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1 Why some RBF Kernel Functions Fail

We derived some sensible RBF kernel functions, like φ(r) = r2 log r, from basic principles like minimizing

curvature. The fact that we were seeking an interpolating function which minimizes a non-negative

quantity (integral of Laplacian squared) gave us some confidence we would at least get a solution even if

it might not be unique etc. This is not a proof of course, but a good step on the way to one. However other

arbitrary choices of RBF kernel, such as φ(r) = r2 which doesn’t look much different, can fail dramatically.

In the r2 case, it’s because we unwittingly are choosing a basis function which is a quadratic poly-

nomial. (With odd powers like r or r3, we don’t get polynomials since the r is actually the norm of ‖x−xi‖
or in 1D the absolute value |x − xi|, not a linear term—with quadratics or other even powers, that norm

or absolute value doesn’t make a difference: |x−xi|2 = (x−xi)2.) Thus we are accidentally restricting the

“interpolant” f(x) to be a quadratic polynomial, i.e. come from a small-dimensional space (the space of

quadratic polynomials in 1D is 3-dimensional) independent of n. This means the linear system we have

to solve can’t have rank greater than this small number (in 1D, rank three), no matter how big n is: the

linear system is singular and has no solution.

2 The Condition Number

Last time we arrived at a quantifiable measure of how well-posed a linear system Ax = b is: the condition

number κ(A) of the matrix. No matter the algorithm chosen, relative errors in computing A and/or b, not

to mention floating point rounding errors during solution, may be amplified by this much. Practically

speaking, with double-precision floating point numbers, this puts an upper bound of about 1012 for κ(A),

give or take an order of magnitude or two, beyond which the problem is hopeless to solve as stated.
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Furthermore, if software reports a condition number of 1016 or more (i.e. near the reciprocal of machine

epsilon for floating point) it’s highly likely the matrix is truly singular, and the notion of solving the linear

system must be considered very carefully—more on this later. The above example of using φ(r) = r2 for

RBF’s, if you try it out numerically, illustrates this point: in double-precision floating point a package like

MATLAB will estimate the condition number as > 1016 but not infinite, simply due to round-off error

slightly perturbing it back to non-singularity.

Incidentally, you may have noticed already a possible cause for concern with the condition number:

from its definition κ(A) = ‖A‖‖A−1‖ it’s not clear how easy this is to compute. Finding the inverse of

a matrix is at least as hard as solving a linear system with the matrix. If we want to use the 2-norm,

potentially difficult eigenvalue problems must be solved—it’s a fairly simple exercise to show that it is:

κ2(A) =

√
λmax(ATA)√
λmin(ATA)

i.e. the ratio of the square roots of the maximum and minimum eigenvalues of the matrix ATA (we’ll

discuss this is much greater detail later). In fact, for the most part in practical computation the condition

number is never calculated. Instead, it may be calculated exactly for small model problems, or numeri-

cally estimated through various means for large matrices, or theoretically bounded through knowledge

of how the matrix was produced.

3 Software for Basic Linear Algebra Operations

Before finally getting to algorithms for solving a linear system, now is a great time for an aside about

software for doing linear algebra. We’ll visit several libraries throughout this course as they become

relevant. The first one to know about is the BLAS, short for Basic Linear Algebra Subroutines, which is

a standardized API for simple matrix and vector operations with many implementations available. See

www.netlib.org/blas for the official definition, example source code, papers and more.

The BLAS original arose out of readability concerns: FORTRAN, for a long time the standard lan-

guage of scientific computing, was in earlier incarnations restricted to six characters for identifiers, lead-

ing to cryptic function names such as XERBLA or DGEMV. Different scientific computing codes had their

own names for common operations such as taking the dot-product of two vectors, equally incomprehen-

sible, and while the update to FORTRAN to allow readable identifiers would come much later (in Fortran

90) at least the community could standardize on one set of cryptic function names for these operations.

Later, the big advantage of BLAS evolved into high performance more than readability: as ar-

chitectures grew more complex, and more sophisticated implementation was required to achieve high
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performance, it became useful to let vendors do the hard work of optimizing BLAS routines that any-

one could access through the API. Today’s vendors (Intel, AMD, Apple, nVidia, Sun, etc.) do supply

such optimized implementations; there are also some free versions such as ATLAS, or the Goto BLAS

(currently the fastest on several machines). To varying degrees these exploit all the things necessary for

good performance: vectorization, cache prefetching, careful blocking around cache line and page sizes,

multithreading, etc. They also are well tested and should handle difficult cases properly.

The BLAS is divided into three levels, which came in that chronological order originally.

• Level 1 deals with vector operations that should run in O(n) time (for vectors of length n): taking

the norm of a vector, computing dot-products, adding two vectors, etc.

• Level 2 deals with matrix-vector operations that should run in O(n2) time (for n× n matrices): e.g.

multiplying a matrix times a vector, solving a lower-triangular or upper-triangular linear system,

etc.

• Level 3 deals with matrix-matrix operations that run in O(n3) time: e.g. multiplying two matrices

together

Only the simplest operations are supported—for example, solving a general system of equations is not

part of the BLAS—but they do cover many types of matrices, reflected in the naming convention of the

routines. For example, the name of the level 2 routine DGEMV can be deconstructed as follows:

• The type prefix D indicates double-precision floating point real numbers (S indicates single-precision

reals, C single-precision complex numbers, and Z double-precision complex numbers).

• The character pair GE indicates a general matrix is being used (other possibilities include symmetric

matrices, symmetric matrices packed to use just over half the storage, banded matrices, triangular

matrices...).

• The final MV identifies this as a matrix-vector multiply.

There are similarly functions SGEMV, DHEMV, DGETR to name a few variations. Further options include

different “strides” for storing matrices, specifying that the transpose of the matrix be used, and more.

The BLAS are callable from FORTRAN 77, which makes them a little baroque when used from C

for example: FORTRAN arguments are always passed by reference (i.e. as a pointer), including the scalars

such as the dimension of a vector, and depending on the platform to be called from C the function names

may need to be lowercase with an underscore appended as a suffix like dgemv . There is an official C
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version of the API, the CBLAS, but it’s not as widely supported. Personally I write my own user-friendly

wrappers in C++ with readable names and some of the options I’m not in the habit of using filled in with

default values.

The bottom line about the BLAS is that many scientific computing programs can be structured

so most of the time is spent doing these primitive linear algebra operations, so it really pays to use the

optimized and correct versions other people have spent their careers implementing. It’s easy to write

your own code to multiply two matrices, but particularly if done naı̈vely it’s quite possible it will be an

order of magnitude slower or worse than a good BLAS implementation for matrices of a decent size.

In fact, there should be a further bias: the higher levels of the BLAS afford more opportunities for

optimization. If possible, you can get much higher performance by expressing algorithms in terms of the

Level 3 BLAS—even though in principle these could be reduced to calls to level 2 which in turn could

call the level 1 routines. Level 2 and especially level 1 are typically memory-bound: most numbers in the

input get loaded into a register and used exactly once, meaning that even with cache prefetching and the

like the CPU will often be waiting for memory rather than doing useful work. In level 3, on average, a

number in the input will be used O(n) times, and it may be possible to “block” the computation so that a

number gets used many times per memory access, giving much higher performance.

4 Gaussian Elimination

Assuming a liner system is adequately well-conditioned to permit numerical solution, how do we solve it?

There are many, many algorithms and variants on algorithms for solving linear systems, each with their

own assumptions, weaknesses and strengths. For example, if the matrix is symmetric, or if it’s sparse (i.e.

most of its entries are zero, as opposed to a dense matrix where most or all entries could be nonzero), or

if you already have a very good guess at the solution of the system, may all lead you to algorithms which

can exploit these facts. Our first example of a linear system, derived from RBF interpolation, in fact was

symmetric, but we’ll hold off on exploiting that. For now, let’s just assume that all we know about the

matrix is that it’s well-conditioned—it might be unsymmetric, dense, etc.—and we have no useful guess

at what the solution is.

The simplest algorithm that works in this case is a version of Gaussian Elimination, or row reduc-

tion, which you should have seen in earlier linear algebra courses. This works by subtracting multiples

of equations (rows in the matrix with their associated entry in the right-hand-side) off other equations, to

eventually reduce the system to upper-triangular form which can be solved with back-substitution.
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As an example, let’s solve the following 3× 3 linear system Ax = b:
3 −2 5

−6 2 −9

12 −10 28




x1

x2

x3

 =


1

−3

−4


We first try to zero out the entries below the diagonal in the first column, starting with the (2, 1) entry by

adding twice the first equation to the second:
3 −2 5

0 −2 1

12 −10 28




x1

x2

x3

 =


1

−1

−4


We zero out the (3, 1) entry by subtracting four times the first equation from the third:

3 −2 5

0 −2 1

0 −2 8




x1

x2

x3

 =


1

−1

−8


Finally we zero out the (3, 2) entry below the diagonal in the second column by subtracting the updated

second equation from the updated third:
3 −2 5

0 −2 1

0 0 7




x1

x2

x3

 =


1

−1

−7


This is now an upper triangular system, which can be solve by backwards substitution starting from the

last equation, 7x3 = −7, which gives x3 = −1. This is substituted into the second equation, −2x2 + x3 =

−1, which gives x2 = 0. Finally both are substituted into the first equation, 3x1 − 2x2 + 5x3 = 1, to give

x1 = 2.

This form of the procedure can be formalized as a general algorithm, but it turns out there are some

significant advantages gained by reworking it into a different form. We won’t go through the details, but

it turns out you can show the action of the elementary matrix operations (subtracting a multiple of one

equation from another) can be assembled into the action of the inverse of a lower triangular matrix Lwith

unit diagonal (i.e. all ones along the diagonal). The row reduction is equivalent to:

L−1Ax = L−1b

Ux = L−1b

Here U = L−1A is the upper triangular matrix we were left with.

In other words, we have implicitly factored the matrix as A = LU , with L unit lower triangular

and U upper triangular.
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5 LU Factorization

Expressing Gaussian elimination as an LU factorization offers several advantages. The first is the solution

procedure: to solve Ax = b we break it into three steps:

• Factor A = LU

• Find c = L−1b, i.e. solve Lc = b, which can be done with forward substitution

• Solve Ux = c with backwards substitution

It turns out the first step takes O(n3) time, but the following two steps are much cheaper at O(n2) time.

If we have several systems to solve that use the same matrix A, we can amortize the cost of factorization

over them for huge savings.

More importantly, even when there’s only one system to solve, is that the factorization A = LU

allows for higher performance versions of the algorithm that exploit BLAS level 3, and it also allows for

generally rather good estimates of the condition number of A.

5.1 Block Matrices

The tool we need to get at a good algorithm is block-partitioning: breaking up a matrix into submatrices

or blocks. For example: 
3 −2 5

−6 2 −9

12 −10 28

 =

(
A11 A12

A21 A22

)

Here the blocks are:

A11 =

(
3 −2

−6 2

)

A12 =

(
5

−9

)
A21 =

(
12 −10

)
A22 =

(
28
)

For the moment, we’ll restrict our blocks to those resulting from partitioning the columns and the rows

of the matrix same way, as we did here.
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5.2 LU in a 2× 2 Block Structure

We can now write down the A = LU factorization in block form:(
A11 A12

A21 A22

)
=

(
L11 0

L21 L22

)(
U11 U12

0 U22

)
Notice the zero blocks in L and U , resulting from the fact they are triangular matrices. Multiplying out

the blocks in LU gives: (
A11 A12

A21 A22

)
=

(
L11U11 L11U12

L21U11 L21U12 + L22U22

)
Peeling this apart gives us four matrix equations:

A11 = L11U11

A12 = L11U12

A21 = L21U11

A22 = L21U12 + L22U22

Different algorithms for LU can be easily derived from these equations (or slight variations thereof) just

by choosing different block partitions.

For example, a classic divide-and-conquer approach would be to split A roughly in half along the

rows and along the columns:

• If A is 1× 1, the factorization is trivially L = 1, U = A and you can return.

• Otherwise, split A in half along the rows and along the columns,

• then recursively factor A11 = L11U11,

• solve the block triangular system L11U12 = A12 for U12,

• solve the block triangular system L21U11 = A21 for L21 (which you may feel more comfortable

writing as UT
11L

T
21 = AT

21),

• form Â = A22 − L21U12,

• and recursively find the factorization Â = L22U22.

This has some significant performance advantages over classic row reduction since the middle three steps

(solving the block triangular systems and forming Â), which is where all the work actually gets done, are

BLAS Level 3 operations.
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What amounts to classic row reduction can also be formulated this way, by partitioning A so that

A11 is a 1× 1 block and A22 is an (n− 1)× (n− 1) block. In this case, the algorithm looks like:

• Set L11 = 1 and U11 = A11; stop if A is only 1× 1

• Copy U12 = A12 and set L21 = A21/U11

• Form Â = A22 − L21U12, and proceed with the LU factorization of Â

Note that in the last step Â is formed by subtracting the outer product of the column vector L21 and the

row vector U12, which can easily be seen to be a rank one matrix (in fact, every rank one matrix can be

expressed as an outer product of two vectors). This operation is often termed an outer product update or

rank one update as a result. It can be interpreted in this case as subtracting multiples of the top row of

A off the remaining rows to zero out the entries below the diagonal in U , which is classic row reduction.

This variation of LU is also termed right-looking, since after finishing with a column of L we never deal

with anything to the left but instead update all of the matrix to the right. (To be a bit more accurate,

maybe this should be called right-and-down-looking, since the same is true for the rows of U , but that

term hasn’t caught on.)
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