
CS 542G: More on the Symmetric Eigenproblem

Robert Bridson

October 20, 2008

1 Shift-and-Invert

Last time we saw how shifting (replacing A with A − µI in the power method) could possibly help, in

adjusting the eigenvalue distribution which controls convergence while leaving eigenvectors unchanged.

We’ll now add another transformation, matrix inversion, which makes this far more powerful.

Observe that for an eigenpair where Ax = λx, then multiplying both sides by A−1 if it exists gives:

x = λA−1x

⇔ A−1x =
1
λ
x

Thus x is also an eigenvector of A−1, with eigenvalue 1/λ.

Combining this with shifting gives the shift-and-invert algorithm: apply the power method to

(A − µI)−1. This transforms the eigenvalues to 1/(λ − µ). Suppose µ is closest to λi, and second closest

to λj of the original matrix A; for the transformed matrix the largest eigenvalue in magnitude must be

1/(λi−µ) and the second largest is 1/(λj −µ). Therefore the iteration will converge to λi’s eigenvector at

a rate
λi − µ
λj − µ

Clearly, the closer µ is to λi (relative to its distance from λj) the faster the convergence.

You might expect something to go wrong if µ = λi: indeed, the matrix A − µI is then singu-

lar and can’t be inverted. However, as long as it’s not exactly equal—even if A − µI is exceedingly

ill-conditioned—the numerics aren’t a problem, as this will serve just to make the desired eigenvector

component of x blow up that much faster.

Notice that shift-and-invert is also a very powerful tool, in comparison to the plain power method,

since we can use it to pick out any eigenpair we care about—not just the largest eigenvalue.

1



2 Rayleight Quotient Iteration

Combining shift-and-invert with the Rayleigh quotient gives a particularly powerful algorithm, the Rayleigh

Quotient Iteration. Here we take a step of shift-and-invert for some µ to get an updated x; then we use

the Rayleigh quotient to improve the estimate µ of the associated eigenvalue, and repeat:

• Begin with an initial unit-length vector x and guess at the eigenvalue µ

• Until converged (‖(A− µI)x‖ is small enough):

• Update x← (A− µI)−1x (i.e. solve the linear system (A− µI)xnew = xold)

• Normalize x← x
‖x‖

• Update µ = xTAx

As x converges, µ also converges to the eigenvalue, accelerating the convergence of both. In fact, it can be

shown this gives cubic convergence: for k large enough, the error satisfies

‖ek+1‖ ≤ C‖ek‖3

HereC is some constant, but the important part (compared to the linear convergence of the power method

we saw last time) is the exponent of three, hence the name “cubic”. Roughly speaking this means that

once convergence starts, the number of digits of accuracy will triple each iteration. We don’t have that

many digits to worry about: even in double precision, this means we will essentially only need two or

three more iterations once we enter the convergence regime.

One final word is in order about the initial choice of µ. Sometimes the user will have a good

idea of what µ should be, but quite often will just be interested in either the smallest magnitude or largest

magnitude eigenpair. Luckily it’s fairly easy to come up with a sensible guess for µ in both these cases. For

the smallest µ = 0 is obviously appropriate: zero is closest to the smallest magnitude eigenvalue. For the

largest, we have two cases, depending on whether the λ is positive or negative. Note that ‖Ax‖ ≤ ‖A‖‖x‖
for any induced matrix norm, which implies that ‖A‖ is always an upper bound on the magnitude of

all the eigenvalues; we can choose µ = ±‖A‖ for some easily computed matrix norm (like the 1-norm

or infinity-norm) to get an initial value that’s closest to either the largest positive eigenvalue or largest

negative eigenvalue. The caveat in all these cases, however, is that depending on the initial guess for x,

we might not converge to exactly the eigenpair we wanted: for example, if x is already an eigenvector, no

matter what the initial µ is x won’t converge to a different eigenvector.

2



3 Orthogonal Iteration

So far we’ve just looked at methods which find a single eigenpair. In many cases we want more, perhaps

all of them. The convergence of the power method to an eigenvector of the largest magnitude eigenvalue

depended on the initial guess x containing a nonzero component in that eigenspace. In practice, apart

from specially-structured matrices, rounding errors will almost always guarantee that this component is

nonzero in fact, so it’s not something to worry about too much—but it does give us a clue on how to get

other eigenvectors.

Suppose we have already found the largest magnitude eigenpair, with eigenvector u1. If we want

to now find u2, an eigenvector for the second largest eigenvalue1, which we know can be chosen to be

orthogonal to u1. The power method will work as long as our guess for u2 has a zero component for u1,

i.e. is orthogonal to u1. We thus add a step to the algorithm where we orthogonalize x with respect to

u1: doing this every iteration will further guarantee that we’re not hurt by rounding error reintroducing

a nonzero component in the direction of u1.

We can continue this for the third largest and so on down the line: once we’ve found the first k

largest eigenpairs, we can run power method with a step to orthogonalize our guess x against each of

these k eigenvectors, and it should converge to the k + 1’st eigenpair.

However, we can do better: solve for the set of eigenvectors we want simultaneously. This is

Orthogonal Iteration. If we are looking for the k largest magnitude eigenvalues and eigenvectors, we

begin with k linearly independent vectors x1, . . . xk, where x1 will hopefully converge to the biggest, x2

to the second biggest, and so on. Each iteration we multiply all of them by A, then normalize x1, make x2

orthogonal to x1 and then normalize it, make x3 orthogonal to x1 and x2 and then normalize it, etc. We’ve

seen exactly this orthogonalization before: it’s the Gram-Schmidt process!

We know from before that Gram-Schmidt (or preferably, Modified Gram-Schmidt) is just one algo-

rithm for computing the QR factorization. We can write orthogonal iteration as follows then:

• Begin with an n× k full rank matrix X with the initial guesses at eigenvectors as the columns.

• Until converged:

• Multiply X ← AX

• Factor QR = X with MGS

• Replace X ← Q

1This also will cover the case where the largest magnitude eigenvalue was repeated, and we want to find a second eigenvector

for this eigenspace.

3



When we have converged, the R factor, of course, should be diagonal (containing the eigenvalues).

4 The QR Method

Applying orthogonal iteration to find all n eigenvectors leads to something called the QR method for

eigenproblems (not to be confused with the plain QR factorization). In particular, if we’re working on all

n eigenvectors, we can use the superior Householder method for the QR factorization.

One of the great advantages Householder QR has over MGS, discussed earlier, is that it is guar-

anteed to produce an orthogonal Q, even if the input matrix is singular. For example, if A had a zero

eigenvalue (was singular), then orthogonal iteration with MGS won’t ever be able to determine the corre-

sponding eigenvector: multiplying by A will zero out any component in that eigenspace, and MGS can’t

put it back into Q. On the other hand, Householder QR will automatically produce the eigenvector as the

last column of Q—converging instantly. Taking this idea further leads to one of the many enhancements

that have been added to the QR method: if we have a good guess at an eigenvalue µ, then the shifted

A− µI will have an eigenvalue very close to zero, for which Householder QR will produce an extremely

good estimate of the eigenvector.

There are several other important enhancements to this strategy that go into the final QR method:

refer to Golub and Van Loan if you’re curious about other additions (you may be surprised that the

ultimate version bears only a passing resemblence to orthogonal iteration at first glance, despite being

derived from it). Ultimately the algorithm can be made fast enough to return all eigenvalues and eigen-

vectors in a small factor more than the time it takes to solve a linear system. LAPACK of course provides

this and related algorithms for you; however, more targeted algorithms such as Rayleigh Quotient Itera-

tion are not provided.

5 Rayleigh-Ritz

One of the more important additions to QR, without which it wouldn’t work, is a way to handle eigen-

values of equal magnitude but opposite sign. If you recall, this is a case where the power method can fail

to converge at all. Luckily for the symmetric case this can only occur with a pair of eigenvalues, negatives

of each other. When we detect we have two vectors which are resisting convergence—probably indicat-

ing their eigenvalues are equal or nearly equal in magnitude—we can turn to another method which can

4



tease them apart.2

The Rayleigh-Ritz algorithm is a generalization of the Rayleigh quotient to multiple vectors: given

a set of vectors which may not be eigenvectors but do approximately some union of eigenspaces, Rayleigh-

Ritz works out an optimal estimate of the associated eigenvalues. As a bonus, it also returns an optimal

estimate of linear combinations of the input vectors that approximate the eigenvectors.

LetU be an n×kmatrix with orthonormal3 columns, which span a suspected collection of eigenspaces.

We are looking for a k×k diagonal matrixD that will contain the estimated eigenvalues, and a k×k matrix

V which will give the linear combinations of the columns of U that approximate the eigenvectors. (Note

that the eigenvectors should be orthogonal, and since U has orthonormal columns, V should be orthogo-

nal.) In other words, we want V and D so that A(UV ) ≈ (UV )D. Setting this up in a least-squares sense

gives a problem

min
D,V
‖AUV − UV D‖2F

which is a natural generalization of the Rayleigh quotient problem (where V = 1 and D = λ).

Let Ū be any n × (n − k) matrix where (U |Ū) is orthogonal (so Ū also has orthonormal columns

which are orthogonal to those of U ). Multiplying by an orthogonal matrix such as (U |Ū)T doesn’t change

the Frobenius norm; it leaves us the problem

min
D,V

∥∥∥∥∥
(
UTAUV − UTUV D

ŪTAUV − ŪTUV D

)∥∥∥∥∥
2

F

Note that UTU = I , but ŪTU = 0, and that the Frobenius norm squared can be separated, so this simpli-

fies to:

min
D,V
‖(UTAU)V − V D‖2F + ‖ŪTAUV ‖2F

The second term’s Frobenius norm isn’t changed through multiplying by V T on the right (since V is

orthogonal), which makes it apparent it only depends on the choice of U , not on V or D: it’s irrelevant to

the minimization. So our problem reduces to:

min
D,V
‖(UTAU)V − V D‖2F

With Ā = UTAU , a k× k symmetric matrix, it’s clear this can be made exactly zero simply by choosing V

to be a set of eigenvectors of Ā and D the diagonal matrix of its eigenvalues.

2Again, as a cautionary note, if you look at the ultimate expression of the QR algorithm the link to this section is a bit obscure,

but what we are about to discuss does underly the approach.
3Orthogonality isn’t strictly necessary, but simplifies Rayleigh-Ritz.

5



This is the Raleigh-Ritz procedure: solve the k × k eigenproblem for Ā = UTAU which gives

optimal estimates of the eigenvalues of A “projected” onto the subspace spanned by U , and eigenvectors

estimated by UV . The critical point is that if k is much smaller than n, finding the eigenpairs of Ā will be

much easier than working onA; in particular, if k = 2 than Ā is a 2×2 symmetric matrix whose eigenpairs

can be found directly by solving a quadratic equation.

Rayleigh-Ritz is, seen from another perspective, another example of taking a high dimensional

problem, choosing a smaller dimension sub-space we guess can approximate the solution, and finding an

optimal guess from within that subspace. We will come back to this concept again for other problems.

6


