♦ How are projects going?			 CG is guaranteed to converge faster than steepest descent Global optimality property But convergence is determined by distribution of eigenvalues Widely spread out eigenvalues means sloooow solution How can we make it efficient? 	
	cs533d-winter-2005	1	cs533d-winter-2005	2

Speeding it up

- CG generally takes as many iterations as your grid is large
 - E.g. if 30x70x40 expect to take 70 iterations (or proportional to it)
 Though a good initial guess may reduce that a lot
- Basic issue: pressure is globally coupled information needs to travel from one end of the grid to the other
 - Each step of CG can only go one grid point: matrix-vector multiply is core of CG
- Idea of a "preconditioner": if we can get a routine which approximately computes A⁻¹, call it M, then solve MAx=Mb
 - If M has global coupling, can get information around faster
 - Alternatively, improve search direction by multiplying by M to
 - point it closer to negative errorAlternatively, cluster eigenvalues

cs533d-winter-2005 3

Preconditioners

- Lots and lots of work on how to pick an M
- Examples: FFT, SSOR, ADI, multigrid, sparse approximate inverses
- We'll take a look at Incomplete Cholesky factorization
- But first, how do we change CG to take account of M?
 - M has to be SPD, but MA might not be...

cs533d-winter-2005

4

PCG

- ♦ r=b-Ap, z=Mr, s=z
- $\upsilon \rho = z^T r$, check if already solved
- υ Loop:
 - t=As
 - α= ρ/(s^Tt)
 - x+= α s, r-= α t, check for convergence
 - z=Mr
 - ρ_{new}=z^Tr
 - $\beta = \rho_{new} / \rho$
 - s=z+ βs
 - $\rho = \rho_{new}$

Cholesky

- ◆ True Gaussian elimination, which is called Cholesky factorization in the SPD case, gives A=LL^T
- L is a lower triangular matrix
- Then solving Ap=b can be done by
 - Lx=p, L^Tp=x
 - Each solve is easy to do triangular
- But can't do that here since L has many more nonzeros than A -- EXPENSIVE!

Incomplete Cholesky

- We only need approximate result for preconditioner
- So do Cholesky factorization, but throw away new nonzeros (set them to zero)
- Result is not exact, but pretty good
 Instead of O(n) iterations (for an n³ grid) we get O(n^{1/2}) iterations
- Can actually do better:
 - Modified Incomplete Cholesky
 - Same algorithm, only when we throw away nonzeros, we add them to the diagonal better behaviour with low frequency components of pressure
 - Gets us down to O(n^{1/4}) iterations

cs533d-winter-2005 7

cs533d-winter-2005

9

IC(0)

- Incomplete Cholesky level 0: IC(0) is where we make sure L=0 wherever A=0
- For this A (7-point Laplacian) with the regular grid ordering, things are nice
- ♦ Write A=F+D+F^T where F is strictly lower triangular and D is diagonal
- Then IC(0) ends up being of the form L=(FE⁻¹+E) where E is diagonal
 - We only need to compute and store E!

cs533d-winter-2005

Computing IC(0)

- Need to find diagonal E so that (LL^T)_{ij}=A_{ij} wherever A_{ii}≠0
- Expand out:
 - LL^T=F+F^T+E²+FE⁻²F^T
- Again, for this special case, can show that last term only contributes to diagonal and elements where A_{ii}=0
- So we get the off-diagonal correct for free
- Let's take a look at diagonal entry for grid point ijk

Diagonal Entry

- Assume we order increasing in i, j, k
- Note F=A for lower diagonal elements

 $\left(LL^{T}\right)_{iik\ iik} = E_{ijk}^{2} + A_{ijk,i-1\ jk}^{2}E_{i-1\ jk}^{2} + A_{ijk,ij-1k}^{2}E_{ij-1k}^{2} + A_{ijk,ijk-1}^{2}E_{ijk-1}^{2}$

 Want this to match A's diagonal Then solving for next E_{ijk} in terms of previously determined ones:

 $E_{ijk} = \sqrt{A_{ijk,ijk} - A_{ijk,i-1\,jk}^2 E_{i-1\,jk}^2 - A_{ijk,ij-1k}^2 E_{ij-1k}^2 - A_{ijk,ijk-1}^2 E_{ijk-1}^2}$

cs533d-winter-2005 10

Practicalities

- Actually only want to store inverse of E
- Note that for values of A or E off the grid, substitute zero in formula
 - In particular, can start at $E_{000,000} = \sqrt{A_{000,000}}$
- Modified Incomplete Cholesky looks very similar, except instead of matching diagonal entries, we match row sums
- Can squeeze out a little more performance with the "Eisenstat trick"

Viscosity

 The viscosity update (if we really need it - highly viscous fluids) is just Backwards Euler:

$$(I - \Delta t v \nabla^2) u^{(3)} = u^{(2)}$$

- Boils down to almost the same linear system to solve!
 - Or rather, 3 similar linear systems to solve one for each component of velocity (NOTE: solve separately, not together!)
 - Again use PCG with Incomplete Cholesky

Staggered grid advection

- Problem: velocity on a staggered grid, don't have components where we need it for semi-Lagrangian steps
- Simple answer
 - Average velocities to get flow field where you need it, e.g. $u_{ijk}{=}0.5(u_{i+1/2\ jk}+u_{i-1/2\ jk})$
 - So advect each component of velocity around in averaged velocity field
- Even cheaper
 - Advect averaged velocity field around (with any other quantity you care about) --- reuse interpolation coefficients!
 - But all that averaging smears u out... more numerical viscosity! [worse for small Δt]

cs533d-winter-2005 13

Vorticity confinement

- The interpolation errors behave like viscosity, the averaging from the staggered grid behaves like viscosity...
 - Net effect is that interesting flow structures (vortices) get smeared out
- Idea of vorticity confinement add a fake force that spins vortices faster
 - Compute vorticity of flow, add force in direction of flow around each vortex
 - Try to cancel off some of the numerical viscosity in a stable way

cs533d-winter-2005 14

Smoke

- Smoke is a bit more than just a velocity field
- Need temperature (hot air rises) and smoke density (smoke eventually falls)
- Real physics density depends on temperature, temperature depends on viscosity and thermal conduction, ...
 - · We'll ignore most of that: small scale effects
 - Boussinesq approximation: ignore density variation except in gravity term, ignore energy transfer except thermal conduction
 - We might go a step further and ignore thermal conduction insignificant vs. numerical dissipation - but we're also ignoring sub-grid turbulence which is really how most of the temperature gets diffused

cs533d-winter-2005 15

Smoke concentration

- There's more than just air temperature to consider too
- Smoke weighs more than air so need to track smoke concentration
 - Also could be used for rendering (though tracing particles can give better results)
 - Point is: physics depends on smoke concentration, not just appearance
- We again ignore effect of this in all terms except gravity force

cs533d-winter-2005 16

Buoyancy

- For smoke, where there is no interface, we can add ρgy to pressure (and just solve for the difference) thus cancelling out g term in equation
- $\upsilon~$ All that's left is buoyancy -- variation in vertical force due to density variation
- Density varies because of temperature change and because of smoke concentration
- Assume linear relationship (small variations) $f_{bouy} = (-\alpha s + \beta T)$
 - T=0 is ambient temperature; α , β depend on g etc.

cs533d-winter-2005 17

Smoke equations

◆ So putting it all together...

$$u_t + u \cdot \nabla u + \nabla p = (-\alpha s + \beta T)(0, 1, 0)$$
$$\nabla \cdot u = 0$$
$$T_t + u \cdot \nabla T = k \nabla^2 T$$
$$s_t + u \cdot \nabla s = 0$$

- We know how to solve the u part, using old values for s and T
- Advecting s and T around is simple just scalar advection
- Heat diffusion handled like viscosity

Notes on discretization

Water

- Smoke concentration and temperature may as well live in grid cells same as pressure
- But then to add buoyancy force, need to average to get values at staggered positions
- Also, to maintain conservation properties, should only advect smoke concentration and temperature (and anything else - velocity) in a divergence-free velocity field
 - If you want to do all the advection together, do it before adding buoyancy force
 - I.e. advect; buoyancy; pressure solve; repeat

cs533d-winter-2005 19

Water - Free Surface Flow

- Chief difference: instead of smoke density and temperature, need to track a free surface
- If we know which grid cells are fluid and which aren't, we can apply p=0 boundary condition at the right grid cell faces
 - First order accurate...
- Main problem: tracking the surface effectively

cs533d-winter-2005 21

Interface Velocity

- Fluid interface moves with the velocity of the fluid at the interface
 - Technically only need the normal component of that motion...
- To help out algorithms, usually want to extrapolate velocity field out beyond free surface

cs533d-winter-2005 22

cs533d-winter-2005 20

Marker Particle Issues

- From the original MAC paper (Harlow + Welch '65)
- Start with several particles per grid cell
- After every step (updated velocity) move particles in the velocity field
 - dx/dt=u(x)
 - Probably advisable to use at least RK2
- At start of next step, identify grid cells containing at least one particle: this is where the fluid is

Issues

- Very simple to implement, fairly robust
- Long-term behaviour may include settling: errors in interpolated velocity field, errors in particle motion, mean we don't quite preserve volume
- Hard to determine a smooth surface for rendering (or surface tension!)
 - Blobbies look bumpy, stair step grid version is worse
 - But with enough post-smoothing, ok for anything other than really smooth flow

Surface Tracking

- Actually build a mesh of the surface
- Move it with the velocity field
- Rendering is trivial
- Surface tension well studied digital geometry problem
- But: fluid flow distorts interface, needs adaptivity
- Worse: topological changes need "mesh surgery"
 - Break a droplet off, merge a droplet in...
 - Very challenging in 3D

cs533d-winter-2005 25

cs533d-winter-2005 27

Volume of Fluid (VOF)

- Address the first issue: volume preservation
- Work in a purely Eulerian setting maintain another variable "volume fraction"

$$\frac{\partial f}{\partial t} + \nabla \cdot (fu) = 0$$

 Update conservatively (no semi-Lagrangian) so discretely guarantee sum of fractions stays constant (in discretely divergence free velocity field)

cs533d-winter-2005 26

VOF Issues

- Difficult to get second order accuracy -smeared out a discontinuous variable over a few grid cells
 - May need to implement variable density
- Volume fraction continues to smear out (numerical diffusion)
 - Need high-resolution conservation law methods
 - Need to resharpen interface periodically
- Surface reconstruction not so easy for rendering or surface tension

Level Set

 Maintain signed distance field for fluid-air interface

$$\frac{\partial \phi}{\partial t} + u \cdot \nabla \phi = 0$$

- Gives smooth surface for rendering, curvature estimation for surface tension is trivial
- High order notion of where surface is

cs533d-winter-2005 28

Level Set Issues

- Numerical smearing even with highresolution methods
 - · Interface smoothes out, small features vanish