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Notes

! Please read
• Kass and Miller, “Rapid, Stable Fluid

Dynamics for Computer Graphics”,
SIGGRAPH’90

! Blank in last class:
• At free surface of ocean, p=0 and u2

negligible, so Bernoulli’s equation simplifies to
"t=-gh

• Plug in the Fourier mode of the solution to this
equation, get the dispersion relation
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Dispersion relation again

! Ocean wave has wave vector K
• K gives the direction, k=|K| is the wave

number

• E.g. the wavelength is 2!/k

! Then the wave speed in deep water is

! Frequency in time is
• For use in formula

! 

c =
g

k

! 

" = gk

! 

h(x,z,t) = A(K)cos K " (x,z) #$t( )
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Simulating the ocean

! Far from land, a reasonable thing to do is
• Do Fourier decomposition of initial surface

height

• Evolve each wave according to given wave
speed (dispersion relation)
! Update phase, use FFT to evaluate

! How do we get the initial spectrum?
• Measure it! (oceanography)
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Energy spectrum

! Fourier decomposition of height field:

! “Energy” in K=(i,j) is

! Oceanographic measurements have found
models for expected value of S(K)
(statistical description)

! 

h(x,z,t) = ˆ h i, j, t( )e "1 i, j( )# x,z( )

i, j

$

! 

S(K) = ˆ h (K)
2
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Phillips Spectrum

! For a “fully developed” sea
• wind has been blowing a long time over a large area,

statistical distribution of spectrum has stabilized

! The Phillips spectrum is: [Tessendorf…]

• A is an arbitrary amplitude

• L=|W|2/g is largest size of waves due to wind velocity
W and gravity g

• Little l is the smallest length scale you want to model! 

S(K) = A
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Fourier synthesis

! From the prescribed S(K), generate actual
Fourier coefficients

• Xi is a random number with mean 0, standard
deviation 1 (Gaussian)

• Uniform numbers from unit circles aren’t terrible either

! Want real-valued h, so must have

• Or give only half the coefficients to FFT routine and
specify you want real output

! 

ˆ h K,0( ) = 1

2
X

1
+ X

2
"1( ) S K( )

! 

ˆ h (K) = ˆ h ("K)
#
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Time evolution

! Dispersion relation gives us #(K)

$ At time t, want

$ So then coefficients at time t are
• For j!0:

• Others: figure out from conjugacy condition (or leave
it up to real-valued FFT to fill them in)! 

h(x, t) = ˆ h (K,0)e
"1 K #x"$t( )

K=(i, j )

%

= ˆ h (K,0)e
" "1$t

e
"1K #x

K=(i, j )

%

! 

ˆ h i, j,t( ) = ˆ h i, j,0( )e" "1#t
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Picking parameters

! Need to fix grid for Fourier synthesis
(e.g. 1024x1024 height field grid)

! Grid spacing shouldn’t be less than e.g. 2cm
(smaller than that - surface tension, nonlinear
wave terms, etc. take over)
• Take little l (cut-off) a few times larger

! Total grid size should be greater than but still
comparable to L in Phillips spectrum (depends
on wind speed and gravity)

! Amplitude A shouldn’t be too large
• Assumed waves weren’t very steep
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Note on FFT output

! FFT takes grid of coefficients, outputs grid of
heights

! It’s up to you to map that grid
(0…n-1, 0…n-1) to world-space coordinates

! In practice: scale by something like L/n
• Adjust scale factor, amplitude, etc. until it looks nice

! Alternatively: look up exactly what your FFT
routines computes, figure out the “true” scale
factor to get world-space coordinates
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Tiling issues

! Resulting grid of waves can be tiled in x and z

! Handy, except people will notice if they can see
more than a couple of tiles

! Simple trick: add a second grid with a non-
rational multiple of the size
• Golden mean (1+sqrt(5))/2=1.61803… works well

• The sum is no longer periodic, but still can be
evaluated anywhere in space and time easily enough
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Choppy waves

! See Tessendorf for more explanation

! Nonlinearities cause real waves to have
sharper peaks and flatter troughs than
linear Fourier synthesis gives

! Can manipulate height field to give this
effect
• Distort grid with (x,z) -> (x,z)+%D(x,z,t)

! 

D(x, t) = " "1
K

K

ˆ h K,t( )
K

# e
"1K $x
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Choppiness problems

! The distorted grid can actually tangle up
(Jacobian has negative determinant - not
1-1 anymore)
• Can detect this, do stuff (add particles for

foam, spray?)

! Can’t as easily use superposition of two
grids to defeat periodicity… (but with a big
enough grid and camera position chosen
well, not an issue)
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Shallow Water
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Shallow water

! Simplified linear analysis before had dispersion relation

• For shallow water, kH is small (that is, wave lengths are
comparable to depth)

• Approximate tanh(x)=x for small x:

! Now wave speed is independent of wave number, but
dependent on depth
• Waves slow down as they approach the beach

! 

c =
g

k
tanhkH

! 

c = gH
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What does this mean?

! We see the effect of the bottom
• Submerged objects (H decreased) show up

as places where surface waves pile up on
each other

• Waves pile up on each other (eventually
should break) at the beach

• Waves refract to be parallel to the beach

! We can’t use Fourier analysis
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PDE’s

! Saving grace: wave speed independent of k
means we can solve as a 2D PDE

! We’ll derive these “shallow water equations”
• When we linearize, we’ll get same wave speed

! Going to PDE’s also let’s us handle non-square
domains, changing boundaries
• The beach, puddles, …

• Objects sticking out of the water (piers, walls, …) with
the right reflections, diffraction, …

• Dropping objects in the water
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Kinematic assumptions

! We’ll assume as before water surface is a height field
y=h(x,z,t)

! Water bottom is y=-H(x,z,t)

! Assume water is shallow (H is smaller than wave lengths)
and calm (h is much smaller than H)
• For graphics, can be fairly forgiving about violating this…

! On top of this, assume velocity field doesn’t vary much in
the y direction
• u=u(x,z,t), w=w(x,z,t)

• Good approximation since there isn’t room for velocity to vary
much in y(otherwise would see disturbances in small length-
scale features on surface)

! Also assume pressure gradient is essentially vertical
• Good approximation since p=0 on surface, domain is very thin
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Conservation of mass

! Integrate over a column of water with cross-
section dA and height h+H
• Total mass is &(h+H)dA

• Mass flux around cross-section is
&(h+H)(u,w)

$ Write down the conservation law

$ In differential form (assuming constant density):

• Note: switched to 2D so u=(u,w) and '=("/"x, "/"z)

! 

"

"t
h + H( ) +# $ (h + H)u( ) = 0
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Pressure

! Look at y-component of momentum equation:

! Assume small velocity variation - so dominant
terms are pressure gradient and gravity:

! Boundary condition at water surface is p=0
again, so can solve for p:

! 

vt + u " #v +
1

$

%p

%y
= &g + '#2

v

! 

1

"

#p

#y
= $g

! 

p = "g h # y( )
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Conservation of momentum

! Total momentum in a column:

! Momentum flux is due to two things:
• Transport of material at velocity u with its own

momentum:

• And applied force due to pressure. Integrate
pressure from bottom to top:

! 

p
"H

h

# = $g h " y( )
"H

h

# =
$g

2
h + H( )

2

  

! 

"
v 
u 

#H

h

$ = "
v 
u h + H( )

  

! 

"
v 
u ( )

v 
u 

#H

h

$
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Pressure on bottom

! Not quite done… If the bottom isn’t flat,
there’s pressure exerted partly in the
horizontal plane
• Note p=0 at free surface, so no net force there

! Normal at bottom is:

! Integrate x and z components of pn over
bottom
• (normalization of n and cosine rule for area

projection cancel each other out)
! 

n = "H
x
,"1,"H

z( )

! 

"#g h + H( )$H dA
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Shallow Water Equations

! Then conservation of momentum is:

! Together with conservation of mass

we have the Shallow Water Equations

  

! 

"

"t
#
v 
u (h + H)( ) +$ % #

v 
u 
v 
u (h + H) +

#g

2
(h + H)

2
& 

' 
( 

) 

* 
+ , #g(h + H)$H = 0

! 

"

"t
h + H( ) +# $ (h + H)u( ) = 0
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Note on conservation form

! At least if H=constant, this is a system of
conservation laws

! Without viscosity, “shocks” may develop
• Discontinuities in solution (need to go to weak integral

form of equations)

• Corresponds to breaking waves - getting steeper and
steeper until heightfield assumption breaks down
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Simplifying Conservation of Mass

! Expand the derivatives:

! Label the depth h+H with (:

! So water depth gets advected around by
velocity, but also changes to take into
account divergence

! 

"(h + H)

"t
+ u # $(h + H) + (h + H)$ # u = 0

D(h + H)

Dt
= %(h + H)$ # u

! 

D"

Dt
= #"$ % u
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Simplifying Momentum

! Expand the derivatives:

! Subtract off conservation of mass times velocity:

! Divide by density and depth:

! Note depth minus H is just h:

! 

"#u( )
t
+$ % "uu# +

"g

2
#2

& 

' 
( 

) 

* 
+ , "g#$H = 0

"#ut + "u#t + "u$ % #u( ) + "#u % $u+ "g#$# , "g#$H = 0

! 

"#ut + "#u $ %u+ "g#%# & "g#%H = 0

! 

ut + u " #u+ g#$ % g#H = 0

! 

ut + u " #u+ g#h = 0
Du

Dt
= $g#h

26cs533d-winter-2005

Interpreting equations

! So velocity is advected around, but also
accelerated by gravity pulling down on
higher water

! For both height and velocity, we have two
operations:
• Advect quantity around (just move it)
• Change it according to some spatial

derivatives

! Our numerical scheme will treat these
separately: “splitting”
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Linearization

! Again assume not too much velocity variation
(i.e. waves move, but water basically doesn’t)
• No currents, just small waves

• Alternatively: inertia not important compared to gravity

• Or: numerical method treats the advection separately
(see next week!)

! Then drop the nonlinear advection terms

! Also assume H doesn’t vary in time

! 

ht = " h + H( )# $ u

ut = "g#h
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Wave equation

! Only really care about heightfield for
rendering

! Differentiate height equation in time

! Plug in u equation

! Finally, neglect nonlinear (quadratically
small) terms on right to get! 

h
tt

= "h
t
# $ u " h + H( )# $ ut

! 

htt = "ht# $ u + g h + H( )#2
h

! 

htt = gH"
2
h
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Deja vu

! This is the linear wave equation, with wave
speed c2=gH

! Which is exactly what we derived from the
dispersion relation before (after linearizing the
equations in a different way)

! But now we have it in a PDE that we have some
confidence in
• Can handle varying H, irregular domains…

! Caveat: to handle H going to 0 or negative, we’ll
in fact use

! 

htt = g(h + H)"
2
h
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Initial + boundary conditions

! We can specify initial h and ht

• Since it’s a second order equation

! We can specify h at “open” boundaries
• Water is free to flow in and out

! Specify "h/"n=0 at “closed” boundaries
• Water does not pass through boundary

• Equivalent to reflection symmetry

• Waves reflect off these boundaries

! Note: dry beaches etc. don’t have to be treated as
boundaries -- instead just have
h=-H initially
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Example conditions

! Start with quiet water h=0, beach on one
side of domain

! On far side, specify h by 1D Fourier
synthesis (e.g. see last lecture)

! On lateral sides, specify "h/"n=0
(reflect solution)

! Keep beach side dry h=-H

! Start integrating
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Space Discretization

! In space, let’s use finite-differences on a regular grid

! Need to discretize '2h=hxx+hzz

$ Standard 5-point approximation good:

$ At boundaries where h is specified, plug in those values
instead of grid unknowns

$ At boundaries where normal derivative is specifed, use
finite difference too
• Example hi+1j-hij=0  which gives hi+1j=hij

! 

"
2
h( )

ij
#
hi+1 j $ 2hij + hi$1 j

%x
2

+
hij+1 $ 2hij + hij$1

%z
2
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Surface tension

! Let’s go back to nonlinear shallow water
equations for a moment

! If we include surface tension, then there’s an
extra normal traction (i.e. pressure) on surface
• Proportional to the mean curvature

• The more curved the surface, the more it wants to get
flat again

• Actually arises out of different molecular attractions
between water-water, water-air, air-air

! We can model this by changing pressure BC to
p=)* from p=0 at surface y=h
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Mean curvature

! If surface is fairly flat, can approximate

! Plugging this pressure into momentum
gives

! 

" # $%2
h

! 

ut + u " #u+ g#h $
1

%
#&#2

h = 0
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Simplifying

! Doing same linearization as before, but
now in 1D (forget z) get

! Should look familiar - it’s the bending
equation from long ago

! Capillary (surface tension) waves
important at small length scales

! 

htt = gHhxx "
#H

$
hxxxx
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Other shallow water eq’s

! General idea of ignoring variation (except
linear pressure) in one dimension
applicable elsewhere

! Especially geophysical flows: the weather

! Need to account for the fact that Earth is
rotating, not an inertial frame
• Add Coriolis pseudo-forces

! Can have several shallow layers too


