
1cs542g-term1-2007

Sparse matrix data structure

! Typically either
Compressed Sparse Row (CSR)
or
Compressed Sparse Column (CSC)
• Informally “ia-ja” format

• CSR is better for matrix-vector multiplies;
CSC can be better for factorization

! CSR:
• Array of all values, row by row

• Array of all column indices, row by row

• Array of pointers to start of each row

2cs542g-term1-2007

Direct Solvers

! We!ll just peek at Cholesky factorization of
SPD matrices: A=LLT

• In particular, pivoting not required!

! Modern solvers break Cholesky into three
phases:
• Ordering: determine order of rows/columns

• Symbolic factorization: determine sparsity
structure of L in advance

• Numerical factorization: compute values in L

! Allows for much greater optimization…

3cs542g-term1-2007

Graph model of elimination

! Take the graph whose adjacency matrix
matches A

! Choosing node “i” to eliminate next in row-
reduction:
• Subtract off multiples of row i from rows of neighbours

• In graph terms: unioning edge structure of i with all its
neighbours

• A is symmetric -> connecting up all neighbours of i
into a “clique”

! New edges are called “fill”
(nonzeros in L that are zero in A)

! Choosing a different sequence can result in
different fill

4cs542g-term1-2007

Extreme fill

! The star graph

! If you order centre last, zero fill:
 O(n) time and memory

! If you order centre first, O(n2) fill:
 O(n3) time and O(n2) memory

5cs542g-term1-2007

Fill-reducing orderings

! Finding minimum fill ordering is NP-hard
! Two main heuristics in use:
• Minimum Degree: (greedy incremental)

choose node of minimum degree first
! Without many additional accelerations, this is too

slow, but now very efficient: e.g. AMD

• Nested Dissection: (divide-and-conquer)
partition graph by a node separator, order
separator last, recurse on components
! Optimal partition is also NP-hard, but very

good/fast heuristic exist: e.g. Metis

! Great for parallelism: e.g. ParMetis

6cs542g-term1-2007

A peek at Minimum Degree

! See George & Liu, “The evolution of the
minimum degree algorithm”
• A little dated now, but most of key concepts

explained there

! Biggest optimization: don!t store structure
explicitly
• Treat eliminated nodes as “quotient nodes”

• Edge in L
= path in A via zero or more eliminated nodes

7cs542g-term1-2007

A peek at Nested Dissection

! Core operation is graph partitioning

! Simplest strategy: breadth-first search

! Can locally improve with Kernighan-Lin

! Can make this work fast by going
multilevel

8cs542g-term1-2007

Theoretical Limits

! In 2D (planar or near planar graphs), Nested
Dissection is within a constant factor of optimal:
• O(n log n) fill (n=number of nodes - think s2)

• O(n3/2) time for factorization

• Result due to Lipton & Tarjan…

! In 3D asymptotics for well-shaped 3D meshes is
worse:
• O(n5/3) fill (n=number of nodes - think s3)

• O(n2) time for factorization

! Direct solvers are very competitive in 2D, but
don!t scale nearly as well in 3D

9cs542g-term1-2007

Symbolic Factorization

! Given ordering, determining L is also just a
graph problem

! Various optimizations allow determination of row
or column counts of L in nearly O(nnz(A)) time
• Much faster than actual factorization!

! One of the most important observations:
good orderings usually results in supernodes:
columns of L with identical structure

! Can treat these columns as a single block
column

10cs542g-term1-2007

Numerical Factorization

! Can compute L column by column with
left-looking factorization

! In particular, compute a supernode (block
column) at a time
• Can use BLAS level 3 for most of the

numerics

• Get huge performance boost, near “optimal”

11cs542g-term1-2007

Software

! See Tim Davis!s list at
www.cise.ufl.edu/research/sparse/codes/

! Ordering: AMD and Metis becoming
standard

! Cholesky: PARDISO, CHOLMOD, …

! General: PARDISO, UMFPACK, …

