
1cs542g-term1-2006

Notes

! Assignment 1 will be out later today
(look on the web)

2cs542g-term1-2006

Linear Algebra

! Last class:
we reduced the problem of “optimally”
interpolating scattered data to solving a
system of linear equations

! This week:
start delving into numerical linear algebra

! Often almost all of the computational work
in a scientific computing code is linear
algebra operations

3cs542g-term1-2006

Basic Definitions

! Matrix/vector notation

! Dot product, outer product

! Vector norms

! Matrix norms

4cs542g-term1-2006

Accuracy

! How accurate can we expect a floating
point matrix-vector multiply to be?
• Assume result is the exact answer to a

perturbed problem

! How accurate are real implementations?

5cs542g-term1-2006

BLAS

! Many common matrix/vector operations have
been standardized into an API called the BLAS
(Basic Linear Algebra Subroutines)
• Level 1: vector operations

copy, scale, dot, add, norms, …
• Level 2: matrix-vector operations

multiply, triangular solve, …
• Level 3: matrix-matrix operations

multiply, triangular solve, …

! FORTRAN bias, but callable from other langs

! Goals:
• As fast as possible, but still safe/accurate

! www.netlib.org/blas
6cs542g-term1-2006

Speed in BLAS

! In each level:
multithreading, prefetching, vectorization,
loop unrolling, etc.

! In level 2, especially in level 3: blocking
• Operate on sub-blocks of the matrix that fit the

memory architecture well

! General goal:
if it!s easy to phrase an operation in terms
of BLAS, get speed+safety for free
• The higher the level better

7cs542g-term1-2006

LAPACK

! The BLAS only solves triangular systems
• Forward or backward substitution

! LAPACK is a higher level API for matrix
operations:
• Solving linear systems

• Solving linear least squares problems
• Solving eigenvalue problems

! Built on the BLAS, with blocking in mind to keep
high performance

! Biggest advantage: safety
• Designed to handle difficult problems gracefully

! www.netlib.org/lapack

8cs542g-term1-2006

Specializations

! When solving a linear system, first question to
ask: what sort of system?

! Many properties to consider:
• Single precision or double?

• Real or complex?

• Invertible or (nearly) singular?
• Symmetric/Hermitian?

• Definite or Indefinite?
• Dense or sparse or specially structured?

• Multiple right-hand sides?

! LAPACK/BLAS take advantage of many of these
(sparse matrices the big exception…)

9cs542g-term1-2006

Accuracy

! Before jumping into algorithms, how
accurate can we hope to be in solving a
linear system?

! Key idea: backward error analysis

! Assume calculated answer is the
exact solution of a perturbed problem.

10cs542g-term1-2006

Condition Number

! Sometimes we can estimate the condition
number of a matrix a priori

! Special case: for a symmetric matrix,
2-norm condition number is ratio of
extreme eigenvalues

! LAPACK also provides cheap estimates
• Try to construct a vector ||x|| that comes close

to maximizing ||A-1x||

11cs542g-term1-2006

Gaussian Elimination

! Let!s start with the simplest unspecialized
algorithm: Gaussian Elimination

! Assume the matrix is invertible, but
otherwise nothing special known about it

! GE simply is row-reduction to upper
triangular form, followed by backwards
substitution
• Permuting rows if we run into a zero

12cs542g-term1-2006

LU Factorization

! Each step of row reduction is multiplication
by an elementary matrix

! Gathering these together, we find GE is
essentially a matrix factorization:
 A=LU
where
L is lower triangular (and unit diagonal),
U is upper triangular

! Solving Ax=b by GE is then
 Ly=b
 Ux=y

13cs542g-term1-2006

Block Approach to LU

! Rather than get bogged down in details of
GE (hard to see forest for trees)

! Partition the equation A=LU

! Gives natural formulas for algorithms

! Extends to block algorithms

