
Curl-Noise for Procedural Fluid Flow

Robert Bridson∗

University of British Columbia

Jim Hourihan†

Tweak Films

Marcus Nordenstam‡

Double Negative

Abstract

Procedural methods for animating turbulent fluid are often pre-
ferred over simulation, both for speed and for the degree of ani-
mator control. We offer an extremely simple approach to efficiently
generating turbulent velocity fields based on Perlin noise, with a
formula that is exactly incompressible (necessary for the character-
istic look of everyday fluids), exactly respects solid boundaries (not
allowing fluid to flow through arbitrarily-specified surfaces), and
whose amplitude can be modulated in space as desired. In addition,
we demonstrate how to combine this with procedural primitives for
flow around moving rigid objects, vortices, etc.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: noise, turbulence, fluids, procedural animation

1 Introduction

Many shots in films and effects in games call for fluid-like turbulent
motion, particularly for smoke and vapor. Though simulation of the
equations of fluid motion can generate spectacular animation, it can
be frustratingly slow and unwieldy to direct. Many practitioners
instead turn to procedural methods where the state of the system,
such as the velocity field of the fluid, can be cheaply and repeatably
evaluated anywhere in space and time—without discretizing PDE’s,
without large grids, without simulation parameters to tweak, with-
out solving systems of equations, and with immediate and direct
animator control. After reviewing some previous procedural meth-
ods and their drawbacks, we offer a new, fast and simple procedural
approach for constructing fluid-like velocity fields.

Both Sims [1990] and Wejchert and Haumann [1991] used a linear
superposition of “flow primitives” such as vortices, sources, sinks,
and particular solutions of potential flow to generate plausible wind
velocity fields. However, without manually adding many vortices,
this approach is restricted to fairly laminar flow, and matching the
flow to arbitrary solid geometry is not handled.

Shinya and Fournier [1992] and Stam and Fiume [1993] used
Fourier synthesis to produce physically plausible turbulent velocity
fields. However, arbitrary solid boundaries cannot be handled with
this method, the entire 3D domain must be computed and stored
(particularly difficult in the constrained memory environment of
game consoles), and artist control such as spatially modulating the
magnitude of the turbulence is lost. Later, Stam [1997] showed

∗e-mail: rbridson@cs.ubc.ca
†e-mail: jimh@tweakfilms.com
‡e-mail: mkn@dneg.com

Figure 1: Incompressible 2D noise with solid boundaries. To com-
pute the potential ψ we multiply scaled noise N(~x, t) by a modu-
lation function (a smoothed step function A of distance from the
mouse cursor) and a ramp to zero based on distance d(~x) to the

closest solid boundary: ψ(~x, t) = ramp
(

d(~x)
d0

)

A(~x)N
(

~x
d0

, t
)

. The

velocity field is the curl of this potential: ~v = ∇×ψ .

that if just a few point samples of wind velocity are required (as
in his modal tree dynamics) there is no need for storing and cal-
culating the full 3D domain; however, the approach is inefficient
for large numbers of samples (e.g. when advecting large numbers
of particles), and doesn’t solve the problem of modulating Fourier
synthesized fields.

Perlin’s eponymous noise function [1985; 2002] is frequently used
in practice to generate random velocity fields; however, these fields
generally contain many sinks (“gutters” where particles accumu-
late) since they are not divergence-free. The divergence-free con-
dition, ∇ ·~v = 0, is equivalent to stating the fluid is incompressible,
and is one extremely important visual characteristic of everyday
fluids (e.g. water, air, and smoke).

Perlin and Neyret [2001] also created time-varying textures which
appear to flow, but cannot be used for moving particle systems and
cannot naturally handle arbitrary solid geometry.

Lamorlette and Foster [2002] use procedural methods including a
Fourier-synthesized turbulence model to animate flames, and also
provide good argument as to why procedural methods can be prefer-
able to fluid simulation.

Kniss and Hart [2004] demonstrated the idea of using the curl of
Perlin noise (as we do) for incompressible flow fields; our paper
extends this to handle boundary conditions and other effects.

Patel and Taylor [2005] introduce “fast simulation noise”, a
divergence-free velocity field that can be evaluated similar to Perlin
noise. While similar in spirit to our method, it suffers from either a
lack of smoothness or periodic dead spots (points of zero velocity)
and it cannot yet handle arbitrary solid boundaries as we do below.

Finally von Funck et al. [2006] build divergence-free velocity fields
for shape deformation with a slightly different construction. While
it is not clear how to adapt this approach to handle boundaries, it
could in principle also be used for our application.

2 The Method

2.1 Curl

In a nutshell, we use the curl ∇× of a potential field ψ for ve-
locities. In three dimensions, the potential is a vector-valued field
~ψ = (ψ1,ψ2,ψ3), giving:

~v(x,y,z) =

(

∂ψ3

∂y
−

∂ψ2

∂ z
,

∂ψ1

∂ z
−

∂ψ3

∂x
,

∂ψ2

∂x
−

∂ψ1

∂y

)

(1)

and in two dimensions the potential is a simple scalar field, giving:

~v(x,y) =

(

∂ψ

∂y
,−

∂ψ

∂x
,

)

. (2)

We recall from fluid dynamics that the potential in 2D may be called
the “stream function”: its isocontours are the streamlines of the
flow.

A classic vector calculus identity is that the curl of a smooth poten-
tial is automatically divergence-free: ∇ ·∇×≡ 0. Thus the velocity
field we have constructed is divergence-free, ∇ ·~v = 0, i.e. it is in-
compressible. No sources or sinks (“gutters”) are possible.

To evaluate the partial derivatives, we use simple finite difference
approximations with a very small displacement (e.g. in our exam-
ples we have used a displacement 10−4 times smaller than the do-
main, which works fine in single precision); this makes it easy to
use even quite complicated potentials.

2.2 Noise

To construct a randomly varying velocity field we use Perlin noise
N(~x) in our potential. In 2D, ψ = N. In 3D we need three com-
ponents for the potential: three apparently uncorrelated noise func-

tions (a vector ~N(~x)) do the job, which in practice can be the same
noise function evaluated at large offsets.

Note that if the noise function is based on the integer lattice and
smoothly varies in the range [−1,1], then the partial derivatives
of the scaled N(x/L) will vary over a length-scale L with values
approximately in the range O([−1/L,1/L]). This means we can
expect vortices of diameter approximately L and speeds up to ap-
proximately O(1/L): the user may use this to scale the magnitude
of ψ to get a desired speed.

The usual trick of adding several octaves at different scales together
to get “turbulent noise” (in the graphics sense [Perlin 1985]; see
also Cook and DeRose’s wavelet noise [2005]) actually, in this case,
produces something quite similar to physical turbulence. Using a
power law to reduce the magnitude of velocities from smaller-scale
vortices, as in the Kolmogorov turbulence spectrum, has a sound
physical basis (for a discussion of using the Kolmogorov model for
synthesizing velocity fields see e.g. Stam and Fiume [1993], and for
time modulating noise textures see Neyret [2003]).

We finally note that for added realism, our velocity field should vary
in time. This is achieved very simply by using time-varying noise.
While we have not yet tried it, it seems profitable to look at the
pseudo-advection ideas of FlowNoise [Perlin and Neyret 2001] to
give more realism to the evolution of the turbulent vortices.

2.3 Modulation

We are not restricted to linear superposition of potentials: thanks
to the curl identity, we may manipulate ψ as we like and still be
sure of getting an incompressible velocity field. The simplest of
such controls is to spatially modulate the flow: e.g. letting the field

Figure 2: On the left, we construct a turbulent wake behind a rigid
body. On the right, we set up a vortex ring to push fluid past a
sphere before diffusing by turbulent mixing. In both cases each oc-
tave of turbulence noise is adjusted in a scale-appropriate way to

the geometry: ψ
T
(x) = ∑i ai ramp

(

d(x)
di

)

N
(

x
di

, t
di

)

. We then mul-

tiply by a smooth amplitude function to create turbulence only be-
hind the obstacles, and add this to the underlying laminar flow po-
tential which is also smoothly ramped to zero at solid boundaries:

ψ(x, t) = A(x)ψ
T
(x, t)+ ramp

(

d(x)
dL

)

ψ
L
(x). (In 3D, only tangen-

tial components of vector noise are ramped down; see equation 5).

decay to zero away from objects in the scene, or changing it accord-
ing to the height in a column of smoke. While simply modulating
the velocity field A(~x)~v(~x) no longer gives a divergence-free field,
modulating the potential,~v = ∇× (A(~x)ψ(~x)), does the trick.

2.4 Boundaries

Consider a motionless solid object in the flow. The boundary con-
dition viscous flow must satisfy is~v = 0. This can be achieved sim-
ply by modulating the potential down to zero with a smoothed step
function of distance, so that all the partial derivatives (and hence
the curl) of the new potential are zero at the boundary.

Of more interest in animation is the inviscid boundary condition,
~v ·~n = 0, requiring that the component of velocity normal to the
boundary is zero—allowing the fluid to slip past tangentially but
not to flow through a solid. Most turbulent fluids have such small
viscosities that this is a more reasonable approximation.

In two dimensions, note that our velocity field is just the 90◦ rota-
tion of the gradient ∇ψ: if we want the velocity field to be tangent
to the boundary, we need the gradient to be perpendicular to the
boundary. This happens precisely when the boundary is an isocon-
tour of ψ , i.e. when ψ has some constant value along the boundary.
We can achieve this without eliminating the gradient altogether by
modulating ψ with a ramp through zero based on distance to the
closest boundary point:

ψconstrained(~x) = ramp

(

d(~x)

d0

)

ψ(~x) (3)

where d(~x) is the distance to all solid boundaries and d0 is the width
of the modified region—when using noise with length scale L, it
makes sense to set d0 = L. We use the following smooth ramp:

ramp(r) =







1 : r ≥ 1
15
8 r− 10

8 r3 + 3
8 r5 : 1 > r > −1

−1 : r ≤−1

(4)

In three dimensions things are a little more complicated. Letting
α = |ramp(d(~x)/d0)| and n̂ be the normal to the boundary at the
closest point to~x, we use

~ψconstrained(~x) = α~ψ(~x)+(1−α)n̂(n̂ ·~ψ(~x)). (5)

That is, we ramp down the tangential component of ~ψ near the
boundary, but leave the normal component unchanged. This can be
proven to give a tangential velocity field at smooth object bound-
aries, using the fact that n̂ is the gradient of signed distance from
the boundary (hence its curl vanishes).

Unfortunately, the normal field may be discontinuous along the me-
dial axis of the geometry: naı̈vely using equation (5) can result in
spikes when we take the curl, particularly near sharp edges. This
isn’t a problem for equation (3) since the distance field is Lipschitz
continuous, which is adequate for our purposes. Thus within dis-
tance d0 of edges flagged as sharp in the system we default to (3),
i.e. drop the normal component. In the future we plan to investigate
more sophisticated solutions.

2.5 Other Potentials

So far we have only constructed noise that respects unmoving solid
boundaries. While of course we can superimpose existing flow
primitives on the velocity field for richer capabilities, we can also
do more with the potential itself.

It is simple to derive a potential corresponding to a rigid body mo-

tion with linear velocity ~V and angular velocity ~ω:

~ψrigid(~x) =~V × (~x−~x0)+
R2 −||~x−~x0||

2

2
~ω (6)

where ~x0 is an arbitrary reference point and R is an arbitrary ref-
erence level. (Note that there are always infinitely many potentials
corresponding to the same ~v: any two potentials which differ by
only the gradient of some scalar field have exactly the same curl.)

Suppose we have a potential ~ψ we wish to modify to respect bound-
ary conditions on a moving rigid object. First we use equation (5)
to zero out the normal component of velocity on the object’s sur-
face, giving ~ψ0. Then we use equation (6) with x0 chosen, say, as
the center of the rigid body, smoothly blend it to zero away from
the object (choosing R to be the radius of the blend region, so that
the blended rotational term drops monotonically to zero), and add
it to get ~ψ(~x) = ~ψ0 + A(~x)~ψrigid(~x). We have experimented, for
example, with a blending function A(~x) based on inverse squared
distance to each rigid body. Note that at the boundary of the rigid
object, the velocity is the sum of the rigid motion and a vector field
tangent to the surface: by construction this respects the inviscid
boundary condition.

While for a single body the reference point is arbitrary, if we have
multiple bodies it can help to use the same reference point to make
the blend better. In particular, if all bodies are moving with the
same rigid motion, then of course we want their potentials to match
up to make the blend perfect.

Flow fields around deforming bodies are trickier. For a closed de-
forming surface, it may even be impossible—if the body doesn’t
conserve its volume—and thus we leave that for future work.

Some vortex primitives include a simple vortex particle at ~x0 with
angular velocity ~ω , radius R, and smooth fall-off function f :

~ψvort(~x) = f

(

||~x−~x0||

R

)

R2 −||~x−~x0||
2

2
~ω, (7)

and a simple vortex curve, useful for smoke rings and plumes:

~ψcurve(~x) = f

(

||~x−~xC||

R

)

R2 −||~x−~xC||
2

2
~ωC (8)

where~xC is the closest point on the curve to~x, and ~ωC is the angular
velocity (tangent to the curve). Other interesting flow structures can
be similarly created with the rigid motion formulas in mind.

3 Conclusion

In figures 1 and 2 we show some screenshots of simple turbulence
examples constructed with the basic formulas in this paper, running
in real-time; see http://www.cs.ubc.ca/∼rbridson/ for ani-
mations, full details and code. In conclusion, using a simple vector
calculus identity, we have unlocked a new procedural toolbox for
creating fluid-like velocity fields, including turbulent motion and
flow around arbitrary rigid objects.

Acknowledgments

This work was in part supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada. We also thank
the anonymous reviewers for their considerable help in preparing
the work for publication.

References

COOK, R. L., AND DEROSE, T. 2005. Wavelet noise. ACM Trans.
Graph. (Proc. SIGGRAPH) 24, 3, 803–811.

KNISS, J., AND HART, D., 2004. Volume effects: mod-
eling smoke, fire, and clouds. Section from ACM
SIGGRAPH 2004 courses, Real-Time Volume Graphics,
http://www.cs.unm.edu/ jmk/sig04 modeling.ppt.

LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling of
flames for a production environment. In Proc. ACM SIGGRAPH,
729–735.

NEYRET, F. 2003. Advected textures. In Proc. Symp. Comp. Anim.,
147–153.

PATEL, M., AND TAYLOR, N. 2005. Simple divergence-free fields
for artistic simulation. journal of graphics tools 10, 4, 49–60.

PERLIN, K., AND NEYRET, F. 2001. Flow noise. In ACM SIG-
GRAPH Technical Sketches and Applications, 187. http://www-
evasion.imag.fr/Publications/2001/PN01/.

PERLIN, K. 1985. An image synthesizer. In Proc. ACM SIG-
GRAPH, 287–296.

PERLIN, K. 2002. Improving noise. ACM Trans. Graph. (Proc.
SIGGRAPH) 21, 3, 681–682.

SHINYA, M., AND FOURNIER, A. 1992. Stochastic motion: Mo-
tion under the influence of wind. In Proc. Eurographics, 119–
128.

SIMS, K. 1990. Particle animation and rendering using data parallel
computation. In Proc. ACM SIGGRAPH, 405–413.

STAM, J., AND FIUME, E. 1993. Turbulent wind fields for gaseous
phenomena. In Proc. ACM SIGGRAPH, 369–376.

STAM, J. 1997. Stochastic dynamics: Simulating the effects of tur-
bulence on flexible structures. Computer Graphics Forum (Proc.
Eurographics) 16, 3, C159–C164.

VON FUNCK, W., THEISEL, H., AND SEIDEL, H.-P. 2006. Vec-
tor field based shape deformations. ACM Trans. Graph. (Proc.
SIGGRAPH) 25, 3, 1118–1125.

WEJCHERT, J., AND HAUMANN, D. 1991. Animation aerodynam-
ics. In Proc. ACM SIGGRAPH, 19–22.

