Notes

- Please read
 - Kass and Miller, "Rapid, Stable Fluid Dynamics for Computer Graphics", SIGGRAPH'90
- Blank in last class:
 - At free surface of ocean, p=0 and u² negligible, so Bernoulli's equation simplifies to $\varphi_t \text{=-} gh$
 - Plug in the Fourier mode of the solution to this equation, get the dispersion relation

cs533d-winter-2005

cs533d-winter-2005

3

Dispersion relation again

- Ocean wave has wave vector K
 - K gives the direction, k=IKI is the wave number
 - E.g. the wavelength is $2\pi/k$
- Then the wave speed in deep water is c = 1
- Frequency in time is $\omega = \sqrt{gk}$
 - For use in formula

$$h(x,z,t) = A(K)\cos(K \cdot (x,z) - \omega t)$$

cs533d-winter-2005 2

cs533d-winter-2005

Simulating the ocean

- Far from land, a reasonable thing to do is
 - Do Fourier decomposition of initial surface height
 - Evolve each wave according to given wave speed (dispersion relation)
 Update phase, use FFT to evaluate
- How do we get the initial spectrum?
 - Measure it! (oceanography)

Energy spectrum

Fourier decomposition of height field:

$$h(x,z,t) = \sum_{i,j} \hat{h}(i,j,t) e^{\sqrt{-1}(i,j) \cdot (x,z)}$$

- "Energy" in K=(i,j) is $S(K) = |\hat{h}(K)|^2$
- Oceanographic measurements have found models for expected value of S(K) (statistical description)

Phillips Spectrum

- For a "fully developed" sea
 - wind has been blowing a long time over a large area, statistical distribution of spectrum has stabilized
- The Phillips spectrum is: [Tessendorf...]

$$S(K) = A \frac{1}{k^4} \exp\left(\frac{-1}{\left(kL\right)^2} - \left(kl\right)^2\right) \left(\frac{|K \cdot W|}{|K||W|}\right)^2$$

- A is an arbitrary amplitude
- L=IWI²/g is largest size of waves due to wind velocity W and gravity g
- Little I is the smallest length scale you want to model

cs533d-winter-2005

Fourier synthesis

 From the prescribed S(K), generate actual Fourier coefficients

$$\hat{h}(K,0) = \frac{1}{\sqrt{2}} \left(X_1 + X_2 \sqrt{-1} \right) \sqrt{S(K)}$$

- X_i is a random number with mean 0, standard deviation 1 (Gaussian)
- Uniform numbers from unit circles aren't terrible either
- Want real-valued h, so must have

$$\hat{h}(K) = \hat{h}(-K)^*$$

• Or give only half the coefficients to FFT routine and specify you want real output

Time evolution

- Dispersion relation gives us ω(K)
- v At time t, want $h(x,t) = \sum \hat{h}(K,0)e^{\sqrt{-1}(K \cdot x \omega t)}$

$$= \sum_{K=(i, j)}^{K=(i, j)} \hat{h}(K, 0) e^{-\sqrt{-1}\omega t} e^{\sqrt{-1}K \cdot x}$$

- v So then coefficients at time t are
 - For j≥0: $\hat{h}(i, j, t) = \hat{h}(i, j, 0)e^{-\sqrt{-1}\omega t}$
 - Others: figure out from conjugacy condition (or leave it up to real-valued FFT to fill them in)

cs533d-winter-2005 7

cs533d-winter-2005

9

Picking parameters

- Need to fix grid for Fourier synthesis (e.g. 1024x1024 height field grid)
- Grid spacing shouldn't be less than e.g. 2cm (smaller than that - surface tension, nonlinear wave terms, etc. take over)
 - Take little I (cut-off) a few times larger
- Total grid size should be greater than but still comparable to L in Phillips spectrum (depends on wind speed and gravity)
- Amplitude A shouldn't be too large
 - Assumed waves weren't very steep

cs533d-winter-2005

Note on FFT output

- FFT takes grid of coefficients, outputs grid of heights
- It's up to you to map that grid (0...n-1, 0...n-1) to world-space coordinates
- In practice: scale by something like L/n
 Adjust scale factor, amplitude, etc. until it looks nice
- Alternatively: look up exactly what your FFT routines computes, figure out the "true" scale factor to get world-space coordinates

Tiling issues

- Resulting grid of waves can be tiled in x and z
- Handy, except people will notice if they can see more than a couple of tiles
- Simple trick: add a second grid with a nonrational multiple of the size
 - Golden mean (1+sqrt(5))/2=1.61803... works well
 - The sum is no longer periodic, but still can be evaluated anywhere in space and time easily enough

cs533d-winter-2005 10

Choppy waves

- See Tessendorf for more explanation
- Nonlinearities cause real waves to have sharper peaks and flatter troughs than linear Fourier synthesis gives
- Can manipulate height field to give this effect
 - Distort grid with $(x,z) \rightarrow (x,z)+\lambda D(x,z,t)$

$$D(x,t) = \sum_{K} -\sqrt{-1} \frac{K}{|K|} \hat{h}(K,t) e^{\sqrt{-1}K \cdot x}$$

Choppiness problems

- The distorted grid can actually tangle up (Jacobian has negative determinant - not 1-1 anymore)
 - Can detect this, do stuff (add particles for foam, spray?)
- Can't as easily use superposition of two grids to defeat periodicity... (but with a big enough grid and camera position chosen well, not an issue)

Shallow Water

Shallow water

Simplified linear analysis before had dispersion relation

$$c = \sqrt{\frac{g}{k}} \tanh kH$$

· For shallow water, kH is small (that is, wave lengths are comparable to depth) Apr

 $c = \sqrt{gH}$

- Now wave speed is independent of wave number, but dependent on depth
 - · Waves slow down as they approach the beach

cs533d-winter-2005 14

What does this mean?

cs533d-winter-2005

cs533d-winter-2005

15

17

13

- We see the effect of the bottom
 - Submerged objects (H decreased) show up as places where surface waves pile up on each other
 - Waves pile up on each other (eventually should break) at the beach
 - Waves refract to be parallel to the beach
- We can't use Fourier analysis

PDE's

- Saving grace: wave speed independent of k means we can solve as a 2D PDE
- We'll derive these "shallow water equations" · When we linearize, we'll get same wave speed
- Going to PDE's also let's us handle non-square domains, changing boundaries
 - The beach, puddles, ...
 - Objects sticking out of the water (piers, walls, ...) with the right reflections, diffraction,
 - · Dropping objects in the water

cs533d-winter-2005 16

Kinematic assumptions

- We'll assume as before water surface is a height field y=h(x,z,t)
- Water bottom is y=-H(x,z,t)
- · Assume water is shallow (H is smaller than wave lengths) and calm (h is much smaller than H)
 - · For graphics, can be fairly forgiving about violating this...
- On top of this, assume velocity field doesn't vary much in the y direction
 - u=u(x,z,t), w=w(x,z,t)
 - · Good approximation since there isn't room for velocity to vary much in y(otherwise would see disturbances in small lengthscale features on surface)
- Also assume pressure gradient is essentially vertical
 - Good approximation since p=0 on surface, domain is very thin r-2005

Conservation of mass

- Integrate over a column of water with crosssection dA and height h+H
 - Total mass is ρ(h+H)dA
 - · Mass flux around cross-section is $\rho(h+H)(u,w)$
- υ Write down the conservation law
- υ In differential form (assuming constant density): $\frac{\partial}{\partial t}(h+H) + \nabla \cdot \left((h+H)u\right) = 0$
 - Note: switched to 2D so u=(u,w) and $\nabla=(\partial/\partial x, \partial/\partial z)$

• Look at y-component of momentum equation:

$$v_t + u \cdot \nabla v + \frac{1}{\rho} \frac{\partial p}{\partial y} = -g + v \nabla^2 v$$

 Assume small velocity variation - so dominant terms are pressure gradient and gravity:

$$\frac{1}{\rho}\frac{\partial p}{\partial y} = -g$$

 Boundary condition at water surface is p=0 again, so can solve for p:

$$p = \rho g (h - y)$$

19

cs533d-winter-2005

cs533d-winter-2005

21

$$(x - y)$$

Conservation of momentum

Total momentum in a column:

$$\int_{-H}^{h} \rho \vec{u} = \rho \vec{u} (h + H)$$

- Momentum flux is due to two things:
 - Transport of material at velocity u with its own momentum: $\int_{-\pi}^{h} (\rho \bar{u}) \bar{u}$
 - And applied force due to pressure. Integrate pressure from bottom to top:

$$\int_{-H}^{h} p = \int_{-H}^{h} \rho g(h - y) = \frac{\rho g}{2} (h + H)^{2} g_{\text{cs533d-winter-2005}} 20$$

Pressure on bottom

- Not quite done... If the bottom isn't flat, there's pressure exerted partly in the horizontal plane
 - Note p=0 at free surface, so no net force there
- Normal at bottom is: $n = (-H_r, -1, -H_r)$
- Integrate x and z components of pn over bottom
 - (normalization of n and cosine rule for area projection cancel each other out)

 $-\rho g(h+H)\nabla H dA$

Shallow Water Equations

Then conservation of momentum is:

$$\frac{\partial}{\partial t} \left(\rho \vec{u} (h+H) \right) + \nabla \cdot \left(\rho \vec{u} \vec{u} (h+H) + \frac{\rho g}{2} (h+H)^2 \right) - \rho g (h+H) \nabla H = 0$$

Together with conservation of mass

$$\frac{\partial}{\partial t} (h+H) + \nabla \cdot ((h+H)u) = 0$$

we have the Shallow Water Equations

cs533d-winter-2005 22

Note on conservation form

- At least if H=constant, this is a system of conservation laws
- Without viscosity, "shocks" may develop
 - Discontinuities in solution (need to go to weak integral form of equations)
 - Corresponds to breaking waves getting steeper and steeper until heightfield assumption breaks down

Simplifying Conservation of Mass

Expand the derivatives:

$$\frac{\partial (h+H)}{\partial t} + u \cdot \nabla (h+H) + (h+H)\nabla \cdot u = 0$$
$$\frac{D(h+H)}{Dt} = -(h+H)\nabla \cdot u$$

• Label the depth h+H with η :

$$\frac{\partial \eta}{\partial t} = -\eta \nabla \cdot u$$

 So water depth gets advected around by velocity, but also changes to take into account divergence

cs533d-winter-2005 2

Simplifying Momentum

- Expand the derivatives: $(\rho\eta u)_t + \nabla \cdot \left(\rho u u \eta + \frac{\rho g}{2}\eta^2\right) - \rho g \eta \nabla H = 0$ $\rho\eta u_t + \rho u\eta_t + \rho u \nabla \cdot (\eta u) + \rho \eta u \cdot \nabla u + \rho g \eta \nabla \eta - \rho g \eta \nabla H = 0$
- Subtract off conservation of mass times velocity: $\rho\eta u_t + \rho\eta u \cdot \nabla u + \rho g\eta \nabla \eta - \rho g\eta \nabla H = 0$
- Divide by density and depth: $u_t + u \cdot \nabla u + g \nabla \eta - g \nabla H = 0$
- Note depth minus H is just h:

$$u_t + u \cdot \nabla u + g \nabla h = 0$$
$$\frac{Du}{Dt} = -g \nabla h$$

cs533d-winter-2005

25

Interpreting equations

- So velocity is advected around, but also accelerated by gravity pulling down on higher water
- For both height and velocity, we have two operations:
 - Advect quantity around (just move it)
 - Change it according to some spatial derivatives
- Our numerical scheme will treat these separately: "splitting"

cs533d-winter-2005 26

Linearization

- Again assume not too much velocity variation (i.e. waves move, but water basically doesn't)
 - · No currents, just small waves
 - Alternatively: inertia not important compared to gravity
 - Or: numerical method treats the advection separately (see next week!)
- Then drop the nonlinear advection terms
- Also assume H doesn't vary in time

$$h_t = -(h+H)\nabla \cdot u$$
$$u_t = -g\nabla h$$

Wave equation

- Only really care about heightfield for rendering
- Differentiate height equation in time $h_{tt} = -h_t \nabla \cdot u - (h+H) \nabla \cdot u_t$
- Plug in u equation
- $h_{tt} = -h_t \nabla \cdot u + g(h+H) \nabla^2 h$ Finally, neglect nonlinear (quadratically small) terms on right to get

 $h_{tt} = gH\nabla^2 h$

cs533d-winter-2005 28

Deja vu

- This is the linear wave equation, with wave speed c²=aH
- Which is exactly what we derived from the dispersion relation before (after linearizing the equations in a different way)
- But now we have it in a PDE that we have some confidence in
 - Can handle varying H, irregular domains...
- Caveat: to handle H going to 0 or negative, we'll in fact use

$$h_{tt} = g(h+H)\nabla^2 h$$

Initial + boundary conditions

- We can specify initial h and h_t
- Since it's a second order equation
- We can specify h at "open" boundaries · Water is free to flow in and out
- Specify \u00e4h/\u00e4n=0 at "closed" boundaries
 - · Water does not pass through boundary
 - Equivalent to reflection symmetry
 - Waves reflect off these boundaries
- Note: dry beaches etc. don't have to be treated as boundaries -- instead just have h=-H initially

cs533d-winter-2005 27

Example conditions

- Start with quiet water h=0, beach on one side of domain
- On far side, specify h by 1D Fourier synthesis (e.g. see last lecture)
- ♦ On lateral sides, specify ∂h/∂n=0 (reflect solution)
- ♦ Keep beach side dry h=-H
- Start integrating

cs533d-winter-2005 31

Space Discretization

- In space, let's use finite-differences on a regular grid
- Need to discretize ∇²h=h_{xx}+h_{zz}

n

Standard 5-point approximation good:

$$\left(\nabla^2 h\right)_{ij} \approx \frac{h_{i+1j} - 2h_{ij} + h_{i-1j}}{\Delta x^2} + \frac{h_{ij+1} - 2h_{ij} + h_{ij-1}}{\Delta z^2}$$

- $\upsilon~$ At boundaries where h is specified, plug in those values instead of grid unknowns
- $\boldsymbol{\upsilon}$ At boundaries where normal derivative is specifed, use finite difference too
 - Example h_{i+1j} - h_{ij} =0 which gives h_{i+1j} = h_{ij}

cs533d-winter-2005 32

Surface tension

- Let's go back to nonlinear shallow water equations for a moment
- If we include surface tension, then there's an extra normal traction (i.e. pressure) on surface
 - Proportional to the mean curvature
 - The more curved the surface, the more it wants to get flat again
 - Actually arises out of different molecular attractions between water-water, water-air, air-air
- We can model this by changing pressure BC to p=σκ from p=0 at surface y=h

cs533d-winter-2005 33

Mean curvature

If surface is fairly flat, can approximate

$$\kappa \approx -\nabla^2 h$$

Plugging this pressure into momentum gives

$$u_t + u \cdot \nabla u + g \nabla h - \frac{1}{\rho} \nabla \sigma \nabla^2 h = 0$$

cs533d-winter-2005 34

Simplifying

 Doing same linearization as before, but now in 1D (forget z) get

$$h_{tt} = gHh_{xx} - \frac{\sigma H}{\rho}h_{xxxx}$$

- Should look familiar it's the bending equation from long ago
- Capillary (surface tension) waves important at small length scales

Other shallow water eq's

- General idea of ignoring variation (except linear pressure) in one dimension applicable elsewhere
- Especially geophysical flows: the weather
- Need to account for the fact that Earth is rotating, not an inertial frame
 - Add Coriolis pseudo-forces
- Can have several shallow layers too