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Notes

! Extra class this Friday 1-2pm

! If you want to receive emails about the course
(and are auditing) send me email
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From last time

! Steepest Descent:
• Start with guess

• Until converged:
! Find direction
! Choose step size

! Next guess is

! Line search: keep picking different step
sizes until satisfied
• (Reduce a multidimensional problem to 1D)
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Simplest line search

! Start with initial step-size
• E.g. suggested by user, or from last step of algorithm

! Check if it reduces f  “enough”:

! If not, halve the step and try again

(Also, if first guess works for a few iterations in a
row, try increasing step size)

! Not enough to guarantee convergence, but often
does OK in practice
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Convergence of Steepest Descent

! We!ll use a model problem:

! Here A is symmetric positive definite, so 0
is the unique minimum (f is strictly convex)

! Gradient is:

! We can further simplify: change to
eigenvector basis, A becomes diagonal
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Convergence of SD cont’d

! For the benefit of the doubt, assume
line-search is “perfect”: picks the step to
exactly minimize f x +!d( )
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Diagnosis

! Problem occurs for ill-conditioned A

! Quite soon the bulk of the error is along
the “shallow” directions, not the steepest
(gradient)

! Typical improved strategy:
pick smarter directions
• Conjugate Gradient (later in the course):

avoid repeating the same directions

• Newton and Quasi-Newton: try to pick the
optimal direction
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Newton’s Method

! Use the Hessian: second derivatives

! Model the objective function as a quadratic

! Minimize the model (solve a linear system)
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Newton’s Method

! Now need to evaluate Hessian and gradient,
and solve a linear system
• Perhaps too expensive…

! But, can get quadratic convergence
(# significant digits doubles each iteration)

! But can also fail in more ways
• Hessian might be singular, indefinite, or otherwise

unhelpful
• Higher-order nonlinearity might cause divergence

• Some of these problems can occur even if f is
 strictly convex
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Making Newton more robust

! Modify Hessian to make it positive definite
(e.g. add scaled identity): mixes in SD to
guarantee descent direction
(“regularization”)

! Line search methods:
use Newton direction, but add line search to
make sure step is good

! Trust region methods:
only use quadratic model in a small
“trust region”, don!t overstep bounds
(and steadily shrink trust region to convergence)
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Quasi-Newton

! Attack problems with Hessian
(expense and possible ill-conditioning):
build approximation to Hessian from
information from gradients:

! Example: BFGS (use this for low rank
updates to approximation of H)
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