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Abstract. We present a solution to the mesh tangling problem in surface tracking. Using an
explicit triangle mesh to track the location of a surface as it moves in three dimensions has many
potential advantages for accuracy and efficiency, compared to implicit capturing methods such as level
sets. However, particularly when “mesh surgery” is required for topological changes, this approach is
prone to tangling: the mesh may self-intersect or otherwise no longer represent a physical interface.
Our new approach uses robust collision testing to determine when a mesh operation—such as motion,
adaptive refinement, coarsening, or topological change—will lead to an invalid state; we then either
roll back non-critical operations or apply robust collision response algorithms, minimally perturbing
the mesh to guarantee validity. We present numerical examples demonstrating the robustness and
accuracy of the method.

Key words. Interface tracking, dynamic surfaces, triangle meshes, geometric flows

AMS subject classifications. 65D17, 65D18

1. Introduction. Methods for discretizing and evolving a surface embedded in
Euclidean space can be lumped into two broad categories: implicit and explicit. Both
have advantages and disadvantages; our goal in this paper is to overcome one of
the critical challenges of explicit methods, namely robustness in the face of difficult
operations such as topological changes.

Implicit surface methods do not track the location of points on the surface, but
rather utilize fixed data points located at regular intervals throughout the computa-
tional domain to reconstruct the surface when needed. They are sometimes called
“front-capturing” since they do not explicitly track points on the surface, but rather
contain the information needed to reconstruct the surface. A popular example of
an implicit method is the level set method [22], in which the zero-isocontour of a
scalar function—usually a numerically approximated signed distance field—defines a
surface.

Explicit surface methods, by contrast, discretize the surface using a set of con-
nected points. This is sometimes called “front tracking”, as points on the surface
are followed as the surface evolves, and these points define the surface. Perhaps the
best-known general purpose front tracking method is that developed by Glimm and
collaborators [10]. They discretize the surface as a simplex mesh (line segments in
two dimensions, triangles in three dimensions).

By dynamic surfaces, we mean surfaces that move over time. Surface motion can
be driven by geometric flows, such as motion in the normal direction or motion by
mean curvature, or by physical simulation, such as two-phase flow simulation, where
the surface defines the material interface.

Implicit surface functions are commonly used to represent dynamic surfaces be-
cause they easily handle topological changes, such as merging and pinching-off: no
special effort is required. (Indeed, implicit methods become problematic if topologi-
cal change is ruled out by the underlying dynamics.) These changes are notoriously
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hard to handle with explicit surfaces — meshes often become “tangled” if they are
advected into a self-intersecting state or if “mesh surgery” introduces holes that must
be remeshed, and it can then be difficult to reconstruct a consistent, intersection-free
surface.

Implicit methods, however, do suffer drawbacks such as numerical dissipation and
the inability to reliably capture detail near or below the resolution of the underlying
grid. For example, numerical dissipation in level set methods smooths out high cur-
vature regions and can cause parts of the surface to vanish, even under rigid motion.
In fact, very thin yet smooth (low curvature) surfaces require excessively refined grids
to avoid this problem, for example. In addition, the user has no control to prevent

topology change if the surface physics of the problem dictate a more subtle behaviour.
A further drawback of implicit surface tracking is that the extraction of an explicit
surface from an implicit representation is still a non-trivial operation—many of the
challenges that face explicit surface tracking methods also apply here—and thus the
complexity is shifted from surface tracking to surface extraction.

In this paper, we present a framework for robustly handling topological changes
in explicit surfaces, in a step towards tractable explicit surface tracking that does
not suffer from the drawbacks of an implicit method. We consider two-dimensional
surfaces embedded in R

3, discretized as triangular meshes.

Our key idea is to require that every mesh operation should leave the mesh in a
consistent, non-intersecting state—as opposed to attempting to recover such a state
after the fact. We thus first use robust collision detection methods to ensure we detect
every possible violation. Once a collision is detected, we either roll back the operation
if it is deemed non-critical and may be delayed to a subsequent time step when it may
succeed, and otherwise minimally perturb mesh positions to guaranteeably avoid the
problem (patterned after frictionless inelastic collision response in a physical contact
problem).

We present numerical experiments verifying convergence of our method for geo-
metric flows with topology change, highlighting its ability to robustly and efficiently
capture extremely thin and delicate details.

2. Previous work. Since its introduction [23], the level set method has become
very popular for implicit surface capturing. The particle level set method [8], which
supplements the implicit surface function with a set of marker particles, has proven
especially accurate in some applications. Even greater accuracy has been achieved
through the use of an octree grid structure [18], which can effectively increase the
resolution of the level set function discretization around the interface.

Volume-Of-Fluid methods were introduced by DeBar [5] and Noh and Woodward
[21] for the simulation of fluids. These methods operate on a fixed volumetric voxel
grid, maintaining the fraction of volume occupied by fluid at each voxel. At the
beginning of the simulation, these volume fractions are initialized using the known
geometric interface. At subsequent steps in the simulation, these volume fractions
are evolved according to the advection equation. The actual interface must then be
reconstructed from these volume fractions when required. See work by Rider and
Kothe [25] for more details and an overview of some advancements in this technique
over the past several decades.

The use of passive marker particles to track a surface is common in applications
such as fluid simulation. For example, the Marker-And-Cell method [13] uses an
Eulerian grid to drive the fluid simulation, and passive marker particles to indicate
the interior of the fluid. An explicit surface can then in principle be reconstructed
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as needed, though we note determining an accurate smooth surface from the marker
particles remains an open research problem. We might classify this approach as both
Langrangian and implicit since it uses the Lagrangian frame of reference but still only
captures information necessary to reconstruct a surface.

A hybrid implicit/explicit surface tracking method called “grid-based front track-
ing” was introduced in by Glimm et al. [11]. In this method, explicit surfaces that have
been advected into an intersecting state are treated in one of two ways. First, a grid-
free untangling is attempted, which cuts the triangle mesh along intersection contours
and re-triangulates. If this fails, a global, grid-based reconstruction is performed. (A
similar effect is achieved by Bargteil et al. [1], where the explicit surface is regener-
ated from a level set discretization at each step.) Du et al. [6] refined this method,
performing only local grid-based reconstruction around the intersecting mesh compo-
nents. Fixed grid nodes are used to determine when the surface is in an intersecting
state, and thus sub-grid-scale intersections may be missed; the grid reconstruction
similarly eliminates any details at or below the grid resoution, including smooth but
thin parts of the surface.

Pons and Boissonnat [24] handle topological changes in explicit surfaces by em-
bedding the surface mesh in a tetrahedralization of the surface vertices. The tetrahe-
dralization is updated at each step, rejecting those tetrahedrons whose circumcentres
lie outside the surface mesh. The exterior triangles of the remaining tetrahedrons
form a new triangulation of the surface. This tetrahedralization is shown to be a
good approximation of the input surface mesh, but is not guaranteed to conform to
the surface triangles used in the previous step.

Perhaps the method most similar to the one presented in this paper was intro-
duced by Lachaud and Taton [17], applied to the segmentation of 3D images. The
authors use dynamic, purely explicit surfaces with interference detection to determine
when topological changes should occur. Their method of interference detection relies
on maintaining a regular triangulation of the surface mesh and detecting when any two
vertices are close to each other. Our method differs in that we use robust geometric
predicates for interference detection, allowing for non-regular, anisotropic triangula-
tions while guaranteeing intersection-free meshes. Out method also permits surfaces
to approach much closer than the length-scale of a triangle, critical for handling thin
yet smooth geometry efficiently.

Robust intersection detection and handling have been important components of
cloth simulation in computer graphics for several years. Similar to the explicit surfaces
discussed in this paper, cloth is generally discretized as a triangle mesh. Bridson et al.
introduced a method for guaranteeing intersection-free cloth, which uses continuous
collision detection, penalty forces, impulse-based collision solving, and a failsafe rigid
motion projection to ensure that the cloth surface will never advect into an intersecting
state, eliminating the need for mesh untangling altogether [2]. This approach has been
simplified by Harmon et al. with a unified projection method [14] and concurrently
by Sifakis et al. with a globally coupled impulse-based method [27]. In this paper, we
adopt this approach of preventing intersections, rather than allowing them to occur
and then trying to untangle them.

3. Method. After an overview of notation, the discussion of our method will
begin with a description of the input and output data, providing a framework for
our algorithm, followed by a short description of the main steps in our algorithm.
We then describe in detail our methods for interference detection, mesh maintenance,
topological changes, and collision resolution.
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3.1. Symbols. Table 3.1 lists the symbols used in the sequel. They are defined
as they are introduced in the text, but we include them here for easy reference.

q(t): mesh configuration at time t
x(t): mesh vertex positions
T(t): mesh triangles
u(x, t): velocity field

f̂(tm): predicted value of function f at future time tm
α: maximum edge length
β: minimum edge length
γ: maximum volume change
ξ: initial average edge length
ǫp: proximity threshold

Table 3.1

Symbols used in this paper

3.2. Framework. Our method operates on triangle meshes. Let q(t) be a mesh
configuration at time t, consisting of the pair (x(t),T(t)), a set of vertex positions and
a set of triangles defining the mesh connectivity. Each triangle is a triple of vertex
indices, oriented consistently over all triangles.

T is a function of time, indicating that connectivity can change over time, but
note that connectivity changes occur at discrete events, for instance when a vertex
is added or removed. In contrast, x(t) is usually an approximation of a continuous
trajectory of vertex positions.

Our method takes as input a mesh configuration, the “current mesh”, q(tn), and a
pointer to a velocity function u(x, t) which will define the “predicted” mesh, q̂(tn+∆t).
The choice of input mesh configuration, velocity function, and time step, ∆t, are
determined by the user, usually the results of a physical simulation or geometric flow.
Our system produces as output a “final” mesh configuration q(tn + ∆t), which is
as close as possible to the “predicted” mesh, q̂(tn + ∆t), but is guaranteed to be
intersection-free. In general, the final mesh will not share the same connectivity as
the current mesh and may have a different number of vertices. We ensure that as
long as the current mesh is intersection-free, the final mesh will be intersection-free
as well, even if the intermediate, predicted mesh is not.

We note that the underlying simulation may use any time integration scheme
to get the linear velocity per vertex. For example, the simulation might advect a
surface vertex using a high-order, multi-step time integration scheme (in a collision-
naive way) from time tn to tn + ∆t, then return u(x, t) = (x(tn + ∆t) − x(t))/∆t. If
this trajectory is indeed free of interference, the resulting integration will retain the
accuracy of the multi-step scheme.

There are a few inadmissible mesh triangulations which we will not accept as
input, and will not produce as output. For simplicity of presentation, we do not allow
boundary edges (edges incident on fewer than two triangles), but return to this later in
section 4.4 when extending the method to handle open surfaces. We do not allow two
triangles to share the same three vertices (creating a zero-volume tetrahedron). We do
allow some non-manifold surfaces. In particular, we allow more than two triangles to
be incident on an edge. However, each triangle incident on an edge must have another
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triangle with a consistent orientation incident on the same edge. We also only allow
an even number of triangles to be incident on a single edge. Loosely speaking, we
allow only meshes that partition the computational domain into an interior and an
exterior, i.e. we ensure the mesh is the boundary of an open set.

This restriction allows us to perform mesh operations which are usually restricted
to manifold surfaces. For example, an edge flipping operation (see section 3.5.2)
usually assumes that the edge is incident on two triangles with consistent orientation.
Our requirement above ensures that there are at least two triangles with consistent
orientation incident on the edge, so we can find two such triangles and apply the edge
flip operation.

Apart from these restrictions, the user has the freedom to supply any mesh con-
figuration and velocity field. As a very simple example, consider a mesh under motion
from an external velocity field u(x, t) with Forward Euler time integration. Then at
the nth time step (when t = tn) we have as inputs:

xcurrent = x(tn)

Tcurrent = T(tn)

u(x, t)

Our method will internally compute the intermediate mesh using Forward Euler time
integration:

xpredicted = x̂(tn + ∆t) = x(tn) + ∆tu (x(tn), tn)

It will output the intersection-free mesh positions and possibly modified triangulation:

xfinal = x(tn + ∆t)

Tfinal = T(tn + ∆t)

We can then use this output as q(tn+1), the input qcurrent in the next time step, and
we have a complete time integration scheme.

3.3. Algorithm overview. Here we provide a high-level outline of our algo-
rithm. Each non-trivial step is explained in detail in the sequel. The first and fourth
steps, splitting long edges and null-space smoothing, are mesh maintenance steps and
can be omitted at the user’s discretion. The second and third steps, edge flipping
and short edge collapsing, are mainly used for mesh maintenance, but are also key
to allowing surface separation (as described in section 3.6), and thus omitting these
steps will prevent separation events. We also allow the option of using these steps but
preventing topology changes by adding extra checks to prevent surface separation.
The zippering step can also be omitted if the user wishes to avoid topological changes
altogether, as might be appropriate in some applications.

Our software implementation allows the user to toggle three boolean settings:
whether to perform mesh improvement operations, whether to allow topological changes,
and whether to enforce intersection-free surfaces. Figure 3.1 depicts the flow of control
in our algorithm.

Split long edges (section 3.5.1). Subdivide all edges with length greater than
the user-defined maximum edge length.
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Flip non-Delaunay edges (section 3.5.2). Repeatedly search the mesh for
non-Delaunay edges and replace them.

Collapse short edges (section 3.5.3). Delete all edges with length less than
the user-defined minimum edge length, replacing the edge with a single vertex.

Null-space smoothing (section 3.6.1). Apply a Laplacian-type filter to the
vertex positions, moving each vertex only in the null space of its local quadric metric
tensor.

Merging/zippering (section 3.7). Detect edges that are near to each other
and attempt to merge surfaces by deleting their incident triangles and zippering the
resulting holes.

Set vertex velocities. Use the given velocity function to assign a velocity vector
to each vertex.

Proximity detection and repulsion forces (section 3.8). Detect elements
that are near to each other and apply a repulsion force between them by adjusting
the vertex velocities.

Compute predicted vertex locations. Use the adjusted vertex velocities to
compute the predicted vertex locations with Forward Euler integration.

Impulse-based collision resolution (section 3.8). Detect individual colli-
sions using continuous collision detection and apply impulses which will prevent an
intersection.

Impact zones (section 3.8). Detect remaining collisions, group colliding ele-
ments into impact zones, and solve for a set of impulses which will prevent intersection.

Compute final vertex locations. Use the vertex velocities and collision im-
pulses to get an intersection-free mesh configuration.

3.4. Interference detection. Before diving into the details of our approach, we
briefly discuss techniques for interference detection. We differentiate between three
types of geometric interference detection: intersection detection, proximity detection,
and collision detection. We use all three of these types at different steps in the
algorithm.

Static intersection detection detects if and where a mesh intersects itself for a given
mesh configuration (i.e. at one instant in time). This can generally be decomposed
into primitive tests discovering where an edge is penetrating a triangle, but we must
take care to identify degenerate cases, such as an edge penetrating a surface only at
an edge or at a vertex. We also use a static point-in-tetrahedron test during mesh
maintenance (described below).

Static proximity detection detects when mesh elements are closer than a specified
tolerance (in particular, when a vertex is close to a triangle or when two edges are
close to each other). We denote this proximity tolerance ǫp.

Proximity detection finds the two points on the mesh elements that are closest to
each other. If we denote the set of four barycentric coordinates of these two points
as a (setting ai = 1 if i is the vertex in a vertex–triangle collision), then to find the
distance between the mesh elements, we multiply the barycentric coordinates by −1 if
they refer to a point on the triangle or on the second edge in an edge-edge proximity,
to get a new set of coordinates, ā. Then taking the sum of vertex locations weighted
by these scaled barycentric coordinates yields a vector between these closest points.
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Fig. 3.1. Flow chart outlining our algorithm

If p are the indices of the vertices involved, then the shortest distance is given by the
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length of this vector:

d =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4
∑

i=1
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Our proximity detection function can also return a “collision normal”, n, which,
when an impulse is applied along it, will increase the distance between elements.

Continuous collision detection (CCD) detects whether a collision between a mov-
ing vertex and a moving triangle or between two moving edges will occur during some
specified time span.

In our framework, two mesh configurations are given: one at time tn and one at
time tn + ∆t. We assume vertices move in a linear trajectory from their positions at
time tn to their positions at time tn +∆t. Given these two configurations, continuous
collision detection will return any point-triangle and edge-edge collisions, as well as
the time that the collision occurs (sometime between tn and tn + ∆t), the collision
normal, the set of barycentric coordinates describing the point of contact, and the
computed relative displacement.

We use a robust CCD approach recently introduced by Brochu and Bridson [4].
This method augments the spatial coordinate system by one dimension, representing
time. We can then apply numerically robust predicates from computational geom-
etry to detect intersections in space-time. These predicates use only multiplication
and addition, so we can easily bound the maximum round-off error accumulated in
their computation. From this forward error analysis, we can identify and handle
degenerate geometric configurations without resorting to user-tuned error tolerances.
This approach detects all collisions (no false negatives), and produces potentially false
positives only when the numerical error accumulated during the CCD computation
exceeds the magnitude of the results of the computation.

3.5. Mesh quality improvement. Triangles with small areas or poor aspect
ratios can adversely affect collision detection, topological operations and any boundary-
integral-based simulation. To improve the quality of our surface discretization, we use
a few common operations. The need for these operations and their effectiveness has
been argued by others [16] and is orthogonal to the main contribution of our paper,
robust topological changes. However, we include this section for completeness.

3.5.1. Edge split. If an edge is longer than a user-defined maximum edge length
(denoted α), we subdivide it by introducing a new vertex. The new vertex can be
placed at the edge midpoint, which will not introduce any new intersections. However,
we may wish to offset the new vertex from the current surface using a subdivision
scheme to maintain curvature. To ensure intersection safety in this case, we can make
use of the continuous collision detection framework introduced earlier. We begin by
introducing the new vertex at the edge midpoint. We then compute the “predicted”
location of the new vertex via the subdivision scheme. These two points define a
pseudo-motion. We check the new vertex and its incident triangles and edges as it
moves from the edge midpoint to its predicted point to ensure that it doesn’t collide
with any existing mesh elements (which do not move during this pseudo-motion). If
a collision does occur we revert to using the edge midpoint, which is guaranteed to
not introduce any new intersections.

We do not attempt to subdivide non-manifold edges (edges incident on more than
two triangles), although if handled carefully these edges could probably be treated as
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well. In our experience, these edges are rare enough that failing to subdivide them
does not introduce significant error.

Fig. 3.2. Edge split operation on the mesh graph

3.5.2. Edge flip. We employ an edge flip operation as a way of maintaining good
triangle aspect ratios. For each edge incident on two triangles, we check whether the
distance between the two points not on the edge is less than the length of the edge.
If so, we remove the edge and create a new edge between these two points. Again,
we must ensure this operation does not introduce any intersections. A simple way
of doing this is to check that no existing edge intersects the two new triangles, and
that no point lies inside the tetrahedron formed by the two new and two old triangles.
We also reject the edge flip if it introduces a change in volume greater than a user-
defined maximum volume change (we denote this maximum volume change γ, and
usually set it to be 0.1ξ3, where ξ is the average edge length at the beginning of the
simulation; for simulations involving extremely thin surfaces such as our curl noise
example later, this may need to be further reduced). We extend this operation to
handle non-manifold edges by choosing any pair of incident triangles with consistent
orientation, and applying these steps to the edge and the chosen pair of triangles.

Flipping a single edge may introduce new triangles with poor aspect ratios, so
we iteratively sweep over all edges in the mesh until no flip is performed, or until we
reach a maximum number of sweeps (in our implementation, we set this maximum to
five). We also require that the new edge length decrease by a minimum amount to
prevent the same edge from flipping back and forth on subsequent sweeps.

Fig. 3.3. Edge flip operation on the mesh graph

3.5.3. Edge collapse. If an edge is shorter than a user-defined minimum edge
length (denoted β), we attempt to collapse it by replacing it with a single vertex, as
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shown in figure 3.4. As with edge splitting, we treat only manifold edges, skipping
edges incident on more than two triangles. We again use a subdivision scheme to
choose the location of the new single vertex in the general case. However, we also
use an eigen-decomposition of the quadric metric tensor to detect vertices that lie on
ridges or creases [15]. If one edge end point lies on a ridge and the other lies on a
smooth patch of the surface, we set the new vertex position to be the position of the
existing vertex on the ridge. In other words, we wish to prevent vertices moving off
of the ridge, which tends to introduce bumps or jagged edges.

To ensure collision safety, we can use the same pseudo-motion collision detection
described in section 3.5.1, this time with two vertices in motion: the end points of the
edge. These end vertices will have the same predicted location: the location chosen
by the subdivision algorithm. If a collision is detected during this pseudo-motion,
we can try again, this time moving the vertices towards the edge midpoint. Unlike
edge splitting, however, we have no safe fallback vertex location. If we cannot find a
collision-free trajectory, the edge collapse must be abandoned.

Fig. 3.4. Edge collapse operation on the mesh graph

We use simple minimum and maximum edge lengths for determining when to
split and collapse edges. In practice, we compute the average edge length when the
mesh is initialized and set the minimum and maximum edge length parameters to be
some fractions of the initial average length ξ. This has the effect of keeping the edge
lengths within some range of the initial average using split and collapse operations. In
our examples, we allow edge lengths to vary between 0.5 and 1.5 of the initial average
edge length, however these parameters did not require tuning and our system remains
stable for other values. More sophisticated criteria for triggering a split or collapse
exist, such as detecting triangles whose areas are too small or too large, or aspect
ratios that are too far from unity (c.f. Jiao [15]).

When choosing locations for new vertices during an edge collapse or split oper-
ation, there are a number of schemes that can be used. We use traditional butterfly

subdivision [7] due to the simplicity of its implementation and because it is free of pa-
rameters. Quadric error minimization schemes [9] are promising, but in our experience
the simplicity and quality of butterfly subdivision made it more attractive.

Butterfly subdivision determines the location of a new edge midpoint, Pnew as:

Pnew =
1

16
(8(P1 + P2) + 2(Q1 + Q2) − (R1 + R2 + R3 + R4))

Where P1 and P2 are end points of the edge, Q1 and Q2 are the vertices on the two
triangles incident on the edge which are not the edge end points, and R1...R4 are the
vertices on the four triangles adjacent to the triangles incident on the edge (see figure
3.5).
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Fig. 3.5. Butterfly subdivision

3.6. Mesh separation. As mentioned in section 3.2, we do allow surfaces which
are not strictly manifold. In particular, we allow more than two triangles to be
incident on an edge. We do not, however, allow two triangles to share the same
three vertices, thus creating a zero-volume tetrahedron. An edge collapse or flip
operation may introduce such degenerate tetrahedra, so after performing either of
these operations, we search the surface meshes for degenerate tetrahedra, and delete
the two offending triangles. We also delete triangles that may have repeated vertices
(“collapsed” triangles).

After this sweep, we deal with surfaces which may be connected only at a single
vertex. These so-called “singular” vertices can be detected if their incident triangles
are not all connected. If this is the case, we partition the set of incident triangles into
connected components. For each component, we create a duplicate vertex and map
all triangles in the component to this new vertex. A similar procedure is described
by Guéziec et al. [12]. We also move the duplicate vertices very slightly towards the
centroid of their associated triangles to avoid problems with collision detection and
resolution which may occur when two vertices occupy exactly the same point in space.

The mesh zippering operations described in section 3.7 cannot separate or “pinch”
a mesh to create two disjoint volumes. However the combination of removing degen-
erate tetrahedrons and the “duplicate-and-separate” operation on singular vertices
does allow for mesh separation. If we wish to avoid topological changes altogether, as
may be the case, we modify the edge collapse and edge flip operations to check if any
degeneracies or singular vertices would result and, if so, abort the operation.

3.6.1. Null-space smoothing. A powerful mesh improvement technique was
recently introduced by Jiao [15]. Applying a Laplacian filter to the vertex locations
would move each vertex to the average of its neighbours’ locations. This usualy has
the desirable effect of equalizing edge lengths. However, it will also shrink the volume
enclosed by the surface and smooth away sharp features. We instead move the vertices
only in the null-space of their associated quadric metric tensors. If the vertex is on a
flat or smoothly curved patch of surface, the null space will correspond to the plane
tangental to the surface at the vertex. If the vertex is on a ridge, the null space will
be the infinite line defined by the ridge, and the smoothing operation preserves the
ridge feature. If the vertex is at a corner, the null space will be empty and the vertex
will not move, preserving the corner.
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To ensure no mesh intersection, we treat the global smoothing operation as a
pseudo-trajectory on all vertices, and apply collision resolution as if the surface was
moving under the influence of an external velocity field (see section 3.8).

3.7. Topological changes. We have described several mesh quality mainte-
nance operations that can be performed without introducing geometric intersections.
To make our general surface tracking algorithm useful for a wider range of applica-
tions (e.g. fluid simulation), we must allow surfaces to change topology. We have seen
in section 3.6 how our method allows meshes to separate when they become too thin.
We now describe a method for allowing surface patches which are close to each other
to merge without introducing any intersections.

To achieve this, we seek out edges that are close together and attempt to merge
the surface. We use proximity detection to search for edges that are closer than a
specified tolerance (considering only edges that are incident on two triangles). We
sort the pairs of edges in order of increasing separation distance so that the nearest
edges are merged first. For each pair in the sorted list, we first remove the triangles
incident on each edge. This introduces two temporary “holes” in the mesh, each hole
consisting of a loop of four boundary edges. We create eight new triangles between
the two holes, using a closed-form triangulation. We then use intersection testing to
determine if these new triangles intersect any existing mesh elements or each other
(treating degenerate cases as intersections for safety). If an intersection is found, we
discard the new triangles and replace the original triangles incident on the proximal
edges, abandoning the topology change.

Similar to edge collapsing and flipping above, this merge operation may introduce
degenerate tetrahedra and singular vertices which must be handled as described in
section 3.6.

3.8. Collision resolution. After performing mesh improvement and any topo-
logical operations, all that remains is determining the surface velocity and integrating
the vertex positions forward in a collision-free manner. We allow the user to specify
per-vertex velocities, and the goal of our time integration scheme is to produce a final
mesh configuration that is as close to the specified trajectory as possible, while being
free of intersections.

Our collision resolution procedure is based on the filtering approach for handling
collisions [2], and operates in three phases. First, we run proximity detection as
described in section 3.4 to obtain pairs of elements that are closer to each other than
ǫp. For each pair of proximal elements, we compute the relative normal velocity of
the elements. We then perturb the vertex velocities so that the new relative normal
velocity is positive, and large enough to carry the vertices at least ǫp away from each
other if they were integrated forward for ∆t without further interference. Attempting
to maintain this small minimum separation significantly helps in avoiding degenerate
geometric cases which would otherwise slow subsequent floating-point-based collision
detection and resolution.

As described in section 3.4, for a pair of elements, proximity detection returns a
distance d and a set of scaled barycentric coordinates ā. If p are the indices of the
element vertices and u are the vertex velocities, then the relative velocity is:

urel =

4
∑

i=1

āiu[pi]
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If n is the unit-length collision normal, the impulse J we apply is computed as:

δ =
ǫp − d

∆t
− n · urel

J =
δ

〈ā, ā〉M−1

where M is the diagonal matrix of vertex masses. (In problems where there is no
natural mass for a surface vertex, we simply use a unit weighting: M = I.)

Then for each vertex in proximity, we distribute the impulse J to perturb the
predicted velocity field:

upi
= upi

+ J
ā

Mpi

n

Note that this will not immediately resolve any of the proximities detected, as
the “current” vertex positions are left untouched; it aims to resolve the proximity at
the next time step. More importantly, it tends to dramatically reduce the number of
collisions that must be dealt with in the next phase.

In the second phase of collision resolution, we use continuous collision detection
to determine pairs of colliding elements. Our CCD function returns the relative
displacement of the elements in the direction of the collision normal (which we can
scale by 1/∆t to compute the relative normal velocity), as well as the barycentric
coordinates that should be used to distribute the corrective impulse. For each pair
of colliding elements we encounter, we apply an impulse that sets the relative normal
velocity between the elements to zero, thus preventing the collision from occurring.
This is similar to the repulsion impulses applied in the previous phase, except that
the impulse magnitude is:

δ = −
n · ∆xrel

∆t

This is equivalent to introducing an impulse that instantaneously changes the ve-
locity, while minimizing the velocity change in the normal direction in a least-squares
sense. (Minimizing the normal velocity change in this way ensures that momentum is
conserved, if the least-squares metric is kinetic energy.) One sweep through all mesh
elements will not prevent all collisions, as resolving one collision may introduce a new
collision between a pair of elements that was already checked. We have found that
applying three sweeps of this individual collision resolution handles most collisions:
however we must use a fail-safe to ensure that all collisions are handled.

For our fail-safe, we use the simultaneous treatment of collisions developed by
Harmon et al. [14]. After three passes of individual collision resolution, we detect
all pairs of elements that are still colliding. We lump colliding pairs of elements into
“impact zones” based on adjacency and resolve all collisions in each zone simultane-
ously using one linear solve. We can think of our desired new velocities u′ as being
the solution to a constrained minimization problem:

min ||u′ − u||
2

M

subject to n · u′

rel = 0 for all collisions

We can re-write the constraint as a linear operator on the vertex velocities by
building a matrix C, where each row, Ci, corresponds to one collision, and has non-
zero entries in block columns j = [3v, 3v+1, 3v+2], where v is one of the four vertices
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involved in collision i. Setting Ci,j = āvn
T , our constrained optimization problem

becomes:

min ||u′ − u||
2

M

subject to Cu = 0

Solving this using the method of Lagrange multipliers yields the system:

CM−1CT λ = Cu

We can think of λ as the set of impulses which, when applied, yields zero relative
normal velocities for all collisions. We update the vertex velocities according to:

u′ = u + M−1CT λ

The application of these impulses may result in new collisions, so we run collision
detection again and add any additional collisions to the set of impact zones, repeating
the process until no new collisions are detected. This is guaranteed to terminate,
assuming adequately accurate linear solves, since each additional constraint reduces
the finite dimension of the solution space; in practice it proves to be very efficient.

At the end of each time step, we verify that no tangling has occurred by running
intersection tests on all edge-triangle pairs; while not necessary for the method as
presented, this is a useful practice for detecting programming errors during software
development.

3.8.1. Error introduced by collision resolution. Each individual collision
response and repulsion force perturbs the vertex location by O(∆t). We posit that the
number of collision events for a given vertex in any numerically-resolved simulation
should be small and finite for a fixed end-time, with the collision events in the limit
becoming a set of measure zero. Since each collision perturbation has magnitude at
most O(∆t), this implies the collision resolution should introduce at worst a global
O(∆t) error, so we should achieve at least first order convergence. When surface
elements collide or merge, we introduce an error similar to that introduced into the
level set method by the kink in the signed distance field; at a fundamental level
topological changes are non-smooth and unlikely to permit greater than first order
accuracy in any numerical method.

As a caveat, we note that the O(∆t) error produced by the impact zone solver
could potentially involve a very large constant, since it will perturb the velocity field
at many points. However, we have found that impact zones are seldom used in
practice, after one pass of repulsion forces and three passes of impulse-based collision
resolution. Adaptively cutting the time step size has been a successful strategy for
reducing the number of collisions [2], and could also be used in the case where impact
zones grew too large. However, we shall see in the next section that our method
shows convergence under mesh refinement, even without cutting the time step size:
this does not appear to be a concern in practice.

4. Numerical Examples. Armed with techniques for guaranteeing intersection-
free meshes, changing mesh topology, and maintaining mesh quality, we attack some
dynamic surface problems traditionally handled by implicit surfaces.
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Initial average edge length L∞ error at t = 2 L1 error at t = 2
0.04 0.00811073 0.00114493
0.02 0.00236906 0.00042705
0.01 0.00129011 0.000174606

Table 4.1

Motion in the normal direction: error measures for the new method.

Grid spacing (∆x) L∞ error at t = 2
0.04 0.0118
0.02 0.0053
0.01 0.0031
0.005 0.0017

Table 4.2

Motion in the normal direction: error measures for the Level Set method.

4.1. Motion in the normal direction. We compare motion in the normal
direction using an explicit method with a level set method. Our explicit method uses
the entropy solution of the face offsetting algorithm [15] to achieve normal motion.
For this advection scheme to function properly, we must guard against operations
that will invert a patch on the surface. Thus we reject any edge collapse or edge flip
operation that results in a triangle with a normal that is too different from the original
triangle normals. We also adjust the time step to avoid inverting any triangles over
a single offsetting step following the method described in the original face offsetting
paper [15].

We ran motion in the normal direction on two disjoint spheres with speed of 0.2
for t = [0, 1), then with speed of −0.2 for t = [1, 2]. The spheres initially have centres
at (−0.25, 0, 0) and (0.25, 0, 0), and radius of 0.2. We used Marching Tiles [28] to
generate a mesh with an initial average edge length of approximately 0.02. Let α be
the maximum edge length, β be the minimum edge length, γ be the maximum volume
change, and ξ be the initial average edge length. We set α = 1.5ξ, β = 0.5ξ, and
γ = 0.1ξ3. The time step ∆t was generally set to 0.005, but was shortened for some
time steps to avoid inverting triangles, as mentioned above.

Figure 4.1 shows our method at t = 0, 1, and 2. Note that our method cleanly
handles merging of the two spheres. In this figure we compare our method against the
level set method, using the Toolbox of Level Set Methods [20]. The grid resolution
used was 100 × 50 × 50, resulting in a grid spacing of ∆x = 0.02, similar to the
average initial edge length of the triangle mesh. We used a WENO5 spatial derivative
approximation, and a third-order TVD RK time integrator with the same time step
size of ∆t = 0.005.

We also ran this example on lower- and higher-resolution initial meshes to deter-
mine convergence. Table 4.1 compares the initial average edge length to the L∞ and
L1 error, obtained by comparing against the analytic exact solution for time t = 2.
The results are consistent with first-order convergence. We used the same initializa-
tion values for ∆t, and set α, β, and γ according to the same fraction of ξ throughout.
Table 4.2 shows a comparable rate of convergence when using the Level Set method
with RK3 time integration and upwind WENO5 spatial derivatives. Note that despite
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Level Set Our Method

Fig. 4.1. Motion in the normal direction

the use of high-resolution numerical methods, the topology change reduces the level
set method to first-order accuracy, due to the kink in the signed distance field at the
merging event.

A first instinct may be to use a simpler scheme for specifying normal motion,
namely using “vertex normals” to specify the direction of motion, then simply ad-
vecting the vertices according to this direction. However, this scheme does not pro-
duce the entropy solution, as it does not correctly handle flow fields with merging
characteristics (as argued by Enright et al. [8], for example). To confirm this, we
computed vertex normals as the area-weighted average of normals of incident trian-
gles. We then ran our test again, advecting the vertices according to these computed
normals. Comparing against the analytic entropy solution revealed that this method
does not converge as the mesh is refined. Figure 4.2 shows the results of this test on
a high-resolution mesh.

4.2. Motion by Mean Curvature. Motion in the normal direction with speed
proportional to mean curvature is a classic geometric flow used for testing surface
tracking methods. We ran motion by mean curvature on a dumbbell-shaped surface,
as described by Sethian [26]. This causes surface separation, as the dumbbell “handle”
shrinks faster due to its higher mean curvature. We estimated mean curvature times
the surface normal at each vertex using the scheme introduced by Meyer et al. [19],
then moved vertices using simple Forward Euler time integration, with time step
size limited by the CFL condition. Initial conditions were generated by running
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Fig. 4.2. Motion in the normal direction using vertex normals

Initial edge length L∞ error at t = 0.025 L1 error at t = 0.025
0.04 6.18499 ×10−4 2.62302 ×10−4

0.02 1.44355 ×10−4 7.02612 ×10−5

0.01 1.47687 ×10−5 1.54722 ×10−5

Table 4.3

Motion by mean curvature: error measures.

Marching Tiles on a 28× 14× 14 grid, generating an average initial edge length, ξ, of
approximately 0.02. We again set α = 1.5ξ, β = 0.5ξ, and γ = 0.1ξ3.

Figure 4.3 shows a comparison with the level set method. For the level set exam-
ple, we again use the Toolbox of Level Set Methods with a 100 × 50 × 50 grid with
∆x = 0.02, a second-order spatial derivative scheme for estimating curvature, and
a third-order TVD RK time integration scheme with time step size dictated by the
CFL condition.

To determine convergence in this case, we compare our solution against a high-
resolution (200× 100× 100) solution produced by the Toolbox of Level Set Methods.
Table 4.3 compares the initial average edge length to the error after integration. The
results are consistent with first-order convergence, which again is probably very hard
to improve upon in the presence of topological change.

4.3. Motion by external flows. We subjected our method to the Enright test,
which was developed to test the accuracy of surface tracking methods [8]. The initial
mesh is a sphere centred at (0.35, 0.35, 0.35) with radius 0.15. The mesh is advected
by the velocity field given by:

u(x, y, z) = 2 sin2(πx) sin(2πy) sin(2πz)

v(x, y, z) = − sin(2πx) sin2(πy) sin(2πz)

w(x, y, z) = − sin(2πx) sin(2πy) sin2(πz)

This velocity field is modulated by the term sin(2/3πt) to achieve a smooth, periodic
motion. The initial mesh is generated by Marching Tiles from a 14×14×14 grid, gen-
erating an average initial edge length of ξ = 0.01. We initialize the mesh maintenance
parameters as α = 1.5ξ, β = 0.5ξ and γ = 0.1ξ3. We use a 4th order Runge-Kutta
scheme to advect the mesh vertices, with a time step of 0.01. After one period of mo-
tion, the volume enclosed by the surface has changed by just 2.48899×10−5, resulting
in a relative error of 0.1764 percent.
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Level Set Our Method

Fig. 4.3. Motion by mean curvature at t = 0, t = 0.0125, t = 0.0219 and t = 0.025

To illustrate the effects of our mesh adaptivity operations, we also ran the Enright
test with various mesh maintenance operations turned off. Figure 4.5(a) shows a mesh
where no edge splitting had been performed. Note that the resulting large triangles
poorly capture the curvature of the surface. Turning off edge collapse generates high
triangle density when the surface is contracting, as in figure 4.5(b), resulting in wasted
computational effort. Figure 4.6 shows the non-uniform triangulations resulting when
edge flipping and null-space smoothing operations are turned off. Since the patch
shown has relatively low curvature, a uniform triangulation is desirable, but without
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Fig. 4.4. The “Enright test”

flipping and null-space smoothing, the resulting triangulation is irregular.

(a) No edge split (b) No edge collapse

Fig. 4.5. Effect of edge splitting and collapsing

We also advect an initially spherical surface with a smooth, pseudo-random,
divergence-free velocity field using curl-noise [3] with RK4 time integration. It would
be very challenging for a grid-based, implicit method with similar resolution to resolve
the extremely thin structures which are produced. We restrict the rotational motion
to be planar by generating a random spline potential with zero x- and y-components
and taking the curl of this potential. We do this only to aid visualization, eliminating
occlusion that occurs when using a fully three-dimensional rotation field. We disal-
lowed topological changes and set the maximum allowed change in volume, γ, to be
very small (5 × 10−4ξ3) to faithfully capture the thin structures. At time t = 30, the
total volume enclosed by the surface has changed by 0.9211 percent.

We ran this test a second time with collision detection turned off, allowing mesh
elements to intersect. Notice that with a smooth velocity field defined everywhere in
space, the surface should never self-intersect, but—even with a high-order time inte-
gration scheme—self-intersections do occur due to discretization into triangles, numer-
ical error and collision-oblivious mesh improvement operations. Figure 4.8 shows one
screen capture showing the entire mesh, and one showing only the set of intersecting
triangles.

4.4. Extension to open surfaces. With some modification, we can extend
our algorithm to handle open surfaces. Figure 4.9 shows a curl noise velocity field
advecting an open surface. In such scenarios, we must be careful when dealing with
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(a) Flipping and smoothing (b) No edge flip (c) No smoothing

Fig. 4.6. Effect of edge flipping and vertex smoothing

(a) t = 0 (b) t = 5

(c) t = 15 (d) t = 30

Fig. 4.7. Motion by curl noise
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(a) Surface (b) Intersecting triangles

Fig. 4.8. Motion by curl noise with no collision resolution

Fig. 4.9. Motion by curl noise on an open surface

edges incident on only one triangle. In our example we handle these edges in the
simplest way possible: we disallow flipping, collapsing and splitting of any such edges,
as well as topology changes. The remaining triangles and edges on the surface are
unchanged.

The ability to handle open surfaces suggests a possible further extension to peri-
odic surfaces, although we have not yet attempted to implement this. Another further
extension would be allowing an odd number of triangles incident on an edge in order
to represent, for example, a solid-fluid-air triple point in a fluid simulation.

4.5. Performance. Table 4.4 shows timings for our method running the motion-
in-the-normal-direction example. We list the time for setting velocity on the surface,
detecting and handling collisions, performing topological operations and improving
mesh quality per time step. All computations were performed on a single core of a
2.4 GHz Intel Core2 Duo with 4 GB main memory. We have not attempted a parallel
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∆x Triangles Improvement Topology Set velocity Collisions
0.04 1476–3512 0.1104 0.04171 0.04031 0.06529
0.02 5896–14222 0.5203 0.2115 0.1602 0.3123
0.01 23372–56390 2.07845 0.845781 0.617641 1.41106

Table 4.4

Execution time per step (in seconds)

Example Triangles Run time LS resolution LS run time
Normal direction 5896–14251 617s 100 × 50 × 50 1435s
Mean curvature 3354–15468 1537s 100 × 50 × 50 666s

Enright test 6614–25176 597s 100 × 100 × 100 N/A
Curl noise 8798–381092 608m N/A N/A

Table 4.5

Mesh resolution and run time

implementation, but as the majority of our operations are local in nature, it should
be possible to spread the work over several processors.

The timings for topology change and mesh improvement operations include the
time taken for intersection and collision queries to ensure collision safety. The speed
of such interference detection depends greatly on the broad-phase collision culling
strategy. We use a simple regular grid of bounding boxes for each mesh element type
(vertex, edge, and triangle), which theoretically scales linearly with the number of
elements. We do achieve linear scaling in the number of objects tested after broad-
phase culling but only near-linear scaling in execution time. Our immediate future
work will be to investigate and optimize our broad-phase algorithm to achieve linear
scaling in actual execution time.

Table 4.5 lists the minimum and maximum numbers of triangles for each example,
as well as the total run time. Where appropriate, we also list the grid resolution of
the level set grid used for comparison. We did not run the Enright test using the
level set method, but we include the resolution of the grid used in the original particle
level set paper [8] for comparison. Note that in the particle level set method, the grid
is augmented with marker particles (64 particles in each grid cell located within 3
cells of the initial interface), effectively increasing the resolution of their method even
further.

Since we are using a MATLAB implementation of the level set algorithms, direct
comparison of timings against our un-optimized C++ implementation is difficult, but
we include run times for a very general idea of how our method compares. We ran the
level set examples for motion in the normal direction and motion by mean curvature
on a Sun x4600 M2 with 4 dual core Intel x64 processors (at 2.8 GHz) and 128 GB
shared main memory.

5. Conclusions and future work. We presented a method for robustly han-
dling topological changes in surfaces represented as triangle meshes, addressing one
of the major obstacles in using such explicit surface tracking methods. The use of
robust interference detection, topological operations, and failsafe collision handling
provides the framework for guaranteeing intersection-free surfaces while still allowing
merging and separation. We presented a collection of mesh maintenance operations
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to improve the quality of the surface discretization. Finally, we presented results of
numerical experiments, comparing our method to the level set method for geometric
flows.

A public domain C++ implementation of our algorithm, including all the exam-
ples presented in this paper, is available on the web at http://www.cs.ubc.ca/labs/
imager/tr/2009/eltopo/.

The next obvious step is the use of our method in more concrete applications.
Immediate application domains include the physical simulation of multi-phase fluid
flows, and deformable models for volume segmentation in medical imaging.

Anisotropic mesh adaptation as described by Jiao et al. [16] is a promising tech-
nique for accurately resolving highly curved and thin surfaces, and we would like to
introduce it into our system. Their method involves variations to the same four basic
mesh maintenance techniques we use in this paper, and so should not be hard to
integrate.

As collision detection is a major bottleneck of our system, we hope to investigate
and implement a more efficient broad-phase culling technique to speed up our method.

The interplay between edge splitting, flipping and collapsing is subtle and the
parameters that determine when these operations are performed are important to the
resulting quality. A more thorough analysis of how to choose these parameters will
likely prove very useful.
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