
1cs533d-winter-2005

Notes

! Please read Enright et al., “Animation and
rendering of complex water surfaces”,
SIGGRAPH’02

2cs533d-winter-2005

Level Set Distortion

! Assuming even no numerical diffusion
problems in level set advection (e.g. well-
resolved on grid), level sets still have
problems

! Initially equal to signed distance

! After non-rigid motion, stop being signed
distance
• E.g. points near interface will end up deep

underwater, and vice versa

3cs533d-winter-2005

Fixing Distortion

! Remember it’s only zero isocontour we
care about - free to change values away
from interface

! Can reinitialize to signed distance
(“redistance”)
• Without moving interface, change values to be

the signed distance to the interface

4cs533d-winter-2005

Reinitialization

! Idea: we have a distorted !, |#!|!1

" Want to return to |#!|=1 without disturbing the
location of the interface

" If we’re not too far from |#!|=1, makes sense to
use an iterative method
• We can even think of each iteration as a pseudo-time

step

• Information should flow outward from interface

• Advection in direction sign(!)n and with rate of
change sign(!):

!

"t + sign(")
#"

#"

$

%
&

'

(
) * #" = sign(")

5cs533d-winter-2005

Reinitialization cont’d

! Simplifying this we get:

! This is another Hamilton-Jacobi
equation…
• If we want |#!|=1 to very high order accuracy,

can use high-order HJ methods
!

"t + sign(") #" $1() = 0

6cs533d-winter-2005

Discretization

! When we discretize (e.g. with semi-
Lagrangian) we’ll end up interpolating with
values on either side of interface

! Limit the possibility for weird stuff to
happen, like ! changing sign

" So instead of sign(!), use S(!0)

• Can never flip sign

• Sign function smeared out to be smooth:

!

S("
0
) =

"
0

"
0

2 + #"
0

2
$x()

2

7cs533d-winter-2005

Aside: initialization

! This works well if we’re already close to signed
distance

! What if we start from scratch at t=0?
• For very simple geometry, may construct !

analytically

• More generally, need to numerically approximate

! One solution - if we can at least get
inside/outside on the grid, can run reinitialization
equation from there (1st order accurate)

8cs533d-winter-2005

Problems

! Reinitialization will unfortunately slightly
move the interface (less than a grid cell)

! Errors look like, as usual, extra diffusion or
smoothing
• In addition to the errors we’re making in

advection…

9cs533d-winter-2005

Fast methods

! Problem with reinitialization from scratch - to get full field,
need to take O(n) steps, each costs O(n3)

! Can speed up with local level set method
• Only care about signed distance near interface, so only compute

those O(n2) values in O(1) steps

• Gives optimal O(n2) complexity (but the constant might be big!)

! If we really want full grid, but fast:
• Fast Marching Method O(n3log n) (Tsitsiklis, Sethian)

• Fast Sweeping Method O(n3) (Zhao)

• Other more geometric ideas (e.g. Tsai, Mauch)

! Nice property: more careful about not letting the interface
move

10cs533d-winter-2005

Velocity extrapolation

! We can exploit level set to extrapolate velocity
field outside water
• Not a big deal for pressure solve - can directly handle

extrapolation there

• But a big deal for advection - with semi-Lagrangian
method might be skipping over, say, 5 grid cells

• So might want velocity 5 grid cells outside of water

! Simply take the velocity at an exterior grid point
to be interpolated velocity at closest point on
interface
• Alternatively, propagate outward to solve

similar to redistancing methods

!

"u # "$ = 0

11cs533d-winter-2005

Particle-Level Set

! Last time - mentioned marker particles (MAC)
method great for rough surfaces

! But if we want surface tension (which is
strongest for rough flows!) or smooth water
surfaces, we need a better technique

! Hybrid method: particle-level set
• [Fedkiw and Foster], [Enright et al.]

• Level set gives great smooth surface - excellent for
getting mean curvature

• Particles correct for level set mass (non-)conservation
through excessive numerical diffusion

12cs533d-winter-2005

Level set advancement

! Put marker particles with values of ! attached in
a band near the surface
• We’re also storing ! on the grid, so we don’t need

particles deep in the water

• For better results, also put particles with !>0 (“air”
particles) on the other side

" After doing a step on the grid and moving !, also
move particles with (extrapolated) velocity field

" Then correct the grid ! with the particle !

" Then adjust the particle ! from the grid !

13cs533d-winter-2005

Level set correction

! Look for escaped particles
• Any particle on the wrong side (sign differs) by more than the

particle radius |!|

" Rebuild !<0 and !>0 values from escaped particles
(taking min/max’s of local spheres)

" Merge rebuilt !<0 and !>0 by taking minimum-
magnitude values

" Reinitialize new grid !

" Correct again

" Adjust particle ! values within limits
(never flip sign)

14cs533d-winter-2005

Artificial Compressibility

! Let’s make a quick detour…

! So far we’ve seen projection methods for
enforcing divergence-free constraint
• Means solving Poisson equation for pressure

• Big, sparse linear system - it’s slow, it’s the bottleneck

• Particularly on parallel architectures - global
communication

• Needs a weird staggered grid, or more complicated
problems and fixes

! An alternative: artificial compressibility

15cs533d-winter-2005

Revisiting incompressibility

! Real fluids are not incompressible

! We just make the idealization of incompressibility
• Water, air are very close unless material velocity comparable to

sound speed (transonic or faster)

• Simplifies math a lot

• Means we can ignore sound waves in numerical methods -
terrible time step limit

! But we could go the other way
• Replace real compressible physics with fake ones that still have

sound speed much faster than material velocity

16cs533d-winter-2005

Equation of state

! Turn hard constraint #•u=0 into soft constraint

• Allow the fluid to compress a little, but add restoring
force to get it back

! Real compressible flow does this, but with all
sorts of complications from thermodynamics

! We’ll fake it, simplify compressible flow
• We don’t care about compressibility effects and

ideally won’t even see them at all

! Artificial equation of state: p=c2$

" [Chorin ‘67]

17cs533d-winter-2005

New equations

! Need to include density again (continuity
eq. = conservation of mass)

! And momentum equation

! And the new equation of state!

"
t
+ # $ "u() = 0

"
t
+ u $ #" = %"# $ u

!

ut + u " #u+ 1

$
#p = g + 1

$
"µ #u+#uT()

!

p = c
2"

18cs533d-winter-2005

What is c?

! Can derive acoustic wave equation

! We want to make sure that the maximum
material speed (u) is much less than c
• E.g. choose c at least 10 |u|max

! Note that time step limit (for explicit
methods) will have "t<"x/c
• Hope is that 10+ times the number of steps is

worth it for no pressure solve, easier
programming, etc.

19cs533d-winter-2005

The flies in the ointment

! To make it stable without a staggered grid,
need artificial viscosity, or sophisticated
conservation law methods
• Just like shallow water

! We may have to give up a lot of space and
time resolution to make it work

20cs533d-winter-2005

Mesh Free Methods

21cs533d-winter-2005

Particle fluids

! Particles are great for advection (hence marker
particles in MAC, particle-level set, etc.)

! So get rid of the mesh - figure out how to do #p
etc. with just the particles

! Basic qualitative behaviour of fluids: resist density
changes
• When particles get too close, add repulsion forces between them

• When they get just a little too far, add attraction forces

• When far, no force at all

! Damp particle interactions
• Otherwise we see small-scale vibration (“heat”)

• Also accounts for viscosity

22cs533d-winter-2005

Mesh-free?

! Mathematically, particle-only methods are
independent of meshes

! Practically, need an acceleration structure to
speed up finding neighbouring particles (to figure
out forces)

! Most popular structure (for non-adaptive codes,
i.e. where h=constant for all particles) is…
 a mesh (background grid)

23cs533d-winter-2005

SPH

! Smoothed Particle Hydrodynamics

! SPH can be interpreted as a particular way of choosing
forces, so that you converge to solving Navier-Stokes

! [Lucy’77], [Gingold & Monaghan ‘77], [Monaghan…],
[Morris, Fox, Zhu ‘97], …

! Similar to FEM, we go to a finite dimensional space of
functions
• Basis functions now based on particles instead of grid elements

• Can take derivatives etc. by differentiating the real function from
the finite-dimensional space

24cs533d-winter-2005

Kernel

! Need to define particle’s influence in surrounding
space (how we’ll build the basis functions)

! Choose a kernel function W
• Smoothed approximation to %

• W(x)=W(|x|) - radially symmetric

• Integral is 1

• W=0 far enough away - when |x|>2.5h for example

! Examples:
• Truncated Gaussian

• Splines (cubic, quartic, quintic, …)

25cs533d-winter-2005

Cubic kernel

! Use where

• Note: not good for viscosity (2nd derivatives
involved - not very smooth)

!

f (s) =
1

"

1# 3

2
s
2 + 3

4
s
3
,

1

4
2 # s()

3
,

0,

0 $ s $1

1$ s $ 2

2 $ s

%

&
'

(
'

!

W (x) =
1

h
3
f
x

h

"

$

%

&
'

26cs533d-winter-2005

Estimating quantities

! Say we want to estimate some flow variable q at
a point in space x

! We’ll take a mass and kernel weighted average

! Raw version:
• But this doesn’t work, since sum of weights is

nowhere close to 1

• Could normalize by dividing by but that
complicates derivatives…

• Instead use estimate for normalization at each particle
separately (some mass-weighted measure of overlap)
!

Q(x) = m jq jW x " x j()
j

#

!

m jW j
j

"

27cs533d-winter-2005

Smoothed Particle Estimate

! Take the “raw” mass estimate to get
density:

! Evaluate this at particles, use that to
approximately normalize:!

"(x) = m jW x # x j()
j

$

!

q(x) = q j

m jW x " x j()
j

j
$

28cs533d-winter-2005

Incompressible Free Surfaces

! Actually, I lied
• That is, regular SPH uses the previous formulation

• For doing incompressible flow with free surface, we have a
problem

• Density drop smoothly to 0 around surface

• This would generate huge pressure gradient, surface goes
wild…

! So instead, track density for each particle as a primary
variable (as well as mass!)
• Update it with continuity equation

• Mass stays constant however - probably equal for all particles,
along with radius

29cs533d-winter-2005

Continuity equation

! Recall the equation is

! We’ll handle advection by moving particles
around

! So we need to figure out right-hand side

! Divergence of velocity for one particle is

! Multiply by density, get SPH estimate:

!

"
t
+ u # $" = %"$ # u

!

" # v = " # v jW x $ x j()() = v j # "W j

!

"# $ v
i
= m jv j $ # iWij

j
%

30cs533d-winter-2005

Momentum equation

! Without viscosity:

! Handle advection by moving particles

! Acceleration due to gravity is trivial

! Left with pressure gradient

! Naïve approach - just take SPH estimate
as before

!

ut + u " #u = $ 1

%
#p+ g

!

dvi

dt
= "

1

#
$p = " m j

p j

j

2
$ iWij

j
%

31cs533d-winter-2005

Conservation of momentum

! Remember momentum equation really came out
of F=ma (but we divided by density to get
acceleration)

! Previous slide - momentum is not conserved
• Forces between two particles is not equal and

opposite

! We need to symmetrize this somehow

!

dvi

dt
= " m j

pi

#i
2

+
p j

j

2

$

%
& &

'

(
)) * iWij

j
+

32cs533d-winter-2005

SPH advection

! Simple approach: just move each particle
according to its velocity

! More sophisticated: use some kind of SPH
estimate of v
• keep nearby particles moving together

• Note: SPH estimates only accurate when
particles well organized, so this is needed for
complex flows

! XSPH

!

dxi

dt
= vi +

m j v j " vi()
1

2
#i + # j()

Wij
j

$

33cs533d-winter-2005

Equation of state

! Some debate - maybe need a somewhat
different equation of state if free-surface involved

! E.g. [Monaghan’94]

! For small variations, looks like gradient is the
same [linearize]
• But SPH doesn’t estimate -1 exactly, so you do get

different results…
!

p = B
"

"
0

$
%

&

'
(

7

)1

$

%
%

&

'

(
(

34cs533d-winter-2005

Incompressible SPH

! Can actually do a pressure solve instead of
using artificial compressibility

! But if we do exact projection get the same kinds
of instability as collocated grids
• And no alternative like staggered grids available

! Instead use approximate pressure solve
• And rely on smoothing in SPH to avoid high-

frequency compression waves

• [Cummins & Rudman ‘99]

