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We now turn to non-stationary methods, i.e. methods for solving Ax = b iteratively that depend nonlinearly on b. We
again assume A is symmetric positive definite, so solving the linear system is equivalent to minimizing 1

2xT Ax − xT b. The
two methods we look at here are Steepest Descent and Conjugate Gradients. For a more detailed elementary exposition you
might also want to read Jonathan Shewchuk’s An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,
freely available on the web.

1 Steepest Descent

Steepest Descent is one of the most basic of optimization algorithms, which we saw before in the general nonlinear context,
and can easily be used here. At any given x, the gradient of the objective 1

2xT Ax− xT b is in fact:

∂

∂x

(
1
2
xT Ax− xT b

)
= Ax− b

= −r

That is, the steepest descent direction (the negative of the gradient) at guess xk is just the k’th residual: rk = b−Axk.

If you recall, the other important ingredient in Steepest Descent (for general nonlinear optimization) was line search:
selecting a step size α that made sure the next iterate is an improvement. In this case the next iterate will be:

xk+1 = xk + αrk

We can in fact solve for the locally optimal α that minimizes the objective: just take the derivative with respect to α and set it
to zero:

∂

∂α

(
1
2
xT

k+1Axk+1 − xT
k+1b

)
= 0

∂

∂α

(
1
2
(xk + αrk)T A(xk + αrk)− (xk + αrk)T b

)
= 0

∂

∂α

(
1
2
rT
k Arkα2 + rT

k Axkα +
1
2
xT

k Axk − rT
k bα− xT

k b

)
= 0

rT
k Arkα + rT

k Axk − rT
k b = 0

rT
k Arkα + rT

k (Axk − b) = 0
rT
k Arkα = rT

k (b−Axk)
rT
k Arkα = rT

k rk

α =
rT
k rk

rT
k Ark

1



Note that since A is positive definite, the denominator rT
k Ark is positive—unless rk = 0 in which case we’ve already solved

the system and there’s no point in taking another iteration.

Also note that since xk+1 = xk + αrk, then we can update the residual rather than compute it from scratch:

rk+1 = b−Axk+1

= b−A(xk + αrk)
= b−Axk − αArk

= rk − αArk

To compute the denominator of α we already will have computed the matrix-vector product Ark, so we can reuse it here to
speed up the algorithm.

This gives us the Steepest Descent algorithm:

• Start with x0 = 0, r0 = b.

• For k = 0, 1, 2, . . .

– Compute ρ = rT
k rk, which is, in fact ‖rk‖2

2 — if small enough, stop (converged)

– Multiply q = Ark

– Compute α = ρ/(rT
k q)

– Update xk+1 = xk + αrk and rk+1 = rk − αq

We require just one extra vector (q), and in each iteration perform just one matrix-vector multiply along with two dot-products
and two vector updates.

1.1 Convergence of Steepest Descent

So now the question becomes: how good is Steepest Descent? We looked at this before when we analyzed its performance in
the context of general nonlinear optimization. Let’s go through it again. Before jumping in, let’s define the energy norm or
A-norm of the error e = A−1b− x:

‖e‖A =
√

eT Ae

Since A is positive definite, this is a well-defined norm. Since we’re dealing with a finite dimensional space, it’s of course
equivalent to any other norm (in the sense it can only be different from another norm of e by at most some constant factor).
Another way of looking at the energy norm is in terms of the residual:

‖e‖2
A = eT Ae

= (A−1b− x)T A(A−1b− x)
= (b−Ax)T A−1(b−A−1x)
= rT A−1r

A different expansion gives another useful relation:

‖e‖2
A = eT Ae

= (A−1b− x)T A(A−1b− x)
= bT A−1b− 2xT b + xT Ax

= 2
[
1
2
xT Ax− xT b

]
+ bT A−1b
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From this it’s obvious that minimizing the objective function we saw before is the same as minimizing the energy norm of the
error. We should expect, then, that Steepest Descent will improve the energy norm of the error with each step; the question
remains how fast?

Expand out the new energy norm using the first relationship above:

‖ek+1‖2
A = rT

k+1A
−1rk+1

= (rk − αArk)T A−1(rk − αArk)
= rT

k A−1rk − 2αrT
k rk + α2rT

k Ark

= ‖ek‖2
A − 2αrT

k rk + α2rT
k Ark

Now substitute in α = rT
k rk/rT

k Ark:

‖ek+1‖2
A = ‖ek‖2

A − 2
(rT

k rk)2

rT
k Ark

+
(rT

k rk)
rT
k Ark

= ‖ek‖2
A − (rT

k rk)2

rT
k Ark

This handily guarantees that until we converge the energy norm of error will strictly decrease—the term we’re subtracting off
of course must be positive. Further extracting out the factor by which the energy norm decreases, using ‖ek‖2

A = rT
k A−1rk

again, gives:

‖ek+1‖2
A =

(
1− (rT

k rk)2

(rT
k Ark)(rT

k A−1rk)

)
‖ek‖2

A

We now want to bound this factor. The denominator in the fractional part is positive, so it’s the same as:

(rT
k Ark)(rT

k A−1rk) = ‖rT
k Ark‖2‖rT

k A−1rk‖2

These norms are just absolute values of scalars which are already guaranteed to be positive, so we haven’t actually changed
anything. Now we simply use our definitions of matrix norms to bound this:

(rT
k Ark)(rT

k A−1rk) ≤ ‖rk‖2‖A‖2‖rk‖2‖rk‖2‖A−1‖2‖rk‖2

= ‖rk‖4
2‖A‖2‖A−1‖2

= (rT
k rk)2κ(A)

where κ(A) is the condition number of A (for the 2-norm), which is simply the ratio of the largest eigenvalue to the smallest
eigenvalue. This gives us a bound on the error, finally:

‖ek+1‖2
A ≤

(
1− (rT

k rk)2

(rT
k rk)2κ(A)

)
‖ek‖2

A

=
(

1− 1
κ(A)

)
‖ek‖2

A

I should say, this is only an upper bound. In some cases Steepest Descent converges much faster, e.g. if b is parallel to a single
eigenvector then it converges in one iteration (it should be easy to work out why!). However in practice it appears to be a fairly
representative upper bound.

Finally, expanding this out we see the the error in the k’th guess is bounded by:

‖ek‖A ≤
(

1− 1
κ(A)

)k/2

‖e0‖A

≈ e−
k
2 κ(A)‖e0‖A
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Therefore we can expect to have to take O(κ(A)) iterations to reduce the relative error to below a given threshhold. If you
recall from the previous notes on stationary methods, for the Poisson problem the condition number was O(n2), where n is
the number of grid points along one side of the mesh—so we are looking at O(n2) iterations for Steepest Descent to converge.
This isn’t any better than Gauss-Seidel.

2 Conjugate Gradient

One perspective on the poor performance of Steepest Descent is that it’s too greedy: it performs a locally optimal line search
along the direction of steepest descent, but globally this is not the fastest way to get to the minimum. For ill-conditioned
problems, this ends up with Steepest Descent zig-zagging a lot mostly in the direction of the largest eigenvalue’s eigenvector,
but not making much progress in the other eigenvector directions.

We’ve already seen a few ways to fix this: Newton’s method1 picked a different direction which got to the minimum
faster, and Barzilai-Borwein from assignment 2 used the steepest descent direction but a smarter step-length. We’ll now look
at another way to improve it, leading to the Conjugate Gradient (CG) algorithm which has become the de facto standard for
iteratively solving SPD linear systems.

Where Steepest Descent is slow because it keeps optimizing along almost the same direction, picking the best xk+1

from the one-dimensional set xk + span{rk}, we’ll speed it up by instead picking the best xk+1 from the entire subspace we’ve
seen so far. That is, we will choose xk+1 as the best guess from span{r0, r1, . . . , rk}. We’re now globally optimizing each
iteration, so we can’t help but do better!

To make this a bit easier, we’ll actually introduce another set of vectors p1, p2, . . . called search directions, which span
the same space as the residuals. This doesn’t change the choice of xk+1, but will give us some freedom to find the best xk+1

more efficiently. The first search direction will be the initial residual, p1 = r0 (which is of course just b), and the rest we’ll
compute as we go.

Define an n× k matrix Pk whose columns are the first k search directions:

Pk = (p1|p2| · · · |pk)

When we say we want xk to the best guess from the span of {p1, p2, . . . , pk} we are simply saying

xk = Pkak

for some k-dimensional vector ak, which contains the coefficients of the linear combination:

xk = a
(1)
k p1 + a

(2)
k p2 + . . . + a

(k)
k pk

This linear combination should be the one that minimizes the objective 1
2xT Ax− xT b, or equivalently the energy-norm of the

error. That is:
ak = arg min

a

1
2
(Pka)T A(Pka)− (Pka)T b

Taking the gradient with respect to a and setting it to zero gives us:

PT
k APkak = PT

k b

Incidentally, this should look very familiar to you! We’ve taken the original linear system Ax = b and “projected” it into a
smaller subspace spanned by Pk; this is the same operation in play for Rayleigh-Ritz to approximate eigenvalues/eigenvectors
and for Galerkin Finite Elements to approximate the solution of a PDE.

1Of course we can’t directly use Newton here, since it requires solving a linear system with the Hessian, which in this case is exactly the linear system
we’re trying to solve in the first place!
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Right now this looks a little dubious: at the k’th iteration we will apparently have to compute a dense k × k matrix
PT

k APk, then solve it with Cholesky, at significant cost if k is large. Therefore we’ll cleverly choose the search directions so
that PT

k APk is just a diagonal matrix. That is, we want pT
i Apj = 0 for i 6= j, a condition sometimes called being A-orthogonal

or A-conjugate. This is in fact the same thing as being orthogonal if you redefine the inner-product to include a multiplication
with A (and, not entirely surprisingly, the norm you get by using this modified inner-product is just the energy norm!).

We want pk to have a component in the direction of the latest residual, rk−1, but we can also include components from
previous search directions to make it A-orthogonal. This should ring a bell: we have a set of vectors which we want to make
A-orthogonal, which we’ll do one by one... Gram-Schmidt! We can use Gram-Schmidt to A-orthogonalize the vectors, just
using the A-inner-product instead of the usual dot-product. That is, the new search direction should be:

pk = rk−1 −
k−1∑
j=1

rT
k−1Apj

pT
j Apj

pj

Note that we’re not normalizing (changing the length) of the search directions, just making them A-orthogonal. You should
have no problem verifying that this formula does indeed make pT

k Apj = 0 for all j < k, which in turn implies that all the
search directions will be A-orthogonal.

So now PT
k APk is diagonal. Moreover, the first k − 1 rows and columns will be the previous diagonal matrix

PT
k−1APk−1, and the first k − 1 entries of PT

k b will be the previous vector PT
k−1b. Then the first k − 1 entries of ak will

be identical to ak−1, meaning we don’t have to solve for them again. Putting this together, we get that the new guess will be

xk = Pkak

= Pk−1ak−1 +
pT

k b

pT
k Apk

pk

= xk−1 + αkpk

where the “step length” αk is now:

αk =
pT

k b

pT
k Apk

Just like in Steepest Descent, we can also work out the update to the residual:

rk = b−Axk

= b−A(xk−1 + αkpk)
= b−Axk−1 − αkApk

= rk−1 − αkApk

We’re in good shape now: the only really expensive part left to tackle is the Gram-Schmidt step, which involves all the previous
k − 1 search directions.

Or does it? If you implement what we’ve done so far in MATLAB, you’ll discover a remarkable property: the terms in
the Gram-Schmidt formula for j = 1, 2, . . . , k−2 will all be, up to round-off error, equal to zero. This is no lucky coincidence!

The equation PT
k APkak = PT

k b which gave us the optimal guess from the search directions can be written as:

PT
k Axk = PT

k b

0 = PT
k b− PT

k Axk

0 = PT
k (b−Axk)

0 = PT
k rk
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In other words, it is completely equivalent to look for the guess which gives a residual orthogonal to all the search directions so
far.2 And since the search directions span the same subspace as the residuals, this implies that the residuals are all orthogonal!
In other words, rT

i rj = 0 for i 6= j. This actually gives us some insight as to why Conjugate Gradient will be so much faster
than Steepest Descent: at each step it optimizes along a new direction, and can’t zig-zag back and forth. It also will help us
understand the mystery of the zero terms in Gram-Schmidt. Rearrange the residual update formula:

rj = rj−1 − αjApj

⇒ Apj =
rj−1 − rj

αj

Now plug this into the Gram-Schmidt formula:

pk = rk−1 −
k−1∑
j=1

rT
k−1Apj

pT
j Apj

pj

= rk−1 −
k−1∑
j=1

rT
k−1(rj−1 − rj)

αjpT
j Apj

pj

Since the residuals are all orthogonal, the terms are zero except when j = k − 1, giving:

pk = rk−1 +
rT
k−1rk−1

αk−1pT
k−1Apk−1

pk−1

Of course, this only applies for k > 1: remember p1 = r0. Substituting in the formula we have for αk−1 = pT
k−1b/pT

k−1Apk−1

simplifies this to

pk = rk−1 +
rT
k−1rk−1

pT
k−1b

pk−1

= rk−1 + βk−1pk−1

where βk−1 = rT
k−1rk−1/pT

k−1b. This means not only is finding the next direction cheap, we don’t even need to store previous
directions: we can update them in place. It’s nearly magical: we’re finding a globally optimal solution from purely local
calculations.

There’s one niggling issue left, which we didn’t cover in lectures. If you look at the formula for β, the denominator
isn’t obviously nonzero—what if pk−1 is orthogonal, or nearly orthogonal, to b? Let’s take a closer look. Remember that b is
actually the first residual r0, and if we use the search direction update formula, we get (for k > 1)

pT
k b = pT

k r0

= (rk−1 + βk−1pk−1)T r0

Since the residuals are orthogonal, this is just:

pT
k b = βk−1p

T
k−1r0 = βk−1p

T
k−1b

But now plug in our definition of βk−1 = rT
k−1rk−1/pT

k−1b to get

pT
k b = rT

k−1rk−1

2Again, note the connection to Galerkin FEM: there too we find a linear combination of basis functions, where the “residual” (PDE) is orthogonal to all the
basis functions.
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after which we breathe a sigh of relief because this is definitely nonzero unless we’ve converged. From this we can get improved
formulas for α and β:

αk =
rT
k−1rk−1

pT
k Apk

βk−1 =
rT
k−1rk−1

rT
k−2rk−2

We get to reuse a lot of computations now.

Putting it all together, the Conjugate Gradient algorithm is as follows:

• Start with x0 = 0, r0 = b, p1 = r0.

• Compute ρ0 = rT
0 r0, which is, in fact ‖r0‖2

2 — if zero already, return.

• For k = 1, 2, . . .

– Multiply q = Apk.
– Compute α = ρk−1/(pT

k q).
– Update xk = xk−1 + αpk and rk = rk−1 − αq.
– Compute ρk = rT

k rk, and if small enough return (converged).
– Compute β = ρk/ρk−1.
– Update pk+1 = rk + βpk.

Normally, the updates to x, r, and p are done in-place, and past ρ values are discarded when no longer needed. Also, for
robustness there’s generally some maximum iteration count at which point, if still not converged, we return with an error flag.

It should also be pointed out that, just like Steepest Descent, A only appears in the algorithm in the form of a matrix-
vector product, q = Ap. This gives the method a lot of flexibility that methods like Gauss-Seidel (which depend on knowing
the entries in A) don’t necessarily have. For example, A might not be explicitly stored as a sparse matrix, but only arise as a
black-box function call which gives the effect of multiplying a vector by A. For example: A might be most naturally given
as a product of factors; in FEM where A is a global stiffness matrix assembled from local stiffness matrices, we can skip the
assembly step and directly compute Ap element by element; or the application of A might be approximated with algorithms
like Barnes-Hut or the Fast Multipole Method.

2.1 Convergence of Conjugate Gradient

Our first observation is that clearly CG will always outperform Steepest Descent: CG is optimizing over a larger set of direc-
tions. A somewhat arduous analysis can show that whereas Steepest Descent needs O(κ(A)) iterations in the worst case, CG
only needs O(

√
κ(A)) iterations, an order of magnitude better. For the Poisson problem, that means O(n) iterations instead of

O(n2) for a grid of side length n. However, it can be even better.

In exact arithmetic, CG isn’t necessarily an iterative solver: after n steps, it will return the best guess in the entire space,
which must of course be the exact solution. In fact, CG was originally proposed as an alternative to Gaussian Elimination—
but was initially discarded when it became clear that it took a constant factor more operations. In reality, with the presence
of round-off perturbing the calculation, CG isn’t exact, but will often get the solution to high precision long before the n’th
iteration.

Viewed one way, CG enriches the space it works on at each step with one matrix-vector multiply. It’s not hard to prove
that it chooses the k’th guess xk from the space

Kk(A, b) = span{b, Ab, . . . Ak−1b}
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which is called a Krylov subspace. (CG is one example of a Krylov subspace method, as is Steepest Descent, and several
other methods not covered in this course that have been adapted to more general linear systems where A may be indefinite or
unsymmetric.) Remembering the Power Method for finding eigenvectors, we can expect these Krylov subspaces to get steadily
“richer” in being able to resolve the eigenvectors associated with the largest magnitude eigenvalues. In fact, since exactly the
same space is generated from a shifted A−µI , choosing µ = λmin or µ = λmax shows that the Krylov space starts to resolve
the eigenvectors corresponding to both minimum and maximum eigenvalues. Therefore, we expect CG to converge on those
components of the solution faster than the components of the interior eigenvalues.

As it turns out, CG actually converges superlinearly: the speed at which it converges increases as you iterate more. This
can be understood in terms of the outer eigenvalue components converging early on, so that the problem ends up on a smaller
space, where the condition number of A has effectively been reduced. Instead of λ1/λn, once the components corresponding
to λ1 and λn have been solved the effective condition number ends up as λ2/λn−1. This also relates to CG giving the exact
answer in n iterations using exact arithmetic—in fact, if there are only k distinct eigenvalues with components present in the
residual, CG will converge in k iterations.

Also as a quick note—while for reasons of efficiency (reusing a matrix-vector multiply) we chose to use the update
formula for the residual, you might be tempted to think that this runs the danger of accumulating rounding errors, and therefore
it might be better to recompute the residual as rk = b − Axk. It is true that rounding errors do accumulate, so that the
updated residual steadily drifts from the true residual. However, remarkably enough, this gives better convergence than if
you recompute the residual! The underlying reason ends up being that the update formula is better at keeping the residuals
orthogonal (as they should be in exact arithmetic), and this ends up being more important for fast convergence.

Finally it should be made clear that while CG is picking guesses that are optimal in the energy norm, this isn’t a norm
we can actually measure without knowing the exact solution already. In practice people determine when to stop based on the
norm of the residual, however the relative 2-norm of the residual ‖r‖2/‖b‖2 can be different from the relative energy norm of
the error by a factor as big as

√
κ(A). In practice it’s typical to see that in some iterations the 2-norm of the residual increases

a lot, before eventually dropping again.

3 Preconditioned Conjugate Gradient

While CG is an order of magnitude faster than Steepest Descent, Gauss-Seidel, etc. and is guaranteed to work (in the energy
norm at least), for large or ill-conditioned problems it might still be very slow. Ideally we would be able to change the matrix
to have a smaller condition number, which would make CG faster—and in fact, we can do exactly that!

Notice that the linear system Ax = b is exactly equivalent to AMy = b, where x = My, for any matrix or linear
operator M . Sweeping aside the issue of whether AM is symmetric or not for now, if the condition number of AM is much
smaller than that of A, CG applied to this modified system should run much faster. We call M a preconditioner.

With some work, it’s possible to derive the Preconditioned Conjugate Gradient (PCG) algorithm, which works for any
symmetric positive definite matrix A and any symmetric positive definite preconditioner M . It is essentially equivalent to
running regular Conjugate Gradient on the modified symmetric positive definite system M1/2AM1/2y = M1/2b, and setting
x = M1/2y, but managed to avoid ever explicitly needing M1/2 or for that matter any mention of y. Rather than use the
residuals to construct search directions, it uses the preconditioned residuals z = Mr:

• Start with x0 = 0, r0 = b, z = Mr0, p1 = z0.

• Compute ρ0 = rT
0 z — if zero already, return.

• For k = 1, 2, . . .

– Multiply q = Apk.

– Compute α = ρk−1/(pT
k q).

– Update xk = xk−1 + αpk and rk = rk−1 − αq.
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– If ‖rk‖ is small enough return (converged).

– Precondition zk = Mrk.

– Compute ρk = rT
k zk.

– Compute β = ρk/ρk−1.

– Update pk+1 = zk + βpk.

We can actually reuse the same storage for q and z, so this is still nice and trim.

Ideally M should approximate the action of A−1, since κ(AA−1) = κ(I) = 1. But of course we also want something
that’s efficient to evaluate; the art of preconditioning is finding a good trade-off. The simplest preconditioner in use is just to
take the reciprocals of the diagonal part of A, i.e. M = D−1 where the matrix D = diag(A) is the same one used in Jacobi
iteration. Similarly Gauss-Seidel and SOR can be adapted to be preconditioners, though they first need to be “symmetrized”,
e.g. M = (U + D)−1(L + D)−1. Of course in this case we don’t actually compute and store this as a matrix, but rather use
triangular solves to apply it to the residual. Block versions of these algorithms are particularly effective.

Once the basic Krylov solvers like PCG were established, most of the research in iterative solvers turned to finding
effective preconditioners. One particularly popular class are the Incomplete LU (or Incomplete Cholesky) factorizations. Here
we start computing the LU or Cholesky factorization of A, but throw out nonzeroes along the way to make sure that the factors
stay sparse (and thus cheap). For example, nonzeros outside of the sparsity pattern of A might be discarded, or nonzeroes
smaller than some threshhold magnitude, or all but the m largest in each row or column. Ultimately this produces an inexact
factorization, but often it is close enough to give an excellent preconditioner.
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