
1cs533d-winter-2005

Notes

! How are projects going?

2cs533d-winter-2005

Recall: plain CG

! CG is guaranteed to converge faster than
steepest descent
• Global optimality property

! But… convergence is determined by
distribution of eigenvalues
• Widely spread out eigenvalues means

sloooow solution

! How can we make it efficient?

3cs533d-winter-2005

Speeding it up

! CG generally takes as many iterations as your grid is
large
• E.g. if 30x70x40 expect to take 70 iterations (or proportional to it)

• Though a good initial guess may reduce that a lot

! Basic issue: pressure is globally coupled - information
needs to travel from one end of the grid to the other
• Each step of CG can only go one grid point: matrix-vector

multiply is core of CG

! Idea of a “preconditioner”: if we can get a routine which
approximately computes A-1, call it M, then solve
MAx=Mb
• If M has global coupling, can get information around faster

• Alternatively, improve search direction by multiplying by M to
point it closer to negative error

• Alternatively, cluster eigenvalues

4cs533d-winter-2005

Preconditioners

! Lots and lots of work on how to pick an M

! Examples: FFT, SSOR, ADI, multigrid,
sparse approximate inverses

! We’ll take a look at Incomplete Cholesky
factorization

! But first, how do we change CG to take
account of M?
• M has to be SPD, but MA might not be…

5cs533d-winter-2005

PCG

! r=b-Ap, z=Mr, s=z

! "=zTr, check if already solved

! Loop:
• t=As

• #= "/(sTt)

• x+= #s, r-= #t , check for convergence

• z=Mr

• "new=zTr

• $= "new /"

• s=z+ $s

• "="new

6cs533d-winter-2005

Cholesky

! True Gaussian elimination, which is called
Cholesky factorization in the SPD case, gives
A=LLT

! L is a lower triangular matrix

! Then solving Ap=b can be done by
• Lx=p, LTp=x

• Each solve is easy to do - triangular

! But can’t do that here since L has many more
nonzeros than A -- EXPENSIVE!

7cs533d-winter-2005

Incomplete Cholesky

! We only need approximate result for
preconditioner

! So do Cholesky factorization, but throw away
new nonzeros (set them to zero)

! Result is not exact, but pretty good
• Instead of O(n) iterations (for an n3 grid) we get O(n1/2)

iterations

! Can actually do better:
• Modified Incomplete Cholesky

• Same algorithm, only when we throw away nonzeros,
we add them to the diagonal - better behaviour with
low frequency components of pressure

• Gets us down to O(n1/4) iterations

8cs533d-winter-2005

IC(0)

! Incomplete Cholesky level 0: IC(0) is where we
make sure L=0 wherever A=0

! For this A (7-point Laplacian) with the regular
grid ordering, things are nice

! Write A=F+D+FT where F is strictly lower
triangular and D is diagonal

! Then IC(0) ends up being of the form
L=(FE-1+E) where E is diagonal
• We only need to compute and store E!

9cs533d-winter-2005

Computing IC(0)

! Need to find diagonal E so that (LLT)ij=Aij

wherever Aij"0

! Expand out:
• LLT=F+FT+E2+FE-2FT

! Again, for this special case, can show that last
term only contributes to diagonal and elements
where Aij=0

! So we get the off-diagonal correct for free

! Let’s take a look at diagonal entry for grid point
ijk

10cs533d-winter-2005

Diagonal Entry

! Assume we order increasing in i, j, k

! Note F=A for lower diagonal elements

! Want this to match A’s diagonal
Then solving for next Eijk in terms of
previously determined ones:!

LL
T()

ijk,ijk
= Eijk

2 + Aijk,i"1 jk

2
Ei"1 jk

2 + Aijk,ij"1k

2
Eij"1k

2 + Aijk,ijk"1

2
Eijk"1

2

!

Eijk = Aijk,ijk " Aijk,i"1 jk

2
Ei"1 jk

2
" Aijk,ij"1k

2
Eij"1k

2
" Aijk,ijk"1

2
Eijk"1

2

11cs533d-winter-2005

Practicalities

! Actually only want to store inverse of E

! Note that for values of A or E off the grid,
substitute zero in formula
• In particular, can start at E000,000=!A000,000

! Modified Incomplete Cholesky looks very similar,
except instead of matching diagonal entries, we
match row sums

! Can squeeze out a little more performance with
the “Eisenstat trick”

12cs533d-winter-2005

Viscosity

! The viscosity update (if we really need it - highly
viscous fluids) is just Backwards Euler:

! Boils down to almost the same linear system to
solve!
• Or rather, 3 similar linear systems to solve - one for

each component of velocity
(NOTE: solve separately, not together!)

• Again use PCG with Incomplete Cholesky

!

I "#t$%2()u(3) = u(2)

13cs533d-winter-2005

Staggered grid advection

! Problem: velocity on a staggered grid, don’t have
components where we need it for semi-Lagrangian steps

! Simple answer
• Average velocities to get flow field where you need it, e.g.

uijk=0.5(ui+1/2 jk + ui-1/2 jk)

• So advect each component of velocity around in averaged
velocity field

! Even cheaper
• Advect averaged velocity field around (with any other quantity

you care about) --- reuse interpolation coefficients!

• But - all that averaging smears u out… more numerical viscosity!
[worse for small #t]

14cs533d-winter-2005

Vorticity confinement

! The interpolation errors behave like
viscosity, the averaging from the
staggered grid behaves like viscosity…
• Net effect is that interesting flow structures

(vortices) get smeared out

! Idea of vorticity confinement - add a fake
force that spins vortices faster
• Compute vorticity of flow, add force in

direction of flow around each vortex
• Try to cancel off some of the numerical

viscosity in a stable way

15cs533d-winter-2005

Smoke

! Smoke is a bit more than just a velocity field

! Need temperature (hot air rises) and smoke density
(smoke eventually falls)

! Real physics - density depends on temperature,
temperature depends on viscosity and thermal
conduction, …
• We’ll ignore most of that: small scale effects

• Boussinesq approximation: ignore density variation except in
gravity term, ignore energy transfer except thermal conduction

• We might go a step further and ignore thermal conduction -
insignificant vs. numerical dissipation - but we’re also ignoring
sub-grid turbulence which is really how most of the temperature
gets diffused

16cs533d-winter-2005

Smoke concentration

! There’s more than just air temperature to
consider too

! Smoke weighs more than air - so need to track
smoke concentration
• Also could be used for rendering (though tracing

particles can give better results)

• Point is: physics depends on smoke concentration,
not just appearance

! We again ignore effect of this in all terms except
gravity force

17cs533d-winter-2005

Buoyancy

! For smoke, where there is no interface, we can
add "gy to pressure (and just solve for the
difference) thus cancelling out g term in equation

! All that’s left is buoyancy -- variation in vertical
force due to density variation

! Density varies because of temperature change
and because of smoke concentration

! Assume linear relationship (small variations)

• T=0 is ambient temperature; #, $ depend on g etc.

!

fbouy = "#s+ $T()

18cs533d-winter-2005

Smoke equations

! So putting it all together…

! We know how to solve the u part, using old
values for s and T

! Advecting s and T around is simple - just scalar
advection

! Heat diffusion handled like viscosity
!

ut + u " #u+#p = $%s+ &T()(0,1,0)

" u = 0

Tt + u " #T = k#2
T

st + u " #s = 0

19cs533d-winter-2005

Notes on discretization

! Smoke concentration and temperature may as
well live in grid cells same as pressure

! But then to add buoyancy force, need to average
to get values at staggered positions

! Also, to maintain conservation properties, should
only advect smoke concentration and
temperature (and anything else - velocity) in a
divergence-free velocity field
• If you want to do all the advection together, do it

before adding buoyancy force

• I.e. advect; buoyancy; pressure solve; repeat

20cs533d-winter-2005

Water

21cs533d-winter-2005

Water - Free Surface Flow

! Chief difference: instead of smoke density
and temperature, need to track a free
surface

! If we know which grid cells are fluid and
which aren’t, we can apply p=0 boundary
condition at the right grid cell faces
• First order accurate…

! Main problem: tracking the surface
effectively

22cs533d-winter-2005

Interface Velocity

! Fluid interface moves with the velocity of
the fluid at the interface
• Technically only need the normal component

of that motion…

! To help out algorithms, usually want to
extrapolate velocity field out beyond free
surface

23cs533d-winter-2005

Marker Particle Issues

! From the original MAC paper (Harlow +
Welch ‘65)

! Start with several particles per grid cell
! After every step (updated velocity) move

particles in the velocity field
• dx/dt=u(x)
• Probably advisable to use at least RK2

! At start of next step, identify grid cells
containing at least one particle: this is
where the fluid is

24cs533d-winter-2005

Issues

! Very simple to implement, fairly robust
! Long-term behaviour may include settling:

errors in interpolated velocity field, errors
in particle motion, mean we don’t quite
preserve volume

! Hard to determine a smooth surface for
rendering (or surface tension!)
• Blobbies look bumpy, stair step grid version is

worse
• But with enough post-smoothing, ok for

anything other than really smooth flow

25cs533d-winter-2005

Surface Tracking

! Actually build a mesh of the surface

! Move it with the velocity field

! Rendering is trivial

! Surface tension - well studied digital geometry
problem

! But: fluid flow distorts interface, needs adaptivity

! Worse: topological changes need “mesh
surgery”
• Break a droplet off, merge a droplet in…

• Very challenging in 3D

26cs533d-winter-2005

Volume of Fluid (VOF)

! Address the first issue: volume
preservation

! Work in a purely Eulerian setting -
maintain another variable “volume fraction”

! Update conservatively (no semi-
Lagrangian) so discretely guarantee sum
of fractions stays constant (in discretely
divergence free velocity field)
!

"f

"t
+# $ fu() = 0

27cs533d-winter-2005

VOF Issues

! Difficult to get second order accuracy --
smeared out a discontinuous variable over
a few grid cells
• May need to implement variable density

! Volume fraction continues to smear out
(numerical diffusion)
• Need high-resolution conservation law

methods
• Need to resharpen interface periodically

! Surface reconstruction not so easy for
rendering or surface tension

28cs533d-winter-2005

Level Set

! Maintain signed distance field for fluid-air
interface

! Gives smooth surface for rendering,
curvature estimation for surface tension is
trivial

! High order notion of where surface is

!

"#

"t
+ u $ %# = 0

29cs533d-winter-2005

Level Set Issues

! Numerical smearing even with high-
resolution methods
• Interface smoothes out, small features vanish

