
CS 542G: Radial Basis Functions

Robert Bridson

September 15, 2008

1 Piecewise Linear Interpolation from Fundamental Solutions

Last time, we ended with a differential equation version of the interpolation problem. We began with the

problem of finding f(x) which interpolates the data, f(xi) = fi, that is as smooth as possible in the sense

of minimizing ∫ ∞
−∞
|f ′(x)|2 dx

and through the calculus of variations reduced it to a differential equation:

f ′′(x) = 0 for x 6= xi (i = 1, . . . n)

f(xi) = fi for i = 1, . . . n

We didn’t highlight it, but we need to add to that a condition on f so that the integral is finite: f ′(x)→ 0

at x = ±∞ in some appropriate sense.

This is fairly simple to solve, right off the bat: the only functions in 1D with zero derivatives beyond

some order are polynomials, and so in this case f(x) must be degree one (a straight line) on each interval

[xi, xi+1]. In other words, we’ve rederived the piecewise linear interpolant we had before. However, this

way of solving it doesn’t generalize to higher dimensions anymore than our work from last time did, so

we’ll take a rather more convoluted approach that does. It’s a lot of pointless work in 1D, but it makes

the problem tractable in higher dimensions.

This is the method of fundamental solutions, a classic technique for analytically working with

linear partial differential equations. The differential equation we have, f ′′(x) = 0, is formed from the

second derivative operator d2/dx2, which is indeed linear:

d2

dx2
(f + g) =

d2

dx2
f +

d2

dx2
g

d2

dx2
(αf) = α

d2

dx2
f

1

In some sense, it can be treated as an infinite-dimensional matrix: whereas matrices can represent any

linear operator applied to vectors from finite dimensional spaces, differential operators apply to functions

from possibly infinite dimensional spaces (like the space of all differentiable functions).

Take a look at a finite dimensional linear system, formed with a matrix A:

Ax = b

Here b is a fixed vector, and x is the unknown solution vector. One way to conceptually solve this is to

introduce the matrix inverse: x = A−1b. The matrix inverse can be defined as the matrix that satisfies

AA−1 = I . In particular, if we look at the i’th column ci of A−1, from this equation it satisfies the linear

system

Aci = ei =

0

0
...

1
...

0

Here ei is the i’th column of the identity matrix, zero everywhere except for its i’th entry. In other words,

Aci is zero almost everywhere except in one spot, and from those columns ci we can construct the solution

to the original problem.

Bringing this intuition back to the differential equation, we can seek out an analogy of the matrix

inverse for the linear operator d2/dx2, which boils down to finding functions φ(x) where d2φ/dx2 = 0

almost everywhere except for one spot. It turns out the right analogy to the column of the identity ei

(which is zero everywhere except one entry, and sums to one) is the Dirac delta function1 δ(x). Recall its

defining properties:

δ(x) = 0 for x 6= 0∫ ∞
−∞

δ(x) = 1

Our fundamental solution will thus solve:

d2

dx2
φ(x) = δ(x)

It’s easy to see this implies φ(x) is a straight line on either side of the origin, but has to have a kink at the

origin; integrating once shows the difference in slopes has to be equal to 1. For simplicity, we take the

1Technically the Dirac delta is not a true function, but instead a distribution, a somewhat more general object.

2

fundamental solution to be the most symmetric possibility, which is:

φ(x) =
1
2
|x|

up to an additive constant (more on this in a moment).

We can now use this to construct a solution to our problem by using versions of φ(x) shifted to be

centred on the data points, analogous to the different columns of the matrix inverse. The general solution

to our differential equation f ′′(x) = 0 except for x = xi, i = 1, . . . n, is:

f(x) =
n∑

i=1

λiφ(x− xi) + λn+1

Here the λi are constant coefficients, which we don’t know yet. Note the inclusion of λn+1, a constant

term: this reflects the fact that the roughness integral
∫
|f ′(x)|2 isn’t changed by adding a constant to f ,

so we ought to include one in a general solution.

This general form of the solution has n+ 1 unknowns. The interpolation condition f(xi) = fi, i =

1, . . . , n gives us n linear equations for them:

f(x1) =
n∑

i=1

λiφ(x1 − xi) + λn+1 = f1

f(x2) =
n∑

i=1

λiφ(x2 − xi) + λn+1 = f2

...

f(xn) =
n∑

i=1

λiφ(xn − xi) + λn+1 = fn

We need one extra equation to close the system. We get it by noting that when f minimizes the integral,

the roughness integral had better be finite—which requires f ′(x) → 0 at ±∞. The derivative of f for x

larger than all the data points is:

f ′(x) =
n∑

i=1

λiφ
′(x− xi) + 0

=
n∑

i=1

λi
1
2

This has to be zero, i.e.
∑

i λi = 0, which is the extra equation we need. (You can verify the same condition

pops up from looking at f ′(x) for x less than all data points too.)

Solving this linear system, of course, has to give us back the same piecewise linear interpolation

we’ve been going over and over. Let’s see if we can do something more interesting

3

2 Getting Smoother

Our next extension will be to get a smoother interpolant. Right now our roughness integral forces f(x) to

be as straight as possible between data points, i.e. it has to be formed of straight lines, but then at the data

points themselves there are non-smooth kinks. To force f(x) to be smooth even there, we’ll use a higher

order measure of roughness instead: we’ll ask f(x) to minimize∫ ∞
−∞
|f ′′(x)|2

while interpolating the data, f(xi) = fi, i = 1, . . . , n. As before, we can do the calculus of variations by

introducing some arbitrary but sensible function g(x) that is zero at all the data points, g(xi) = 0, i =

1, . . . , n, and then looking at the roughness of f + εg as a function of the scalar parameter ε:

h(ε) =
∫ ∞
−∞
|f ′′(x) + εg′′(x)|2

If f(x) was indeed the minimum, h′(ε) had better be zero at ε = 0. This works out to the condition∫ ∞
−∞

f ′′(x)g′′(x) = 0

We can then use integration-by-parts twice to put this in terms of g(x) instead of g′′(x), noting that the

boundary terms can be forces to vanish by requiring that g(x) should drop to zero past some finite bound:

0 =
∫ ∞
−∞

f ′′(x)g′′(x)

= −
∫ ∞
−∞

f (3)(x)g′(x)

=
∫ ∞
−∞

f (4)(x)g(x)

Since this is true for arbitrary g(x) satisfying g(xi) = 0, we conclude:

f (4)(x) = 0 for x 6= xi, i = 1, . . . , n

On top of this, f(x) of course has to satisfy the interpolation condition, and for its roughness integral to

be finite we see f ′′(x)→ 0 at ±∞.

This can be tackled directly as before, noting that if the fourth derivative of f(x) is zero on the inter-

vals, f(x) must be a cubic polynomial in each interval, and on you can go. Instead, let’s use fundamental

solutions.

4

Now the fundamental solution satisfies

d4

dx4
φ(x) = δ(x)

which means it is a cubic on either side of the origin, and by further requiring symmetry, it can be shown

the fundamental solution is:

φ(x) =
1
12
|x|3

We can again write down the general form of a solution using φ(x), only this time we include an additional

linear term to reflect the fact that adding a linear term won’t change the second derivative and thus the

roughness integral:

f(x) =
n∑

i=1

λiφ(x− xi) + λn+1 + λn+2x

We have n+2 unknown coefficients, the λi. The interpolation conditions give n linear equations for them

as before:

f(x1) =
n∑

i=1

λiφ(x1 − xi) + λn+1 = f1

...

f(xn) =
n∑

i=1

λiφ(xn − xi) + λn+1 = fn

To get two more equations, we’ll look at making sure f ′′(x) → 0 at ±∞, necessary for the roughness

integral to be finite. The second derivative of f for x greater than all the data points is:

f ′′(x) =
n∑

i=1

λiφ
′′(x− xi) + 0 + 0

=
n∑

i=1

λi
1
2
(x− xi)

This is a straight line. For it to have limit 0 at infinity it must in fact be zero, giving us two equations, that

the linear term is zero and the constant term is zero:
n∑

i=1

λi = 0

n∑
i=1

λixi = 0

You can double check the same equations arise by looking at x less than every data point. This completes

our system, which we can solve to get a smoother cubic spline.

5

3 Extension to Higher Dimensions

Finally we are at the point of tackling interpolation in higher dimensions in an easy but optimal (in some

sense) way. We’ll again ask for f(x) to interpolate the data but be as smooth as possible, defined as

minimizing an integral measuring roughness.

Coming up with a single number to define how rough a multidimensional function is isn’t imme-

diately obvious: unlike in 1D, where there is only one fourth derivative, in k dimensions there are O(k4)

different fourth order partial derivatives. There is a natural choice, however, based on the Laplacian

(which we will return to later in the course). The Laplacian is the divergence of the gradient of a function,

or in partial derivative notation:

∇ · ∇f(x) =
k∑

i=1

∂2f

∂x2
i

That is, the sum of the double second derivatives. One of the powerful things about the Laplacian is that

it is rotationally invariant: if you rotate the coordinate system in which you measure it, its value doesn’t

change. It also appears in geometry as a natural way to measure mean curvature, and in a fundamental

sense measures how different the value of a function is at a point from the average of the neighbouring

function values.

We therefore will base our smoothness on minimizing the integral of the Laplacian squared:∫
Rk

|∇ · ∇f(x)|2

With this specified, we can proceed with the same calculus of variations argument we have seen twice

already in 1D, introducing an arbitrary g(x) that goes through zero at the data points and examining the

roughness of f + εg as a function of ε. We get in exactly the same way as before that∫
Rk

∇ · ∇f(x)∇ · ∇g(x) = 0

for any such g(x). We can then apply integration by parts twice—the formula generalizes to multiple

dimensions in the obvious ways—and again assume boundary terms will vanish by restricting g(x) to

drop to zero beyond a finite extent:

0 =
∫

Rk

∇ · ∇f(x)∇ · ∇g(x)

= −
∫

Rk

∇∇ · ∇f(x) · ∇g(x)

=
∫

Rk

∇ · ∇∇ · ∇f(x)g(x)

6

We conclude as before with a PDE that f(x) satisfies:

∇ · ∇∇ · ∇f(x) = 0 except when x = xi, i = 1, . . . n

This is called the “biharmonic equation”, similar to how we term functions “harmonic” when their Lapla-

cian is zero.2

Solving a fourth order partial differential equation in k dimensions might seem pretty daunting.

However, this is where fundamental solutions actually make life easier! The fundamental solution is, as

before, a function φ(x) satisfying:

∇ · ∇∇ · ∇φ(x) = δ(x)

We’ll further require that φ(x) is radially symmetric, i.e. that φ(x) = φ(y) whenever ||x|| = ||y||, or in other

words that φ(x) really only depends on the distance r that x is from the origin. Thus φ(r) can be thought

of as a 1D function, and the partial differential equation in x can be reduced to a simple 1D differential

equation in r. This is an example of a Radial Basis Function or RBF.

The full details of finding the fundamental solution belong in an applied math course on partial

differential equations: we’ll instead just quote the results. Interestingly enough, the fundamental solution

depends critically on the dimension we’re in—this is a reasonably common occurence and is important

to have in mind when thinking about setting up model problems in lower dimensions. Here are the first

three dimensions, ignoring scale factors and lower order terms:

φ(r) =

r3 : k = 1

r2 log r : k = 2

r : k = 3

As before, we use this to write down the general form for f(x), with the addition of a linear polynomial

(an extra k + 1 terms):

f(x) =
n∑

i=1

λiφ(x− xi) + λn+1 + λn+2x
(1) + · · ·λn+k+1x

(k)

The interpolation conditions give the usual n equations, and keeping the integral finite supplies the re-

2There’s also a triharmonic equation, involving three Laplacians.

7

maining k + 1 equations which are a clear generalization of the 1D versions:

n∑
i=1

λi = 0

n∑
i=1

λix
(1)
i = 0

...
n∑

i=1

λix
(k)
i = 0

Once these n + k + 1 linear equations have been solved for the coefficients λi, we have our Radial Basis

Function interpolant.

4 Radial Basis Functions

The φ(r) which we gave in the previous section goes under the name thin-plate spline, due to its connec-

tion to simulating the bending of a thin metal plate (whose potential energy can be approximated with

the integral of Laplacian squared), and is one of the most popular RBFs to use. However, there are plenty

of others. They all have in common the idea of using a φ(x) which is radially symmetric, and typically

add some low order polynomial terms (and matching extra equations).

Some are derived from optimality principles and partial differential equations, like the thin-plate

spline: e.g. the triharmonic basis function φ(r) = r3 in 3D. Some arise from very different application

areas, such as the Gaussian φ(r) = exp(−r2/c2) which needs some length scale c to be specified. Others

have no particular justification, other than that they seem to work really well in practice: chief among

these is the multiquadric function, φ(r) =
√
r2 + c2, where c is again a user-specified length scale.

8

