
Fluid Surface Reconstruction

from Particles

by

Brent Warren Williams,

Hons. B.Math, The University of Waterloo, 1995

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

February 2008

c© Brent Warren Williams, 2008

Abstract

Outlined is a new approach to the problem of surfacing particle-based fluid

simulations. The key idea is to construct a surface that is as smooth as

possible while remaining faithful to the particle locations. We describe a

mesh-based algorithm that expresses the surface in terms of a constrained

optimization problem. Our algorithm incorporates a secondary contribution

in Marching Tiles, a generalization of the Marching Cubes isosurfacing algo-

rithm. Marching Tiles provides guarantees on the minimum vertex valence,

making the surface mesh more amenable to numerical operators such as the

Bilaplacian.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Figures . v

Acknowledgments . vii

1 Introduction . 1

2 Fluid Simulation . 3

2.1 Eulerian Approaches . 3

2.2 Lagrangian Approaches . 6

2.3 Hybrids and Alternatives . 8

2.4 Previous Work . 8

3 Particle Surfacing . 11

3.1 Smoothness . 11

3.2 Unweighted Graph Laplacian 13

3.3 Weighted Surface Bilaplacian 13

3.4 Constraints . 15

iii

Table of Contents

3.4.1 Particle Faithfulness 15

3.4.2 Solid-Liquid-Air Intersections 16

3.5 Gauss-Seidel Solver . 18

3.6 Barzilai-Borwein Solver . 19

3.7 Radii . 19

3.8 Algorithm . 21

3.9 Surface Erosion . 23

4 Marching Tiles . 25

4.1 Marching Cubes . 25

4.2 Marching Tiles . 27

5 Results . 30

5.1 Enright Deformation Test . 30

5.2 Fluid Simulations . 32

6 Conclusion . 37

6.1 Future Work . 37

Bibliography . 39

Appendices

A Modified A15 Tile . 47

B Average Mesh Valence . 49

iv

List of Figures

2.1 Marker particle visualization in PLS 5

2.2 Mass loss and voxelization in level sets 6

2.3 Glass of water with Eulerian and Lagrangian approaches . . . 7

2.4 Particle surfacing comparisons in 2D 9

3.1 Surfacing algorithm concept illustrated in 2D 12

3.2 Outline of the surface reconstruction algorithm 13

3.3 Handling fluid-boundary intersections 16

3.4 Surfacing with a complex boundary 17

3.5 Fluid-air-boundary surface separation for transparent fluids . 18

3.6 Comparison of step lengths for various iterative solvers 20

3.7 Conditions on router permitting a planar surface mesh 21

3.8 Surface erosion . 24

4.1 Marching Cubes cell configurations 26

4.2 Valence histogram comparison 26

4.3 Modified A15 space-filling tile 28

5.1 The Enright Deformation Test 31

5.2 Sequence from a test fluid simulation 33

v

List of Figures

5.3 A viscous oily fluid spilling from a tube 34

5.4 Scenes from 10,000 B.C. 35

5.5 Scenes from Hellboy II . 36

A.1 Structure of the A15 tile in the XY plane 47

A.2 The A15 variant from several viewpoints 48

vi

Acknowledgments

First thanks to Prof. Robert Bridson for remarkable insights and patience.

I could not have asked for a better advisor.

Thanks as well to Prof. Ian Mitchell and Robert McGovern for many

helpful comments in the preparation of this thesis.

This work would have not have been possible without the generosity and

good will of employers past and present, in particular I’d like to thank Greg

Brill, DeBorah Johnson and Randy Pyburn.

Finally I’d like to thank my close-knit but far-flung family for their

support and encouragement, and those I missed and who missed me on

many a long evening.

vii

Chapter 1

Introduction

In computer animations complex dynamic materials such as hair, cloth and

fluid are difficult to model directly. Physically-based simulations provide an

alternative by exercising the governing physical equations. We are interested

here in simulations of table-top fluid mechanics such as pouring water into a

glass. Fluid simulations may be divided into two broad categories, Eulerian

(grid-based) and Lagrangian (particle-based). As with all physical simu-

lations there are three basic steps involved — performing the simulation,

extracting a renderable representation, and performing the rendering.

Eulerian simulations suffer from a number of numerical difficulties in-

cluding diffusion of small-scale structure, mass loss and spatial discretization

complexities. However extracting a high quality surface is straightforward,

a critical advantage over particle-based approaches and one of the primary

reasons for the current domination of the Eulerian approach.

Our primary contribution lies in the field of Lagrangian simulations,

specifically extracting a renderable fluid surface from particle locations. This

problem has been little addressed in the literature and is something of an

Achilles heel of the Lagrangian approach. The seminal work of Enright et

al. [19] advocates the Eulerian approach in part because “Particle methods,

1

Chapter 1. Introduction

while quite versatile, pose difficulties when trying to reconstruct a smooth

water surface from the locations of the particles alone”. Premoz̆e et al. [47]

echoes the lament: “The biggest disadvantage of using particle methods is

the question of surface representation”. Our particle surfacing algorithm is

described in chapter 3.

One step in our surfacing algorithm calls for isosurfacing, i.e. generating

a surface of constant value from a volume of scalars. The standard isosur-

facing algorithm is Marching Cubes, which, along with its many derivatives,

generates surfaces that contain many vertices with a valence (degree) of four.

Valence four vertices represent a relatively poor sampling of the underlying

surface and do not behave well when numerical procedures such as smooth-

ing, normal extraction, simplification and so on are applied. We introduce a

new algorithm dubbed Marching Tiles which guarantees a minimum valence

of five on the generated isosurface, allowing for improvements in the quality

of our fluid surfaces, with application to other areas in computer graph-

ics. The theory and implementation behind Marching Tiles is described in

chapter 4.

Our fluid surfacing algorithm is motivated by perceived advantages in

Lagrangian approaches over Eulerian approaches in fluid simulations. We

begin by justifying this premise.

2

Chapter 2

Fluid Simulation

2.1 Eulerian Approaches

Eulerian simulations are characterized by a generally rectangular domain

within which fluid properties such as velocity and pressure are tracked at

fixed points in space. The values of these properties are determined by a

governing equation such as Navier-Stokes [7] which is discretized and inte-

grated across time and/or space. The properties determine the behaviour

of the fluid in terms of compressibility, viscosity, elasticity and so on.

It is generally necessary to model fluid throughout the entire domain,

although in computer graphics we are usually only interested in the location

of the fluid surface, or interface. In Eulerian simulations the interface is

encoded implicitly, for example within a level set φ : R
3 → R. At each point

φ contains the signed distance to the nearest interface. By convention,

locations where φ > 0 lie outside the fluid and locations where φ < 0 lie

inside the fluid [45]. Implicitly the surface itself lies at φ = 0. There

are of course alternatives to level sets in the Eulerian framework, such as

the Volume-of-Fluid (VOF) method; however, they suffer from the same

sampling problem of any Eulerian method discussed below, and generally

don’t fare as well when extracting a quality surface for rendering.

3

Chapter 2. Fluid Simulation

The use of level sets in grid-based approaches makes extracting a render-

able representation straightforward. The zero-level isosurface can be gen-

erated from the level set in the form of a mesh using the simple and well-

established Marching Cubes algorithm ([36], see also section 4.1). It is also

possible to render level sets using ray tracing, although volume primitives

are not always supported natively nor do most renderers rely on ray-tracing

exclusively. We will restrict our consideration to the mesh generation ap-

proach usable with all rendering engines.

Although extracting a mesh for use in rendering the fluid surface is

straightforward, the grid-based approach introduces a number of difficul-

ties in performing the simulation itself. One problem lies in the difficulty

of representing small-scale features of size comparable to or smaller than

the grid spacing. This can be addressed using adaptive techniques such as

octrees [38] which ‘zoom in’ on features near the interface. Octrees may be

supplemented with the particle level set method (PLS [17]) which sprinkles

Lagrangian ‘shepherd’ particles on either side of the interface in order to

correct (and be corrected by) the position of the interface within the level

set (see figure 2.1).

While techniques such as octrees and PLS represent an improvement

over ordinary level sets, fundamentally small features cannot be represented

on a grid and so are not reliably sampled. This undersampling inevitably

leads to artifacts such as mass loss in the form of holes that suddenly open

up in thin surfaces, and voxelization in the limits of the spatial refinement

(figure 2.2). The problem of mass loss is inherent to level set approaches and

is exacerbated as the surface grows in complexity [39]. The undersampling

4

Chapter 2. Fluid Simulation

Figure 2.1: The Particle Level Set (PLS) method adds Lagrangian particles
both inside (blue points) and outside (red points) the level set interface (blue
line) to help reduce diffusion of small-scale structure (see [17] for details).
The grid shows the resolution of the Eulerian simulation, emphasizing the
number of additional samples required to implement PLS, especially for
complex surfaces. Image from [57].

also makes diffusion or smearing of small-scale structures a recurrent prob-

lem, somewhat mitigated but not eliminated by approaches such as PLS and

vorticity confinement [20].

Further difficulties are brought about by the spatial discretization which

requires complex codes such as ENO [27, 28] and WENO [32, 35] in order to

reach beyond basic first order accuracy. High-order schemes are particularly

necessary for Eulerian approaches as level sets cannot preserve surface fea-

tures under even simple transformations such as translations and rotations.

Large-kernel spatial discretizations schemes add further complexity when

combined with the non-periodic boundary conditions generally desirable in

computer graphics.

Level sets also tend to depart from signed distance over time, requir-

5

Chapter 2. Fluid Simulation

Figure 2.2: This image from Losasso et al. [38] shows unexpected mass loss
(top right) as well as undesirable voxelization at the limits of the octree (top
right and bottom right).

ing a reinitialization procedure every few time steps to maintain favourable

numerical qualities [11].

Clearly there is a price to be paid in the simulation when selecting Eule-

rian approaches for their simplicity in rendering. We will now examine the

Lagrangian alternative intended for use with our surfacing algorithm.

2.2 Lagrangian Approaches

Lagrangian simulations track fluid properties at points or particles that move

with the fluid rather than at fixed points in space as with Eulerian sys-

tems. There are many variations on the Lagrangian approach including

Smoothed Particle Hydrodynamics (SPH [41]), Particle-in-Cell and FLuid-

Implicit-Particle (PIC and FLIP [60]), marker particle methods [26] as well

as various adaptive variations [1, 31]. See Bridson [5] for a comprehensive

review of Lagrangian fluid simulations.

Lagrangian approaches share a number of benefits over Eulerian ap-

6

Chapter 2. Fluid Simulation

proaches in terms of simplicity and correctness. For example, SPH does

not involve a discretization on a spatial grid, allowing for large or irreg-

ularly shaped domains such as meandering rivers. Lagrangian approaches

generally reduce or eliminate the need for complex discretizations in space

such as ENO and WENO. Lagrangian approaches generally have little or

no problem with mass preservation or spatial diffusion. Indeed the utility

of particle systems is evidenced by their frequent employment to correct or

supplement non-particle-based codes ([10, 17, 37], see also figure 2.3).

Figure 2.3: (Left) An early grid-based paper [17] demonstrates reasonable
quality in capturing relatively thin fluid structures. (Right) Six years later
an update [37] by some of the same authors resolves finer scales only by
coupling the grid-based solver with a particle-based solver.

Leveraging particle systems directly in a fluid simulation requires an ap-

proach to constructing a high-quality surface mesh for rendering. Although

a wealth of literature considers particle-based simulations surprisingly little

7

Chapter 2. Fluid Simulation

attention has been devoted to surface reconstruction.

2.3 Hybrids and Alternatives

In practice, modern approaches to fluid simulation and rendering in com-

puter graphics tend to blur the line between Eulerian and Lagrangian. The

approaches are combined in the hybrid FLIP codes of Zhu et al. [60], while

Losasso et al. [37] bidirectionally couples independent Eulerian simulations

for liquids with Lagrangian simulations for less-dense foam and spray. Dif-

ferent approaches altogether include fluid-oriented Finite Element Models

(FEM [2]), boundary-only element dynamics [10], wave particles [59], Lat-

tice Boltzmann techniques [54] and procedural approaches [6]. Our surfacing

algorithm may in general be used with any fluid simulation that expresses

the final location of the fluid as a collection of discrete locations.

2.4 Previous Work

One of the earliest papers on particle surface reconstruction comes from

Blinn [4] which outlines an approach commonly referred to as blobbies. From

the particle locations Blinn builds an additive scalar potential field which is

subsequently isocontoured to produce the final surface. The method was de-

signed for, and is well suited to, the task of visualizing molecular densities.

However, when applied to a large number of macroscopic fluid particles,

the resulting surface is quite naturally very blobby. The blobbiness high-

lights the particle-oriented nature of the underlying simulation rather than

masking it as desired.

8

Chapter 2. Fluid Simulation

Another early approach is surface splatting [43, 61] whereby billboards

(textures orthogonal to the axis of the camera) are rendered at the particle

locations. While straightforward to implement the approach requires an

exorbitantly high particle count to avoid the fluid visually breaking up at the

edges [48]. Further, the cost of the method increases with frame resolution.

More recently, Zhu et al. [60] construct a scalar field like that used

with blobbies but isosurface a moving average on the field. This approach

smooths out the contribution of each particle to a given surface vertex.

Unfortunately, the discretization also results in the production of spurious

blobs. These blobs can be eliminated through subsequent upsampling and

smoothing but at the expense of small surface detail (figure 2.4).

Figure 2.4: Particle surfacing comparisons in 2D. (Left) Zhu et al. [60] gen-
erates spurious blobs in concave regions and relatively poor approximations
of flat surfaces, both of which require unconstrained smoothing at the ex-
pense of genuine features. (Middle) The refinement offered by Adams et
al. [1] produces somewhat flatter surfaces but is adversely affected when
particle distribution deviates from the average such as in the concentration
of particles at the upper right. (Right) Our surfacing algorithm generates
perfectly flat surfaces, smooth convex and concave surfaces, and is not ad-
versely affected by the particle distribution.

9

Chapter 2. Fluid Simulation

The approach of Zhu et al. was adapted by Adams et al. [1] to track

particle-surface distance for each particle. This was necessary for their

adaptively-sized particle simulations and has the nice side effect of further

smoothing and improving the surface. However, as with any kernel-based

approach no long-range smoothing is possible, which makes it difficult to

represent truly flat surfaces. Furthermore the Zhu et al. and Adams et

al. approaches both rely on a final particle-unaware smoothing step that

cannot distinguish genuine small-scale structure from noise. Consequently,

both approaches diffuse small-scale structure during surface extraction (just

as Eulerian approaches diffuse small-scale structure during simulation).

Premoz̆e et al. [47] constructs and isosurfaces a scalar field that is ad-

vected by particle-driven forces. Although the approach is an order of magni-

tude slower than those cited above and was illustrated using high resolution

grids (larger than 2003), their results show noticeable particle artifacts. The

authors conclude their method “has some inherent problems with creating

sharp boundaries when the fluid is in contact with a solid object or another

fluid” and suggest they have abandoned the approach.

10

Chapter 3

Particle Surfacing

We propose constructing surfaces around particles which are as smooth as

possible while remaining faithful to the particle locations in a technical sense

we define in section 3.4.1. We have chosen to formalize this approach as

a problem of constrained nonlinear optimization. A quadratic objective

function measuring surface energy is used to maximize smoothness. To keep

the surface faithful to the underlying particles, we enforce a constraint during

the optimization stage that restricts each surface vertex to lie outside the

union of radius rinner particle-centered spheres and inside the union of radius

router particle-centered spheres (see figure 3.1). Our algorithm generates

a compliant initial surface using Marching Tiles at router (chapter 4) and

optimizes the surface using a sparse iterative Gauss-Seidel solver [29]. The

algorithm is outlined in figure 3.2 and described in detail below.

3.1 Smoothness

In order to pose a constrained optimization problem we require a scalar

objective function measuring surface smoothness. We select here the thin-

plate energy of the surface i.e. the integral of the surface Laplacian squared.

Following [14] we consider a discrete approximation to the Laplacian about

11

Chapter 3. Particle Surfacing

Figure 3.1: The key idea in our surface definition is constructing a surface as
smooth as possible that remains outside the union of radius rinner particle-
centered spheres and inside the union of radius router particle-centered
spheres. The resulting surface captures all true features of the fluid without
introducing spurious features in the interpretation. We enforce the con-
straint on mesh vertices but not mesh edges, explaining the small violation
visible above.

vertex i:

(∇2x)i ≈
1

Dii

∑
j

Wijxj (3.1)

where D is a diagonal normalization matrix and W a zero row-sum weighting

matrix. All matrices encoding the surface graph connectivity including D

and W are sparse.

We will use two quadratic objective functions, xT Ax and xT Bx where

A represents an unweighted approximation to the graph Laplacian and B a

weighted approximation to the surface Bilaplacian1.

1Also known as the biharmonic operator

12

Chapter 3. Particle Surfacing

Surfacing Algorithm

Calculate distance field φ from particles P on a background grid.
Generate initial xi by Marching Tiles for isocontour φ = router.
Find unweighted graph Laplacian matrix A for xi.
Run five steps of Gauss-Seidel on xi using xT Ax with particle constraints.
Find integrated Bilaplacian matrix B given current xi.
Run 25 steps of Gauss-Seidel on xi using xT Bx with particle constraints.
Run five steps of Gauss-Seidel on xi using xT Bx without particle constraints.
Optionally ‘erode’ xi back along the surface normal.

Figure 3.2: Outline of the surface reconstruction algorithm.

3.2 Unweighted Graph Laplacian

For the unweighted Laplacian case, we set Wij equal to negative one for

each 1-ring neighbour j of i, and Wii to the valence of vertex xi as in

Taubin [53]. We don’t use the weighting matrix D, instead forming the dis-

crete quadratic objective xT Ax with A = W . Although we form A explicitly,

it is straightforward to apply the operator directly to structure of the mesh.

Optimization with this objective is often used in mesh generation, where it

is called ‘mesh smoothing’, as it generally leads to improved triangle shapes.

In the absence of constraints, a minimizing solution would satisfy Ax = 0,

which can be interpreted as requiring that a vertex be at the centroid of its

neighbours.

3.3 Weighted Surface Bilaplacian

For the weighted Bilaplacian case, following Desbrun et al. [14] we set Wij

to the sum of the cotangents of opposite angles from the pair of triangles

13

Chapter 3. Particle Surfacing

incident on vertices xi and xj . Dii is set to the sum of the area of all triangles

incident on vertex xi. Our approximation to the integral of the Laplacian

squared is therefore:

∫∫
S

‖∇2x‖2 ≈
∑

i

(D−1Wx)2i Dii

= xT ((D−1W)
T
DD−1W)x

= xT (W T D−1W)x

(3.2)

To make use of the Bilaplacian in our optimization problem we wish to

converge on a mesh where the gradient is zero (i.e. a stable point). Taking

the gradient of equation (3.2) gives

2(W T D−1W)x (3.3)

and so our quadratic approximation of the Bilaplacian is B = W T D−1W .

Note that B is symmetric positive semi-definite which guarantees conver-

gence for Gauss-Seidel, although this is not actually an issue for us as we

iterate with a fixed upper bound (see section 3.8).

14

Chapter 3. Particle Surfacing

3.4 Constraints

3.4.1 Particle Faithfulness

We consider a surface vertex xi to be faithful if it lies within a bounded

distance of the nearest particle Pj

rinner ≤ min
i

‖x − Pi‖ ≤ router (3.4)

A faithful surface is one that lies outside the union of spheres of radius rinner

and inside the union of spheres of radius router (figure 3.1). Heuristically, this

forces the surface to never vary much from the distribution of the particles,

while allowing it enough freedom to smooth over individual particles and

thus capture smooth and flat surfaces when appropriate.

The surface is kept faithful to the particle locations by snapping surface

vertices to within [rinner, router] of the closest particle after each iteration of

the solver. We employ a simple sparse spatial hash on particle locations to

accelerate the particle lookup.

Enforcing constraints represents approximately 10% of the cost of the

entire surfacing procedure per frame. This cost can be reduced by skipping

the enforcement every second or third step or employing a more refined

space-partitioning structure such as a kd-tree. The remaining costs in the

surfacing algorithm are 10% for the smoothing (section 3.1) and 80% in

generating the initial conforming isosurface (chapter 4).

Note that we require only the surface vertices to be faithful, not the edges

(figure 3.1). We investigated enforcing faithfulness on edges as well but did

15

Chapter 3. Particle Surfacing

not detect an improvement in surface quality that justified the added cost.

3.4.2 Solid-Liquid-Air Intersections

Under gravity, fluids tend to rest heavily and uniformly against the bottom

and sides of a container, or boundary. To ensure our algorithm generates a

surface that does not cross boundaries we snap surface vertices outside the

boundaries to the nearest point on the boundary after each solver iteration.

The result is a fluid surface that aligns precisely with the container walls

(see figure 3.3).

If rendering the container and an opaque liquid, one may choose to move

the liquid slightly further inwards to prevent rendering artifacts such as ‘Z-

fighting’ that might be caused when two surfaces are rendered at the same

location (even if the normals point in opposite directions). This simple

approach may be appropriate if the camera positioning won’t unduly reveal

the ‘gap’ (as in figure 3.4), although vertex manipulation of this kind may

result in non-manifold surfaces (section 3.9).

Figure 3.3: Handling fluid-boundary intersections. (Left) The initial mesh
may violate boundary conditions such as an enclosing square dish. (Right)
By snapping each violating surface vertex to the nearest boundary after
creation of the initial mesh and each smoothing step our final mesh conforms
to the boundary exactly.

16

Chapter 3. Particle Surfacing

Figure 3.4: Surfacing with a complex boundary. The clay dish was en-
coded as a level set using geometric boolean operations on a plane, sphere
and cylinder. During surfacing the level set representation provided inside-
outside tests which were combined with distance-to-primitive measurements
to prevent the final fluid surface from penetrating the dish.

For transparent liquids, and to better support arbitrary camera posi-

tions, a more accurate rendering can be achieved by explicitly identifying

the surfaces representing each of the three surface pairs (fluid-air, fluid-

boundary and boundary-air) and rendering each pair individually. This

approach was used to render the fish tank in figure 3.5 in which the correct

dielectric ratio [46] was applied to each surface pair.

To isolate the surface pairs we first consider the fluid-air surface, which

is easily obtained by intersecting the surface mesh with four inward-facing

planes coincident with the inner sides of the tank (see [16] for the relevant

triangle-plane intersection test) and accepting all fragments on the inside

of all four planes. To obtain the fluid-boundary surface we intersect the

mesh with each plane in turn and collect the resulting linear fragments into

closed curves outlining the location of the fluid as it lies against the tank

17

Chapter 3. Particle Surfacing

Figure 3.5: (Left) Isolation of fluid-air-boundary surface pairs. Through
intersection and triangulation procedures the fluid-air, fluid-boundary and
boundary-air surfaces were isolated, allowing interface-specific rendering pa-
rameters such as dielectric ratios to be applied to each surface pair. (Right)
Another rendering of a transparent fluid surfaced using our algorithm.

wall. We triangulate these curves about an interior point [50] to obtain the

boundary-fluid surface. We triangulate about an exterior point in a domain

bounded by the inner tank wall to obtain the boundary-air surface.

Identifying surface-pairs for non-planar boundaries would follow the same

procedure but substitute triangulation with, for example, NURBS2 trim-

ming.

3.5 Gauss-Seidel Solver

We used a sparse implementation of the Gauss-Seidel iterative solver to

condition and smooth our surface mesh. The (nonlinear) constraints could

not be encoded directly into the problem statement so we enforced them

explicitly on the surface mesh after each step of the solver.

2Non-Uniform Rational B-Spline

18

Chapter 3. Particle Surfacing

3.6 Barzilai-Borwein Solver

As a potentially faster alternative to Gauss-Seidel we investigated the inter-

esting Barzilai-Borwein solver [3] and implemented several variations includ-

ing Cyclic Barzilai-Borwein [13, 22], Preconditioned BB [40] and Alternating

Step [12].

We found the BB variants to be at least competitive with Gauss-Seidel in

generic convergence tests. However, the distinguishing characteristic of the

Barzilai-Borwein family of techniques is their nonmonotonic behaviour [9,

25]. Numerical experiments by Fletcher [21] indicate the range of step

lengths can vary in magnitude by as much as 105, a fact noted as “dis-

concerting” (see figure 3.6). When applied to our surfacing algorithm the

occasionally large step lengths of these solvers caused our surface vertices to

temporarily move close to distant particles, which then ‘captured’ them by

virtue of the constraints and thereby destroyed the manifold property of the

mesh. The highly nonlinear nature of our constraints unfortunately seems to

mandate the use of a slow-and-steady iterative solver such as Gauss-Seidel.

See also the discussion on damping in section 3.8.

3.7 Radii

We have not described how rinner and router are actually determined. rinner is

typically set to the radius used in the fluid simulation (e.g. SPH, PIC, FLIP)

or the average inter-particle spacing where the simulation method does not

support an explicit radii (e.g. some procedural and ad-hoc methods). router

must be chosen large enough to fill air pockets in fluid, but no so large that

19

Chapter 3. Particle Surfacing

Figure 3.6: A comparison of step lengths for Jacobi (red), Gauss-Seidel
(green) and Barzilai-Borwein (blue) in a generic convergence test. Although
Barzilai-Borwein is seen to converge faster, the tremendous range of observed
step lengths prevented us from effectively enforcing our constraints with the
BB solver. Image from [56].

it obscures surface detail. By default we strike a balance at router = 2rinner.

An important drawback to existing local approaches such as Zhu et

al. [60] and Adams et al. [1] is the inability to generate very flat surfaces.

These are especially important for still and slow-moving liquids. We point

out that given any rinner and considering surfacing particles arranged on

square grid of size d our algorithm will construct a planar surface if the

following condition on router is met

r2

outer
>

d2

2
+ r2

inner
(3.5)

This follows setting the intersection forming the ‘spikes’ at the outer sur-

face to the inner radius, thereby allowing a planar surface to lie between

each. The finding is illustrated in figure 3.7 which depicts the inner and out

20

Chapter 3. Particle Surfacing

spheres when the difference in equation (3.5) is some small ǫ. Similarly for

a triangular grid where the distance between neighours is d we require only

r2

outer
>

d2

3
+ r2

inner
(3.6)

We contrast this result with Adams et al. [1] where a perfectly flat surface

is only reachable in the limit as the particle density becomes infinite.

Figure 3.7: The rinner particle-centered spheres (green) are just visible at the
point where the router particle-centered spheres touch all neighbouring router

spheres under the condition that r2
outer

= d2

2
+ r2

inner
, when the particles are

arranged in a square lattice. When r2
outer

≥ d2

2
+r2

inner
a surface constructed

with our algorithm will be planar as desired.

3.8 Algorithm

We now have all the pieces in place (objective functions, constraints and

solver) to describe our full algorithm.

As in any optimization problem the first step is determining an initial

guess that satisfies the constraints. We use Marching Tiles (chapter 4) to

generate compliant surface meshes with good valences that allow for im-

proved smoothing, although any isosurfacing algorithm will do.

21

Chapter 3. Particle Surfacing

We select the router isosurface as our initial guess, as opposed to, for

example, rinner or 1

2
(rinner + router) as the final surface was often found to

be closer to router than rinner. Also, the surface at rinner frequently contains

deep ingresses which demand a prohibitive amount of smoothing to work

the surface up to a point where all the constraints come into effect. These

cavities also create clusters of unnecessarily close vertices in the final mesh

(which smooths them over). These problems cannot appear at the router

isosurface as the surface is stretched uniformly over the rinner spheres as

the smoothing progresses. Furthermore, we observe that vertices created

at router already lie within roughly router − rinner of their final location, so

significant localized clustering does not occur.

When surfacing, we select a tile size that results in an average inter-

sample distance of h = .8rinner. We observe that fewer samples do not

allow the resulting surface to be smoothed in areas of high curvature and

additional samples produce unnecessary tessellation that slows down the

smoothing process. Further tessellation, if desired, is better performed later

on using subdivision.

We perform a preliminary normalization of triangle areas on the sam-

pled mesh by running five steps of Gauss-Seidel using xT Ax with constraints

enabled as described in section 3.4. This ensures that each vertex has no de-

generate triangles that would lead to a near-undefined B (which divides by

the sum of areas of adjoining triangles in its construction, see section 3.3).

We use an under-relaxation parameter of 0.5 during the normalization stage

to reduce the possibility of creating degenerate triangles which would oth-

erwise destroy the manifold property of the mesh.

22

Chapter 3. Particle Surfacing

Next we smooth the mesh with 25 steps of Gauss-Seidel with xT Bx

and constraints enabled. A finishing polish is then applied through five

additional iterations with xT Bx without constraints. We observe that the

final polish improves the smoothness of the surface normals without altering

the location of the surface significantly, and is very inexpensive to perform.

The iteration counts were selected, after limited experimentation, for

giving consistently good results, although they may of course be tweaked

for a desired quality/cost trade-off. More sophisticated convergence criteria

are unnecessary due to the selection of the router isosurface initial condition,

which permits roughly the same amount of high-frequency ‘noise’ regardless

of the particle distribution, thereby requiring roughly the same number of

Gauss-Seidel iterations.

Finally we provide for an optional post-smoothing surface erosion to

tighten and sharpen mesh features.

3.9 Surface Erosion

Just as Eulerian approaches are limited in the dimensions of the rendered

features to the grid cell size, our algorithm supports flat contiguous struc-

tures only to a minimum thickness of rinner. Reducing rinner to support

thinner structures necessitates simulating additional particles in order to

maintain surface continuity. Furthermore, if router ≫ rinner a considerable

number of Gauss-Seidel iterations may be required for the initial surface at

router to ‘find’ all the relevant rinner particle constraints.

We therefore support surface erosion as an optional final step, which

23

Chapter 3. Particle Surfacing

generates very thin structures without simulating very large numbers of

particles or requiring excessive smoothing. Surface erosion is the process

of stepping all the surface vertices back along the negative surface normal

by δrinner for some small 0 < δ ≪ 1 (see figure 3.8). Note that while this

technique is both fast and easy to implement, there is a risk of creating

degenerate triangles in the final mesh which may in turn cause rendering

artifacts. Furthermore, features with diameter less than δ will actually be

thickened by the erosion. These problems can be overcome by detecting tri-

angle intersections across imaginary time (0, δ] and reducing δ and iterating

as required.

It is interesting to contrast our surface thinning with the deliberate thick-

ening stage intended to prevent mass loss of Chentznez et al. [10].

Figure 3.8: (Left) Surface mesh without erosion. (Right) Surface mesh with
erosion where δ = 1

2
rinner. While features are thinned and sharpened as

desired the resulting mesh is in general no longer manifold without additional
processing.

24

Chapter 4

Marching Tiles

Isosurfacing is the process of extracting a surface of constant value from a

regular scalar field. The classic approach to isosurfacing is Marching Cubes

(MC [36]).

4.1 Marching Cubes

Classic MC operates by considering each composite cubical volume of the

field in turn and categorizing each according to whether the values at each

of the eight corners are above or below (and therefore lie outside or inside)

the isosurface value. There are therefore 28 possible configurations for each

cube, reducible to 15 by taking advantage of rotational and reflective symme-

tries. Each of the 15 cases is assigned a particular configuration of triangles

representing the interpolating surface (figure 4.1). The triangle vertices are

linearly interpolated between values at the corners. The isosurface is simply

the union of all such triangles.

As pointed out by Durst [15], MC can produce non-manifold surfaces due

to ambiguities introduced by assigning fixed surface configurations. Conse-

quently there are variations that break the cubical cells into tetrahedra [42],

consider each face of the cube in turn [30], superimpose cubes in a body-

25

Chapter 4. Marching Tiles

Figure 4.1: Several Marching Cubes cell configurations [36].

centered cubic (BCC) lattice [8, 33], or consider the dual of MC [44]. How-

ever, an essentially cubical lattice is common to each of these approaches,

and consequently each incorporate directly or indirectly composite tetra-

hedra with dihedral angles greater or equal to 90◦. This allows for the

possibility of valences as low as four, which, as seen in figure 4.2, can be

substantial in number.

4 5 6 7 8
0

1000

2000

4 5 6 7 8
0

1000

2000

Figure 4.2: Marching Tiles valence histogram comparison. (Top) The front
and back of a sphere tessellated with Marching Cubes along with the asso-
ciated valence histogram. Vertices with neighbor counts outside the range
[5, 6, 7] are shaded lighter. (Bottom) Our solution, with the majority of the
vertices having the ideal valence of six, and none below five.

26

Chapter 4. Marching Tiles

For many purposes, valence four vertices represent a poor sampling of

the surface at that vertex. In our surfacing algorithm, valence four nodes

are seen to oscillate during smoothing with our weighted Bilaplacian from

equation (3.2) and often form unwanted pockmarks in the final surface.

Valence four vertices also cause smoothness problems for many subdivision

schemes, and hinder convergence for FEM and related methods.

4.2 Marching Tiles

Our secondary contribution is a generalization of Marching Cubes to arbi-

trary space-filling tiles, and one tile in particular that ensures a minimum

valence of five and is amenable to spatial hashing. The resulting isosurfacing

algorithm provides a better minimum sampling of the surface than Marching

Cubes, resulting in better behaved numerical operators such as smoothing.

To generalize Marching Cubes we must first identify non-cubical space-filling

tiles.

Space-filling tiles have been investigated in the context of minimal sur-

face energy configurations in physical phenomena such as foam and crys-

tals [52]. For any given tile, valence four vertices occur only when the

isosurface crosses an edge incident on four tetrahedra. Valence four vertices

can therefore be eliminated by requiring that at least five tetrahedra are

incident on every edge. This is the case when all tetrahedra have acute (less

than 90◦) dihedral angles, as at least five tetrahedra must therefore share

every edge.

Üngör [55] recently investigated tilings with acute tetrahedra. There are

27

Chapter 4. Marching Tiles

at least several infinite sets of such tiles [24] including tetrahedrally close-

packed (TCP) cells so-named because the surface of the Voronoi cell of each

consists of only pentagonal and hexagonal faces [52]. One of the four basic

TCP cells is designated A15 and happens to encode the atomic structure

of Chromium Silicide (Cr
3
Si). We selected A15 for use with our Marching

Tiles algorithm as it involves only integral values in its construction. How-

ever as A15 is somewhat irregular we shuffled around tetrahedra to arrive

at a modified roughly cubical A15 that is more amenable to (regular) spa-

tial hashes and as well reduces the size of the enclosing domain (therefore

requiring fewer covering tiles). The final modified tile is shown in figure 4.3.

Numerical values for this tile may be found in appendix A.

Figure 4.3: The modified A15 space-filling tile used with Marching Tiles to
construct an initial conforming mesh for the particle surfacing algorithm.

28

Chapter 4. Marching Tiles

We note that the tile designated C15 has even lower minimum dihedral

angles than A15. However we did not pursue this tiling as its construction is

somewhat more complicated, and further valence five vertices do not present

nearly as serious difficulties to our Bilaplacian smoothing as valence four ver-

tices. However a tile based on C15 or some other tile with a lower maximum

dihedral angle may provide significant additional benefit in conjunction with

other numerical operators.

One might ask if we can eliminate valence five vertices altogether. Un-

fortunately this is not possible as the average valence for any manifold mesh

is six (appendix B) and it is trivial to show a perfect valence-six graph does

not exist in general. Once valence four vertices have been eliminated only

incremental improvements to mesh valence distributions are possible.

29

Chapter 5

Results

5.1 Enright Deformation Test

A problem common to all fluid representations is maintaining a continuous

surface for thin sheets formed, for example, when water splashes against a

smooth surface. Enright et al. [17] considered several such reference cases

including a deformation commonly known as the Enright Test. The test

deforms a sphere of radius .15 centered at (.35, .35, .35) under a velocity

field defined by LeVeque [34]

u(x, y, z) = 2sin2(πx)sin(2πy)sin(2πz)

v(x, y, z) = −sin(2πx)sin2(πy)sin(2πz)

w(x, y, z) = −sin(2πx)sin(2πy)sin2(πz)

(5.1)

The velocity is reversed at t = .5T , so the sphere should be exactly restored

at time T . The difficulty in performing the test lies in maintaining a contin-

uous surface as the sphere is flattened in the Z axis. The Eulerian approach

must also use a high-order spatial discretization scheme to prevent the sphere

deforming during the integration. Figure 5.1 shows several published level

set results alongside results obtained using our surfacing algorithm.

30

Chapter 5. Results

Figure 5.1: (Top Left) On a 1003 grid plain level sets “fail severely” [17].
(Top Right) The PLS technique introduced in [17] better resolves the surface
but does not maintain surface continuity. The top images also demonstrate
the inability of the spatial discretization to accurately restore the sphere at
time T . (Bottom Left) In [18] Enright et al. first demonstrated continu-
ity using level sets by leveraging the additional sampling required by PLS
and adaptive octree codes. (Bottom Right) Our surfacing algorithm demon-
strates continuity with only the 1003 samples used in the plain level set test
(top left) and without using any complex numerical machinery.

31

Chapter 5. Results

5.2 Fluid Simulations

We applied our surfacing algorithm to particle data from a number of actual

fluid simulations generated with the FLIP codes of Zhu et al. [60].

The sequence in figure 5.2 shows an early rendering demonstrating flat

and smooth surfaces. The simulation required one million particles and was

surfaced on a grid equivalent in size to 3333. The sequence in figure 5.3 shows

an oily jet of fluid undergoing complex topological changes and required at

most 480,000 particles per frame and a 1103 grid for surfacing. See [58] for

further details on how these images were generated.

Although our algorithm renders all isolated particles as identical spheres

we did not find the sameness to be distracting as long as the particle res-

olution was relatively high (' 50K particles). A physically-based drop os-

cillation model similar to that used in [23] might be usefully employed to

further the realism of the dynamics of fluid spray.

All code was developed and run on a multi-core Intel R© processor includ-

ing fluid simulations and rendering. Images were created using NVIDIA R©

Gelato R©, a Python/C programmable GPU-accelerated off-line renderer.

Surfacing was performed on up to four frames in parallel.

Our fluid surfacing algorithm has been incorporated into Double Nega-

tive’s production fluid simulator squirt and applied to shots in 10,000 B.C.

(figure 5.4), Hellboy II (figure 5.5) and other feature films currently in de-

velopment. The ability to surface frames in parallel permitted a drop in

turn-around time from hours to minutes compared to off-the-shelf surfacing

codes.

32

Chapter 5. Results

Figure 5.2: Sequence from a test fluid simulation. The top left image shows
a flat initial surface unobtainable using previous approaches. Note the thin
sheets of fluid generated by the initial splash and varied topologies as the
liquid transitions from sheets to tendrils to droplets.

33

Chapter 5. Results

Figure 5.3: A viscous oily fluid spilling from a tube.

34

Chapter 5. Results

Figure 5.4: Scenes from 10,000 B.C. incorporating fluid surfaced using our
algorithm. c© Warner Bros.

35

Chapter 5. Results

Figure 5.5: Scenes from Hellboy II incorporating fluid surfaced using our
algorithm. c© Universal Studios

36

Chapter 6

Conclusion

A new algorithm for surfacing particle fields was presented. The surface

generated is, by design, globally smooth and strictly adheres to the particle

locations, properties lacking in existing approaches. Our algorithm is treats

recent advances in mesh smoothing within the context of a iterative solver,

permitting trade-off between processing time and final surface quality.

Our fluid surfacing algorithm generates isosurfaces with Marching Tiles,

which produces meshes with superior valence distributions over those of

Marching Cubes and derivatives. By substituting the cubical lattice with

a general space-filling tile consisting of tetrahedrons with acute dihedral

angles we are able to guarantee that at least five tetrahedrons share every

edge of our tile. The resulting surface vertices have a minimum valence

of five which permits an improved worst-case sampling of the underlying

surface, and consequently better-behaved numerical operators such as the

Bilaplacian.

6.1 Future Work

The problem of temporal coherence might usefully be addressed by replacing

surface meshes with level sets. This could be accomplished by discretizing

37

Chapter 6. Conclusion

equations (3.2) using finite differences, for example, and boosting our surface

constraint equation (3.4) across φ(x, y, z)

d(x, y, z) − router ≤ φ(x, y, z) ≤ d(x, y, z) − rinner (6.1)

Level sets might also offer a way forward in obtaining a time-independent

surface parameterization to better support texture-based surface detail such

as foam and floating particulates [49].

Marching Tiles could be further improved by refining the tile employed.

We selected A15 over other tiles with acute dihedral angle tetrahedral de-

compositions primarily for the simplicity of working with only integral val-

ues in its construction. However an alternative might without additional

runtime cost reduce the average number of valence five vertices, thereby im-

proving (if incrementally) the performance of applied numerical operators.

The primary costs for our algorithm lie in initial surfacing (80%), and

to a lesser extent, constraint enforcement (10%). Both costs might be re-

duced using the spatial acceleration structures described in Rosenberg and

Birdwell [48].

38

Bibliography

[1] Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J. Guibas.

Adaptively sampled particle fluids. ACM Trans. Graph., 26(3):48, 2007.

[2] Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg Turk.

A finite element method for animating large viscoplastic flow. In SIG-

GRAPH ’07: ACM SIGGRAPH 2007 papers, page 16. ACM, 2007.

[3] Jonathan Barzilai and Jonathan M. Borwein. Two-point step size gradi-

ent methods. IMA Journal of Numerical Analysis, 8(1):141–148, 1988.

[4] James F. Blinn. A generalization of algebraic surface drawing. ACM

Trans. Graph., 1(3):235–256, 1982.

[5] Robert Bridson. Fluid Simulation. AK Peters, 2008.

[6] Robert Bridson, Jim Houriham, and Marcus Nordenstam. Curl-noise

for procedural fluid flow. ACM Trans. Graph., 26(3):46, 2007.

[7] Robert Bridson and Matthias Müller-Fischer. Fluid simulation course

notes. In ACM SIGGRAPH 2007 Courses, pages 1–81, 2007.

[8] Hamish Carr, Thomas Theußl, and Torsten Möller. Modified march-

ing octahedra for optimal regular meshes. In SIGGRAPH ’02: ACM

39

Bibliography

SIGGRAPH 2002 conference abstracts and applications, pages 219–219.

ACM, 2002.

[9] R.M. Chamberlain, M.J.D. Powell, C. Lemarechal, and H.C. Peder-

sen. The watchdog technique for forcing convergence in algorithms for

constrained optimization. Math. Program., 24:113–116, 1982.

[10] N. Chentanez, B. Feldman, F. Labelle, J. O’Brien, and J. Shewchuk.

Liquid simulation on lattice-based tetrahedral meshes. In ACM

SIGGRAPH/Eurographics 2007 Symposium on Computer Animation,

pages 219–228, 2007.

[11] David L. Chopp. Computing minimal surfaces via level set curvature

flow. J. Comput. Phys., 106(1):77–91, 1993.

[12] Yu-Hong Dai. Alternate step gradient method. Optimization, 52(4–

5):395–415, 2003.

[13] Yu Hong Dai, Williams W. Hager, Klaus Schittkowski, and Hongchao

Zhang. The cyclic Barzilai-Borwein method for unconstrained optimiza-

tion. IMA Journal of Numerical Analysis, 26(3):604–627, July 2006.

[14] M. Desbrun, M. Meyer, P. Schröder, and A. Barr. Implicit fairing of

irregular meshes using diffusion and curvature flow. In SIGGRAPH

’99: Proceedings of the 26th annual conference on Computer graphics

and interactive techniques, pages 317–324, 1999.

[15] M. J. Dürst. Additional reference to “marching cubes” (letters). Com-

put. Graph, 22(4):72–73, 1988.

40

Bibliography

[16] D. Eberly. 3D Game Engine Design. Morgan Kaufmann, second edi-

tion, 2007.

[17] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle

level set method for improved interface capturing. J. Comp. Phys.,

183:83–116, 2002.

[18] D. Enright, F. Losasso, and R. Fedkiw. A fast and accurate semi-

lagrangian particle level set method. Computers and Structures, 83:479–

490, 2005.

[19] D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering

of complex water surfaces. ACM Trans. Graph. (Proc. SIGGRAPH),

21(3):736–744, 2002.

[20] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In

Proc. ACM SIGGRAPH. Association of Computing Machinery, 2001.

[21] R. Fletcher. On the Barzilai-Borwein method. Technical report, De-

partment of Mathematics, University of Dundee, 2001.

[22] A. Friedlander, J. M. Mart́ınez, B. Molina, and M. Raydan. Gradient

method with retards and generalizations. SIAM Journal on Numerical

Analysis, 36(1):275–289, 1999.

[23] Kshitiz Garg and Shree K. Nayar. Photorealistic rendering of rain

streaks. ACM Trans. Graph., 25(3):996–1002, 2006.

[24] M. Goldberg. Three infinite families of tetrahedral space-fillers. J. Com-

bin. Theory, 16:348–354, 1974.

41

Bibliography

[25] L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search

technique for Newton’s method. SIAM Journal on Numerical Analysis,

23(4):707–716, 1986.

[26] F. Harlow and J. Welch. Numerical calculation of time-dependent vis-

cous incompressible flow of fluid with free surface. Phys. Fluids, 8:2182–

2189, 1965.

[27] A Harten and S Osher. Uniformly high-order accurate nonoscillatory

schemes. SIAM Journal on Numerical Analysis, 24(2):279–309, 1987.

[28] A. Harten, S. Osher, B. Engquist, and S. R. Chakravarthy. Some results

on uniformly high-order accurate essentially nonoscillatory schemes.

Appl. Numer. Math., 2(3-5):347–378, 1986.

[29] Michael T. Heath. Scientific Computing: An Introductory Survey.

McGraw-Hill, second edition, 2002.

[30] Chien-Chang Ho, Fu-Che Wu, Bing-Yu Chen, Yung-Yu Chuang, and

Ming Ouhyoung. Cubical marching squares: adaptive feature preserv-

ing surface extraction from volume data. In Proceedings of Eurographics

2005, volume 24, pages 537–545. Eurographics, 2005.

[31] W. Hong, D. House, and J. Keyser. Adaptive particles for incompress-

ible fluid simulation. Technical report, Texas A&M Computer Science,

2007.

[32] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of

weighted ENO schemes. J. Comput. Phys., 126(1):202–228, 1996.

42

Bibliography

[33] Thomas Theußl, Torsten Möller, and Meister Eduard Gröller. Optimal

regular volume sampling. In VIS ’01: Proceedings of the conference on

Visualization ’01, pages 91–98. IEEE Computer Society, 2001.

[34] R. LeVeque. High-resolution conservative algorithms for advection in

incompressible flow. SIAM J. Num. Anal., 33:627–665, 1996.

[35] S. Liu and T. Chan. Weighted essentially non-oscillatory schemes.

J. Comput. Phys., 115:200–212, 1994.

[36] William E. Lorensen and Harvey E. Cline. Marching cubes: a high res-

olution 3D surface construction algorithm. In Proc. ACM SIGGRAPH,

volume 21, pages 163–169, 1987.

[37] F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw. Two-way coupled

SPH and particle level set fluid simulation. IEEE TVCG, 2008 (in

print).

[38] Frank Losasso, Frédéric Gibou, and Ron Fedkiw. Simulating water

and smoke with an octree data structure. In SIGGRAPH ’04: ACM

SIGGRAPH 2004 Papers, pages 457–462, New York, NY, USA, 2004.

Association of Computing Machinery, ACM Press.

[39] Frank Losasso, Tamar Shinar, Andrew Selle, and Ron Fedkiw. Multiple

interacting liquids. ACM Trans. Graph., 25(3):812–819, 2006.

[40] Brigida Molina and Marcos Raydan. Preconditioned Barzilai-Borwein

method for the numerical solution of partial differential equations. Jour-

nal of Numerical Algorithms, 13(1):45–60, 1996.

43

Bibliography

[41] J. J. Monaghan. Smoothed particle hydrodynamics. Annu. Rev. Astron.

Astrophys., 30:543–574, 1992.

[42] Heinrich Müller and Michael Wehle. Visualization of implicit surfaces

using adaptive tetrahedrizations. In DAGSTUHL ’97: Proceedings of

the Conference on Scientific Visualization, page 243. IEEE, IEEE Com-

puter Society, 1997.

[43] Matthias Müller, David Charypar, and Markus Gross. Particle-

based fluid simulation for interactive applications. In Proc. ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, pages

154–159, 2003.

[44] Gregory M. Nielson. Dual marching cubes. In VIS ’04: Proceedings of

the conference on Visualization ’04, pages 489–496. IEEE Visualization,

2004.

[45] Stanley Osher and Ron Fedkiw. Level Set Methods and Dynamic Im-

plicit Surfaces. Springer, 2003.

[46] Matt Pharr and Greg Humphreys. Physically Based Rendering. Else-

vier, 2004.

[47] S. Premoz̆e, T. Tasdizen, J. Bigler, A. Lefohn, and R. Whitaker. Par-

ticle based simulation of fluids. Computer Graphics Forum, 22(3):401–

410, 2003.

44

Bibliography

[48] Ilya D. Rosenberg and Ken Birdwell. Real-time particle isosurface ex-

traction. In SI3D ’08: Proceedings of the 2008 symposium on Interactive

3D graphics and games, pages 35–43. ACM, 2008.

[49] Chen Shen and Apurva Shah. Extracting and parametrizing temporally

coherent surfaces from particles. In ACM SIGGRAPH ’07 Sketches,

page 66, 2007.

[50] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh

Generator and Delaunay Triangulator. In Ming C. Lin and Dinesh

Manocha, editors, Applied Computational Geometry: Towards Geo-

metric Engineering, volume 1148 of Lecture Notes in Computer Sci-

ence, pages 203–222. Springer-Verlag, May 1996. From the First ACM

Workshop on Applied Computational Geometry.

[51] H. Si. TetGen, a quality tetrahedral mesh generator and three-

dimensional delaunay triangulator, v1.3, user’s manual. Technical Re-

port 9, Weierstrass Institute for Applied Analysis and Stochastics, 2004.

[52] J. M. Sullivan. The geometry of bubbles and foams. In Proc. NATO

Advanced Study Institute on Foams, Emulsions and Cellular Materials,

pages 379–402. Kluwer Academic Publishers, 1998.

[53] Gabriel Taubin. A signal processing approach to fair surface design. In

Proc. ACM SIGGRAPH, pages 351–358, 1995.

[54] Nils Thürey and Ulrich Rüde. Optimized free surface fluids on adaptive

grids with the Lattice Boltzmann method. In SIGGRAPH ’05: ACM

SIGGRAPH 2005 Posters, page 112. ACM, 2005.

45

Bibliography

[55] Alper Üngör. Tiling 3D euclidean space with acute tetrahedra. In Proc.

13th Canadian Conference on Computational Geometry (CCCG’01),

pages 169–172, 2001.

[56] B. Williams. The CBB method for unconstrained optimization. Tech-

nical report, Univ. of British Columbia Dept. of Comp. Sci., 2007.

[57] B. Williams. Particle level set method: implementation and results.

Technical report, Univ. of British Columbia Dept. of Comp. Sci., 2007.

[58] B. Williams, R. Bridson, and M. Nordenstam. Smooth surface re-

construction from particles. In Proceedings of SIGGRAPH ’08: ACM

SIGGRAPH 2008 Papers. Association of Computing Machinery, ACM

Press, 2008. To appear.

[59] Cem Yuksel, Donald H. House, and John Keyser. Wave particles. ACM

Trans. Graph., 26(3):99, 2007.

[60] Yongning Zhu and Robert Bridson. Animating sand as a fluid. ACM

Trans. Graph. (Proc. SIGGRAPH), 24(3):965–972, 2005.

[61] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting.

In Proc. ACM SIGGRAPH, pages 371–378, 2001.

46

Appendix A

Modified A15 Tile

Following Üngör [55] we construct tile A15 by first covering the XY plane

with a 4x4 grid as shown in figure A.1.

Figure A.1: Structure of the A15 tile in the XY plane

We define additional red vertices along the Z axis every 2k − 1 units,

additional blue vertices every 4k − 1 units and additional green vertices

every 4k +1 units for all k ∈ Z. Next perform a Delaunay triangulation [51]

on the point-set and identify and extract the resulting repeated tile. As

shown in figure A.2 we shuffle the tetrahedra so the final tile is roughly

cubical.

The modified A15 tile contains 27 vertices:

47

Appendix A. Modified A15 Tile

Figure A.2: The A15 variant from several viewpoints

0: (1,0,0) 7: (0,2,1) 14: (2,5,2) 21: (0,0,2)

1: (2,2,0) 8: (0,2,3) 15: (4,2,1) 22: (5,0,4)

2: (1,4,0) 9: (2,2,4) 16: (4,2,3) 23: (4,0,2)

3: (3,4,0) 10: (1,4,4) 17: (5,4,4) 24: (3,0,0)

4: (1,0,4) 11: (3,4,4) 18: (4,4,2) 25: (5,0,0)

5: (3,0,4) 12: (0,4,2) 19: (0,2,5) 26: (5,4,0)

6: (2,1,2) 13: (2,3,2) 20: (4,2,5)

The vertices are connected with 46 tetrahedra:

0: (2,3,14,13) 12: (8,6,4,21) 24: (8,13,6,7) 36: (13,8,6,9)

1: (2,14,12,13) 13: (7,6,8,21) 25: (8,13,10,9) 37: (10,8,9,19)

2: (5,20,16,9) 14: (13,11,16,18) 26: (1,7,0,6) 38: (6,8,4,9)

3: (5,16,22,23) 15: (11,20,9,16) 27: (13,7,1,6) 39: (16,5,22,20)

4: (11,13,16,9) 16: (13,8,12,7) 28: (11,14,18,13) 40: (5,6,4,9)

5: (0,24,1,6) 17: (7,2,13,1) 29: (18,26,15,3) 41: (14,11,10,13)

6: (20,11,17,16) 18: (13,16,15,18) 30: (16,11,17,18) 42: (15,13,1,6)

7: (3,13,15,18) 19: (16,13,6,9) 31: (13,8,10,12) 43: (6,16,23,15)

8: (3,14,13,18) 20: (15,6,24,23) 32: (13,11,10,9) 44: (25,23,15,24)

9: (13,15,1,3) 21: (16,5,6,23) 33: (2,7,13,12) 45: (13,15,16,6)

10: (0,6,7,21) 22: (10,14,13,12) 34: (5,16,6,9)

11: (6,15,24,1) 23: (3,2,1,13) 35: (4,8,19,9)

48

Appendix B

Average Mesh Valence

The average valence in a mesh can be shown to be six using the Euler-

Poincaré formula:

v + f − e = 2(c − g) − b

where

v = #vertices

f = #faces

e = #edges

c = #connected components

g = genus

b = #boundaries

In a closed manifold mesh

f = 2e/3

49

Appendix B. Average Mesh Valence

Therefore

v + 2e/3 − e = 2 − 2g

from which we can isolate

e = 3(v − 2 + 2g)

f = 2(v − 2 + 2g)

The required value is

average(degree) = 2e/v

=
6(v − 2 + 2g)

v

where

lim
v→∞

6(v − 2 + 2g)

v
= 6

50

