Notes		PDE's
 No extra class tomorrow 		 Subject of Partial Differential Equations is vast We'll focus on one particularly important equation: ∇•∇φ = f
		 Called Poisson's equation (if right hand side is zero, Laplace's equation)
		 Arises almost everywhere Minimization of norm of gradient (see RBF's) Gravitational/electrostatic potential Steady state of heat flow and other diffusion processes Stochastic processes (Brownian motion) Fluid dynamics
	cs542g-term1-2007 1	cs542g-lerm1-2007 2

Reduce to 1D first

◆ Typical Boundary Value Problem (BVP):

$$\frac{\partial^2 \phi}{\partial x^2} = f \quad \text{for } x \in (0,1)$$
$$\phi(0) = a, \quad \frac{\partial \phi}{\partial x}(1) = b$$

- Boundary conditions: specify solution value: "Dirichlet" specify solution derivative: "Neumann"
- Can't directly solve as a time integration

cs542g-term1-2007 3

cs542g-term1-2007

5

Finite Difference Method

• Discretize unknown solution on a grid:

$$\phi(x_i) \approx \phi_i \quad \text{(where } x_i = i\Delta x \text{)}$$

 Use Taylor series to estimate derivatives from values on grid

$$\frac{\partial^2 \phi}{\partial x^2}(x_i) = \frac{\phi_{i+1} - 2\phi_i + \phi_{i-1}}{\Delta x^2} + O\left(\Delta x^2\right)$$

cs542g-term1-2007

4

Discretized Boundary Conditions

• Dirichlet: substitute in known values

$$\phi_0 = a$$

 Neumann: discretize boundary condition, use it to extrapolate

$$\frac{\phi_{N+1} - \phi_N}{\Delta x} \approx \frac{\partial \phi}{\partial x}(1) = b$$
$$\Rightarrow \phi_{N+1} = \phi_N + \Delta x b$$

Solve!

- At each grid point we have a linear equation
- Combine into one large linear system (solve for all solution values simultaneously)
- Resulting matrix is symmetric (negative) definite, and sparse
 - In fact, in 1D, just tridiagonal...

Higher dimensions

- Lay down a regular grid as before
- Matrices get even bigger, but not quite as simple structure
- Notion of stencil: shorthand for matrix

Stability

- The preceding methods work, but not every stencil does
- Need a notion of stability ~ conditioning
- Example problem with central differences
 Matrix could be singular, or worse
- Example problem with one-sided differences
 - Information propagation is wrong

cs542g-term1-2007 7

Finite Difference Limitations

- Accurately treating boundary conditions that don't line up with the grid
- Adaptivity

cs542g-term1-2007 9

cs542g-term1-2007 8