
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2009) Posters and Demos
E. Grinspun and J. Hodgins (Editors)

Animating Smoke as a Surface

Tyson Brochu† and Robert Bridson‡

University of British Columbia, Vancouver, Canada

Abstract
We present a method for animating highly-detailed smoke by advecting a deformable surface through a
procedurally-generated velocity field, avoiding costly volumetric simulation. We present three applications: a
plume of thick, nearly opaque smoke; thinner, curly smoke; and a heavy, fog-like layer of smoke.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

In visual effects, fluids such as smoke are often simulated
with a grid-based fluid solver or particle system. The den-
sity of soot is usually tracked using either a set of marker
particles, or a volumetric density function on an Eulerian
grid. If a particle system is used, tens of millions of parti-
cles may be required to prevent a grainy, bumpy, or blobby
look, which can occupy considerable storage and network
resources. To adequately capture fine, wispy detail, a volu-
metric grid would have to be of similarly high resolution. If
the smoke effect is particularly dense, only the set of parti-
cles or grid nodes near the surface may be of interest, while
the interior is almost completely occluded.

Our approach models smoke by defining a surface mesh
which encloses a volume of soot. Conceptually, we consider
the surface to be embedded in a fluid (the air). However, we
do not model the entire fluid domain — instead we compute
and apply procedural forces only at surface vertices. This
allows us to achieve detail at the resolution of the surface
mesh, rather than at some grid resolution.

2. Procedural Fluids

Procedural methods for animating fluids have been widely
used for many years, starting with “flow primitives” for par-
ticle systems, introduced by Sims [Sim90] and Wejchert and
Haumann [WH91]. Our method uses the linear superposi-
tion of several fluid flow primitives to generate plausible

† tbrochu@cs.ubc.ca
‡ rbridson@cs.ubc.ca

Figure 1: We procedurally animate a dense smoke plume us-
ing only an adaptive triangle mesh advected through a pro-
cedural velocity field. No volumetric calculation is used.

smoke without an Eulerian fluid simulator. We use vortex
rings to generate upward motion, divergence sources to sim-
ulate smoke dispersion, and curl noise [BHN07] to add extra
small-scale detail. (Note that any procedural or simulation-
based flow could be used.)

3. Surface Tracking

In order to use a triangulated surface to define a volume of
fluid, we require a surface tracking system with a certain
set of features. Obviously an adaptive surface is required to
generate highly detailed results. We would also like to main-
tain good mesh quality in terms of aspect ratios and surface



Tyson Brochu and Robert Bridson / Animating Smoke as a Surface

smoothness. To meet these requirements, we use El Topo,
a C++ implementation of Brochu and Bridson’s method for
explicit surface tracking [BB09]. This implementation also
allows the option of maintaining an intersection-free mesh
and handling topological changes in the surface if volumes
of smoke overlap or separate.

4. Examples

We demonstrate our approach with three example scenarios.
We first demonstrate a dense, “mushroom” plume dominated
by several source primitives and a strong vortex ring (figure
1). Second, we generate a thinner, curly plume dominated
by curl noise (figure 2). Finally, we apply only curl noise to
a flat, open surface. In figure 3, only the top surface of the
volume is simulated, with the sides added at render time.

We render each example with our own ray tracer, using a
single-scattering volumetric shader. When rendering dense
smoke, our volume shader is optimized to gather only a
few samples near the surface, treating contributions from the
deep interior as occluded. For very dense smoke, our volu-
metric renderer could potentially be replaced with a sophisti-
cated surface shader or a combination of surface and volume
shading to obtain more detail.

Using our approach, the integration of surface vertices
takes a few seconds per frame, up to a minute per frame
if collision detection and resolution are used to prevent
self-intersections. Although adaptively refining and improv-
ing the mesh and handling surface collisions introduces
some computational cost, the complexity of our simula-
tion method scales linearly with the resolution of the 2-
dimensional surface mesh rather than with the resolution of
an underlying 3-dimensional grid or particle system. Even
in thin, wispy examples, this represents significant savings
since far fewer mesh vertices than separate particles are re-
quired to produce a smooth, non-grainy render without ex-
cessive blur.

5. Conclusion

We have presented a technique for procedurally modeling
dense smoke as a surface. We define the region of dense soot
with a closed surface, rather than with a particle system or
volumetric density grid. We compute and apply velocities
only at the vertices of this surface, effectively focusing com-
putational effort on the visible regions.

References

[BB09] BROCHU T., BRIDSON R.: Robust topological
operations for dynamic explicit surfaces. SIAM Journal
on Scientific Computing 31, 4 (2009), 2472–2493.

[BHN07] BRIDSON R., HOURIHAM J., NORDENSTAM

M.: Curl-noise for procedural fluid flow. ACM Trans.
Graph. (Proc. SIGGRAPH) 26, 3 (2007), 46.

Figure 2: We animate thin, curly smoke using a combination
of vortex rings and curl noise

Figure 3: Applying our method to an open surface allows us
to model larger volumes

[Sim90] SIMS K.: Particle animation and rendering using
data parallel computation. In SIGGRAPH ’90: Proceed-
ings of the 17th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1990),
ACM, pp. 405–413.

[WH91] WEJCHERT J., HAUMANN D.: Animation aero-
dynamics. In SIGGRAPH ’91: Proceedings of the 18th
annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 1991), ACM, pp. 19–
22.


