Cloth Collisions/Contact Challenges

* Critical part of real-world clothing sims is collision e Cloth is thin
— Not too many simple flags / curtains / table cloths in movies! 0 h trati it bvi
— Once you have a penetration, IU'S very obvious

* This part of the course is concerned with making collisions y P y

1) good-looking, — Simulation might not be able to recover
2) robust, and

3) fast * Cloth is flexible and needs many DOF
in that order

— Dozens or hundreds of triangles, in many layers,
can be involved simultaneously in collision area

* References:
— Provot, GI'97 . .
— Bridson, Fedkiw, & Anderson, SIGGRAPH’02 y CIOth SlmUIthonS are StreSSfUI

— Bridson, Marino, & Fedkiw, SCA'03 — If something can break, it will...

Outline of Solution

Separation from internal dynamics

Repulsion forces Separation from internal dynamics

— Well-conditioned, smooth, efficient for most situations

Geometric collisions

— Robust for high-velocity impacts

Impact zones

— Robust and scalable for highly constrained situations

Separation Example

* Simplify life by separating internal forces (stretching, « Start of timestep, x, (saved for collisions)
bending) from collision forces

* Assume black-box internal dynamics:
collision module is given
1) X, at start of collision timestep, and
2) x, candidate state at end
and then returns
3) X, Collision-free positions

* Time integrator responsible for incorporating this
back into simulation

new

Example Example

* Take one or more internal dynamics steps * And get to x4, candidate positions at end of
(ignoring collisions) collision step

Example

* Looking at motion x; to x,, collision module
resolves collisions to get X,

Example

* Time integrator takes x,,, and incorporates
collision impulses into velocity, continues on

Algorithm

* Forn=0,1, 2, ...
— (X, v) = advance_internal_dynamics(x,, v,,, dt)
— X+ = solve_collisions(x,, X)
—dv = (X, - X)/dt

— Optional:
smooth dv with damping dynamics
e.g. dv =dv,, + dt M1 F. (X, dv)

— V44 = VHdv

Notes

» Collisions are synchronized, fixed time step is fine
* Cruder algorithm shown in [BFA’02]

* If elastic collisions are needed, add extra collision step using
initial velocities v,

— see Guendelman, Bridson, Fedkiw, SIGGRAPH’03

* Solve_collisions() only needs x, and x;:
velocity is the difference v=(x;-x,) when needed

* Assuming linear velocity dependence in velocity smoothing
step

* Rest of talk: what to do in solve_collisions()

Repulsion Based Forces

Repulsions

Look at old (collision-free) positions x,

If the cloth is too close to itself or something else,
apply force to separate it

Use these for modeling:
— Cloth thickness (how close are repulsions active)

— Cloth compressibility (how strong are they)

Do not rely on them to stop all collisions

— Extending influence and/or making them stiffer detracts from
look of cloth, slows down simulation, ...

Proximity Detection

* Two ways triangle meshes can be close:

— Point close to triangle

— Edge close to edge

* In both cases we will want to know
barycentric coordinates of closest points

Point-Triangle Proximity

* Solve for barycentric
coordinates of closest point

Xo X1
on plane of triangle O
2
|x13| X13%453 (a} _ (xl3.x03]
2 N L]
Xj30%,; |x23| b X23°Xo3 cXq
X
c=1l-a-b 3
X2

* If a barycentric coordinate
is negative, skip this pair
(edge-edge will pick it up)

Edge-Edge Proximity

* Solve for barycentric
coo_rd.ln.ateg of closest points axy+(1-a)x
on infinite lines X3

X
2 0
|x01| Xo1°X32 (aj _ (xm’xslj Xo+(1-b)X4
Xg,° X5, |)C32|2 b X3 0X3

* Clamp to finite segments - one
that moved furthest is correct,
project onto other line and
clamp again for other point

Proximity Acceleration

Put triangles in bounding volumes, only check
elements if bounding volumes are close

Organize bounding volumes for efficient culling

Background grid works fine if triangles similar sizes

— Check each element against others in its grid cell or nearby
cells (within cloth thickness)

Bounding volume hierarchies useful too

— Prune checks between distant BV’s and their children

BV Hierarchy Algorithm

* Put pair of root nodes on stack

* While stack not empty:
— Pop the top pair of BV’s

— If they are close or overlapping:
if leaves: check mesh elements
else: push all pairs of children onto the stack

Computing Each Repulsion

* Direction of repulsion n:
direction between closest points

— In degenerate cases can use triangle normal or
normalized edge cross-product

* Several choices for repulsion:

— Damped spring between closest points, tries to pull
them to cloth thickness apart

— Kinematic result: move closest points some
fraction of the way to cloth thickness apart

Finding the Impulse

* Example: point-triangle
— Want to move closest points apart by distance d

— Assume impulse distributed to corners of triangle by

barycentric weights: x“=x—a—1In
m
new __ 1 new __ _ 1
Xy =Xy +5-In X, =X, =bo-In
new __ 1
Xy =x;—co-In

— Then solve for impulse: (scripted nodes have - mass)

new new new new —_
[(x0 —ax;”" = bxy" —cx;™) = (x, —ax, — bx, — cx3)]-n =d

1 2 bZ 2
+a+_+c_ I=d
m, m; m, m

Friction

* Relative velocity:
V=(Xo'-Xo0)-a(x41-x10)-b(X51-x,0)-c(x5"-X50)

* Tangential velocity: vy=v-(ven)n

e Static: v;"®w=0 as long as |F| < pFy

* Kinetic: If v{"®w#£0 then apply force |F+| = pFy
* Integrate forces in time: F—Av

* Combine into one formula:

Robustness Problem

* Repulsions only test for proximity at one time

* Fast moving cloth can collide in the middle of the
time step, and repulsions won'’t see it

* Even if repulsions catch a fast collision, they may
not resolve it

* End result: cloth goes through itself or objects

— Once on the wrong side, repulsions will actively keep it there

— Untangling is dodgy for self-intersections
(but see Baraff et al, SIGGRAPH’03)

Robust Geometric Collisions

Collision Detection

* Not interference (“do the meshes intersect?”),

but true collision detection

(“do the trajectories hit at any intermediate time?”)
* Again: meshes can collide in two ways

— Point hits triangle, edge hits edge
* Approach (Provot’97):

— Assume constant velocity of nodes through timestep

— Solve for times when nodes coplanar (cubic in t)

— Check proximity (some tolerance) at possible collision times

Defining the Cubic

e Assume x(t) =x;+tv, (withOst<1)

* Coplanar when tetrahedral volume of
(Xp:X1,X0,X3) IS Zero, i.e. when

[, (1) = x, (), 2, (1) = x, (1), X, (1) = %, (1)] = O

* Reduces to a cubic in t:

3 2
[vw’vzo’vw]t + ([xlo’vzo’vw] + [Vlo’xzo’vw] + [Vlo’vzmx.’,o])t

+([x,0,x20,v30] + [xlO’VZO’xw] + [Vlo’xzosxw])t + [xlo’xzo’xw] =0

Solving the Cubic

* We can'’t afford to miss any collisions:
have to deal with floating-point error

— Closed form solution not so useful

* Take a root-finding approach:
— Solve derivative (quadratic) for critical points
— Find subintervals of [0,1] where there could be roots

— Find roots in each subinterval with a sign change using
secant method

— If cubic evaluates close enough to zero at any point (e.qg.
subinterval boundaries), count as a root -- even with no sign
change

Acceleration

* Extend bounding volumes to include entire
trajectory of triangle

* Then acceleration is exactly the same as for
proximity detection

Collision Impulse Iteration

* Use the normal of the triangle, or normalized * Each time we collide a pair, we modify their
cross-product of the edges, at collision time end-of-step positions
* Inelastic collisions assumed: * This changes trajectories of coupled
want relative normal velocity to be zero elements: could cause new collisions
afterwards * So generate the list of potentially colliding
* Solve for impulse exactly as with repulsions pairs, process them one at a time updating
» Friction (tangential velocity modification) also Xnew @S WE gO
works exactly the same way * Then generate a new list -- keep iterating
1) Scalability Problem 2) Modeling Problem
* Resolving one pair of colliding elements can * Chainmail friction: wrinkles stick too much
cause a coupled pair to collide — Triangles behave like rigid plates,
— Resolving that can cause the first to collide again must be rotated to slide over each other,

* Resolving the first ones again can cause others to collide takes too much torque

— And so on...

* Easy to find constrained situations which
require an arbitrary number of iterations I
—

3) Robustness Problem

* Cloth can get closer and closer,
until...
floating-point error means we're not sure
which side things are on

* To be safe we need cloth to stay reasonably
well separated

Impact Zones

Attack Scalability Issue

Impact Zones

* Pairwise impulses are too local:
need global resolution method

— [Provot’97, BFA'02]: rigid impact zones

* Note: a set of intersection-free triangles
remain intersection-free during rigid motion

* So when a set of elements (“impact zone”)
collides, rigidify their motion to resolve

* Initially each vertex is its own impact zone
* Look for point-triangle and edge-edge
collisions between distinct impact zones:

— Merge all involved impact zones (at least 4 vertices)
into a single impact zone

— Rigidify motion of new impact zone

* Keep looking until everything is resolved

Rigidifying

* Need to conserve total linear and angular
momentum of impact zone:

— Compute centre of mass

— Compute linear and angular momentum

— Compute total mass and inertia tensor of vertices
— Solve for velocity and angular velocity

— Compute each new vertex position from translation+rotation
* Treat any scripted vertices as having « mass

* Note: if impact zone spans non-rigid scripted
vertices, you're in trouble.... try cutting the timestep

1) Damping Problem

* Rigidifying eliminates more relative motion
than desired: infinite friction

* Could see rigid clumps in motion

2) Robustness Problem

* Just like pair-wise impulses, cloth may get
closer and closer in simulation

* At some point, floating-point error causes
collision detection to break down

* Impact zones will never separate then

Putting it Together

Three Methods

* Repulsions
© cheap, well behaved
® not robust

* Collisions
© can catch high velocity events
® not scalable in constrained situations
® “chainmail” false friction
® robustness problem when cloth gets too close

* Impact Zones
© scalably robust
® over-damped dynamics
® robustness problem when cloth gets too close

Pipeline

First use repulsions
— Handles almost all interaction (contact mostly)
— Keeps cloth nicely separated

— Models thickness and compressibility

Then run geometric collisions on that output

— Catches isolated high velocity events accurately

Finally use impact zones as a last resort

— In the rare case something remains

Note: repulsions make it all work well

