Eulerian scheme for achieving higher accuracies, despite being much

more computationally expensive per step.

The work done by HOPIC due to the use of particles isO(m) to transfer betweenm grid cells

and the particles (since there areO(1) particles per cell). However, the work done on the grid

by both methods is theO(m logm) time of a FFT. Because of this, we expect that on problems

requiring higher resolution grids, Eulerian schemes will slow down even more relative to HOPIC.

For a problem requiring more than theO(m logm) time of a FFT for solving the grid-terms, we

expect the particle overhead of HOPIC to be better amortized, increasing itsadvantage.
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6.2. 3D Test Problems

Our first test problem in 3D is the Taylor-Green Vortex (TGV) [30]. TheTGV decays into turbulence

from an initially simple vorticity field:

~ω =







cos(x) sin(y) cos(z)

sin(x) cos(y) cos(z)

2 sin(x) sin(y) sin(z)






(10)

We measured convergence of HOPIC on the TGV simulated to timet = 1. At this time, the flow

was distorted (figure 11) but had not yet decayed into turbulence. Parameters for all runs were

∆x = 2π/N , ∆t = 1/N , θ = 43300/N3, andν = 1/1500. Error was measured against the result

from anN = 150 simulation, as higher resolution required too much memory. The results, shown

in figure 10, again display fourth-order convergence.

We also verified our results against a 3D pseudo-spectral code and theresults from the large-

eddy simulation by Fauconnier et al. [31]. The pseudo-spectral code and LES simulation were

indistinguishable to time7, and we consider them to be following the true solution. HOPIC on

coarse grids loses energy faster than the true solution, but follows the same qualitative behaviour

(figure 12).

Our second test problem in 3D is a vortex ring. The initial vorticity is containedinside the torus

constructed by tracing a tube of radiusγ = π/4 about a circle of radiusπ/3. The initial vorticity

was tangent to the nearest point on the circle and had magnitude(γ2 − r2)3/2γ2 wherer was the

distance to the circle. Finally, we projected this field to be divergence free using the same pseudo-

spectral approach used to evaluate the coupling terms.

We compared our results of a simulated vortex ring to the theory and experiments by Maxworthy

[32] and Widnall and Sullivan [33]. Maxworthy observed that at low Reynolds number, vortex rings

are stable but slow over time. With increasing Reynolds number (600 . Re . 1000), the vortex

rings become unstable and collapse in increasingly turbulent manners. At high Reynolds numbers

(& 1000), the ring quickly collapses into a cloud of vorticity from which another stablevortex ring

is ejected. Widnall and Sullivan explain the collapse as due to a wave-like instability around the

ring, with a higher wavenumber at higher Reynolds number.

Our simulations captured all of these qualitative behaviours. Atν = 1/500 ≈ 1/Re, our simulated

vortex ring was stable. Atν = 1/5000, our vortex ring developed a wave-like instability with four

periods around the ring and subsequently collapsed at around time750. At ν = 1/50000, the ring

devloped an instability with seven periods and collapsed at approximately time450. Production of

a second vortex ring after collapse was observed atν = 1/50000, but was sensitive to the other

simulation parameters. The75× 75× 150 grid used in these simulations is too coarse be a direct

numerical simulation of the small turbulent details during high Re collapse. However, these results

are suggestive, and demonstrate the stability, robustness, and low numerical diffusion of the method.

We compared HOPIC to two Eulerian methods in 3D. First, the same upwind WENO scheme

as in 2D and, second, a fully pseudo-spectral scheme. However, we encountered problems with

both of these methods. The WENO method was unstable when simulating the Taylor-Green vortex

beyond the beginning of the turbulence cascade (t ≈ 2), with unbounded growth in kinetic energy.

On the vortex-ring test problem, the pseudo-spectral code produced qualitatively wrong results at
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12 E. EDWARDS AND R. BRIDSON

high Reynolds number,ν = 1/50, 000. This appeared as noise growing from the ring to fill the

domain, presumably due to the grid not being refined enough for true direct numerical simulation.

HOPIC was robust under all tests.

In a simulation withm grid cells, the interpolation and approximation steps are allO(m), while

the physics step isO(m lnm) using the FFT. Anm = 753 3D vorticity simulation is illustrative of

typical timings. The average step took 70 seconds to compute, with 50% of the timespent in MLS

approximation, 20% in WENO interpolation, 14% computing physics on the grid, 6% precomputing

acceleration structures, and the remaining time in IO and other auxiliary functions.

7. CONCLUSIONS

We present the HOPIC method that extends PIC techniques to high-order accuracy for general

transport problems. The core idea is to consider the particles as a sampling of the underlying

continuous field. MLS approximation and WENO interpolation provide a high-order means to

transfer information between the particles and grid. Coupled with any high-order scheme to compute

differential terms on the grid, the result is global high-order spatial accuracy. Temporal accuracy is

supplied by a standard explicit time-integration method for ODEs. Furthermore, a regularization

that decays particle values towards the grid interpolated values removes noise without affecting

convergence.

We implemented a fourth-order version of HOPIC and demonstrated it on a variety of problems,

in both 2D and 3D. The results showed the designed fourth-order convergence and the low numerical

dissipation and dispersion expected from its similarity to FLIP. Quantifying andcharacterizing the

nature of the error in more detail is left for future work. Although it comes with no guarantees about

conservation or stability, we found that HOPIC robustly handled all of ourtest problems. It produced

qualitatively reasonable results, even when the Eulerian schemes were unstable. Compared to high-

order Eulerian schemes HOPIC produced superior results on the same size grid, and for high

accuracies, HOPIC also had lower compute time.

This initial investigation into HOPIC produced promising results and leaves manyavenues

for future work. Handling more general classes of problems, especiallyboundary conditions and

constraints (such as incompressibility in a velocity-pressure formulation of flow) is clearly important

and we are investigating those. Similarly, extending the time integration to include implicit methods

could be critical for some applications. For problems with divergent flow fields, a more careful

reseeding strategy is necessary to maintain convergence. We also did notaddress shocks, free

surfaces, or other discontinuities.
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(a) (b)

(c) (d)

Figure 1. A comparison of structured and random sampling. In(a), a structured grid sampling is used, which
when deformed by a uniform shear flow results in (b), exhibiting severe degradation of sampling quality. In
(c), the structured grid samples are randomly jittered, eliminating all directional bias. Under the same shear

flow, (d) illustrates how the random distribution remains reasonable and unbiased.
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Figure 2. A smoothed pulse is advected across a periodic domain ten times to demonstrate the low numerical
diffusion due to our regularization scheme. In (a), no regularization is used and PIC maintains exactly the
correct solution. With a more typical half-life of one domain-crossing time, the PIC result (solid) shows
minor diffusion relative to the exact result (dashed). Whenthe regularization is increased to its effective
limits (half-life on the order of a timestep) the result is very diffusive (c), but no worse than the fifth-order

Eulerian WENO scheme in (d).
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Figure 3. Convergence of HOPIC to the analytic solution of advecting and diffusingsin(x+ y) in a uniform
velocity field. Dashed lines show third-, fourth-, and fifth-order convergence.
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Figure 4. Convergence of HOPIC to a high resolution numerical solution of advection-diffusion in a vortex.
Dashed lines show third-, fourth-, and fifth-order convergence.
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Figure 5. The final state at timet = 1 of the field1− cos(x) following advection and diffusion in a vortex.
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Figure 6. Convergence of HOPIC to a manufactured solution for the shallow water equations. The dashed
lines show third-, fourth-, and fifth-order convergence.
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Figure 7. Convergence of HOPIC to the analytic Taylor-Greenflow in 2D. Dashed lines show third-, fourth-,
and fifth-order convergence.
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Figure 8. Vorticity distribution in the 2D dipole advectiontest problem. The initially radially-symmetric
vortices wobble and distort as they move.
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Figure 9. Performance comparison of HOPIC and Eulerian WENOscheme. Top row shows accuracy plotted
against the size of theN ×N grid. Bottom row shows accuracy plotted against total simulation runtime.
Accuracy is presented in terms of drift in the conserved quantities: kinetic energy (left) and enstrophy (right).
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Figure 10. Convergence of HOPIC on the 3D Taylor Green flow. Error is measured at timet = 1, against a
150× 150× 150 simulation. Dashed lines show third-, fourth-, and fifth-order convergence.

Figure 11. The isosurface of unit magnitude vorticity, of the 3D Taylor-Green vortex, at time t=1.
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Figure 12. Kinetic energy of the decaying 3D Taylor Green Vortex. ‘Truth’ is from a high resolution large
eddy simulation [31]
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(a)ν = 1/500, t = 600 (b) ν = 1/5000, t = 800 (c) ν = 1/50000, t = 500

Figure 13. Vortex rings of varying vorticity. Plots show volume renderings of the magnitude of vorticity. At
high viscosity, the ring is stable (a). Decreasing viscosity produces unstable vortex rings (b) which collapse

more quickly and violently (c).
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