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Notes

! Extra class next week (Oct 12, not this Friday)

! To submit your assignment: email me the URL
of a page containing (links to) the answers and
code

! Compiling example assignment code on Solaris
apparently doesn!t work:
try Linux cs-grad machines instead
• Also: there is an installation of ATLAS (for an AMD

architecture) at
/ubc/cs/research/scl/sclpublic/public/atlas-3.6.0
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High Dimensional Data

! So far we!ve considered scalar data values fi (or
interpolated/approximated each component of vector
values individually)

! In many applications, data is itself in high dimensional
space
• Or there!s no real distinction between dependent (f) and

independent (x) -- we just have data points

! Assumption: data is actually organized along a smaller
dimension manifold
• generated from smaller set of parameters than number of output

variables

! Huge topic: machine learning

! Simplest: Principal Components Analysis (PCA)
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PCA

! We have n data points from m dimensions:
store as columns of an mxn matrix A

! We!re looking for linear correlations
between dimensions
• Roughly speaking, fitting lines or planes or

hyperplanes through the origin to the data

• May want to subtract off the mean value along
each dimension for this to make sense
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Reduction to 1D

! Assume data points on a line through the origin
(1D subspace)

! In this case, say line is along unit vector u.
(m-dimensional vector)

! Each data point should be a multiple of u (call
the scalar multiples wi):

! That is, A would be rank-1: A=uwT

! Problem in general: find rank-1 matrix that best
approximates A

A
*i
= uw

i
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The rank-1 problem

! Use Least-Squares formulation again:

! Clean it up: take w=!v with !"0 and |v|=1

" u and v are the first principal components of A

min
u!R

m
, u =1

w!R
n

A " uw
T

F

2

min
u!R

m
, u =1

v!R
n
, v =1

" #0

A $ u"v
T

F

2
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Solving the rank-1 problem

! Remember trace version of Frobenius norm:

! Minimize with respect to w:

! Then plug in to get a problem for u:

A ! uw
T

F

2

= tr A ! uw
T( )

T

A ! uw
T( )

= tr A
T
A( ) ! tr AT

uw
T( ) ! tr wuT A( ) + tr wuTuwT( )

= tr A
T
A( ) ! 2uT Aw + w

2

!

!w
A " uw

T

F

2

= 0

"2u
T
A + 2w

T
= 0

w = A
T
u

min ! u
T
AA

T
u( )

2

" max u
T
AA

T
u( )

2
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Finding u

! AAT is symmetric, thus has a complete set of
orthonormal eigenvectors X, eigenvalues µ

! Write u in this basis:

! Then see:

! Obviously pick u to be the eigenvector with
largest eigenvalue

u = û
i
X
i

i=1

m

!

u
T
AA

T
u = û

i
X
i

i=1

m

!"#$
%
&'

T

µ
i
û
i
X
i

i=1

m

!"#$
%
&'
= µ

i
û
i

2

i=1

m

!

8cs542g-term1-2007

Finding v and sigma

! Similar argument gives v the eigenvector
corresponding to max eigenvalue of ATA

! Finally, knowing u and v, can find ! that
minimizes

with the same approach:

! We also know that

!
2
= max" AA

T( ) = max" A
T
A( ) = A

2

2

A ! u"v
T

F

2

! = u
T
Av
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Generalizing

! In general, if we expect problem to have
subspace dimension k, we want the
closest rank-k matrix to A
• That is, express the data points as linear

combinations of a set of k basis vectors
(plus error)

• We want the optimal set of basis vectors and
the optimal linear combinations:

min
U!R

m"k
,U

T
U = I

W !R
n"k

A #UW
T

F

2
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Finding W

! Take the same approach as before:

! Set gradient w.r.t. W equal to zero:

A !UW
T

F

2

= tr A !UW
T( )

T

A !UW
T( )

= tr A
T
A ! 2 trWU

T
A + trWU

T
UW

T

= A
F

2

! 2 trWU
T
A + W

F

2

!2A
T
U + 2W = 0

W = A
T
U

11cs542g-term1-2007

Finding U

! Plugging in W=ATU we get

! AAT is symmetric, hence has a complete
set of orthogonormal eigenvectors, say
columns of X, and eigenvalues along the
diagonal of M (sorted in decreasing order):

min A !UW
T

F

2

" min ! 2 tr A
T
UU

T
A + tr A

T
UU

T
A

" max trU
T
AA

T
U

AA
T
= XMX

T
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Finding U cont’d

! Our problem is now:

! Note X and U are both orthogonal, so is XTU,
which we can call Z:

! Simplest solution: set Z=(I 0)T which means that
U is the first k columns of X
(first k eigenvectors of AAT)

max trU
T
XMX

T
U

max
Z
T
Z = I

tr Z
T
MZ

! max
Z
T
Z = I

µ jZ ji

2

j=1

m

"
i=1

k

"
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Back to W

! We can write W=V#T for an orthogonal V,
and square kxk #

! Same argument as for U gives that V
should be the first k eigenvectors of ATA

! What is #?

! Can derive that it is diagonal, containing
the square-roots of the eigenvalues of AAT

or ATA (they!re identical)
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The Singular Value Decomposition

! Going all the way to k=m (or n) we get the Singular
Value Decomposition (SVD) of A

! A=U#VT

! The diagonal entries of # are called the singular values

! The columns of U (eigenvectors of AAT) are the
left singular vectors

! The columns of V (eigenvectors of ATA) are the
right singular vectors

! Gives a formula for A as a sum of rank-1 matrices:

A = !
i
u
i
v
i

T

i

"
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Cool things about the SVD

! 2-norm:

! Frobenius norm:

! Rank(A)= # nonzero singular values
• Can make a sensible numerical estimate

! Null(A) spanned by columns of U for zero
singular values

! Range(A) spanned by columns of V for nonzero
singular values

! For invertible A:

A
2
= !

1

 
A

F

2

= !
1

2
+!+!

n

2

A
!1
= V"

!1
U

T

=
v
i
u
i

T

#
ii=1

n

$
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Least Squares with SVD

! Define pseudo-inverse for a general A:

! Note if ATA is invertible, A+=(ATA)-1AT

• I.e. solves the least squares problem]

! If ATA is singular, pseudo-inverse defined:
A+b is the x that minimizes ||b-Ax||2 and of
all those that do so, has smallest ||x||2

A
+
= V!

+
U

T
=

v
i
u
i

T

"
ii=1

" i >0

n

#
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Solving Eigenproblems

! Computing the SVD is another matter!

! We can get U and V by solving the symmetric
eigenproblem for AAT or ATA, but more specialized
methods are more accurate

! The unsymmetric eigenproblem is another related
computation, with complications:
• May involve complex numbers even if A is real
• If A is not normal (AAT$ATA), it doesn!t have a full basis of

eigenvectors
• Eigenvectors may not be orthogonal… Schur decomposition

! Generalized problem: Ax=#Bx
! LAPACK provides routines for all these

! We!ll examine symmetric problem in more detail
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The Symmetric Eigenproblem

! Assume A is symmetric and real

! Find orthogonal matrix V and diagonal matrix D s.t.
AV=VD
• Diagonal entries of D are the eigenvalues, corresponding

columns of V are the eigenvectors

! Also put: A=VDVT  or VTAV=D

! There are a few strategies
• More if you only care about a few eigenpairs, not the complete

set…

! Also: finding eigenvalues of an nxn matrix is equivalent
to solving a degree n polynomial
• No “analytic” solution with radicals in general for n"5
• Thus general algorithms are iterative


