
1cs533d-winter-2005

Notes

! Please read
• Fedkiw, Stam, Jensen, “Visual simulation of

smoke”, SIGGRAPH ‘01

2cs533d-winter-2005

Solving Full Equations

! Let’s now solve the full incompressible
Euler or Navier-Stokes equations

! We’ll avoid interfaces (e.g. free surfaces)

! Think smoke

3cs533d-winter-2005

Operator Splitting

! Generally a bad idea to treat
incompressible flow as conservation laws
with constraints

! Instead: split equations up into easy
chunks, just like Shallow Water

!

ut + u " #u = 0

ut =$#2
u

ut = g

ut + 1

%
#p = 0 # " u = 0()

4cs533d-winter-2005

Time integration

! Don’t mix the steps at all - 1st order accurate

! We’ve already seen how to do the advection step

! Often can ignore the second step (viscosity)

! Let’s focus for now on the last step (pressure)
!

u
(1)

= advect(u
n
,"t)

u
(2)

= u
(1)

+ #"t$2
u
(2)

u
(3)

= u
(2)

+ "tg

u
n+1

= u
(3) %"t 1

&
$p

5cs533d-winter-2005

Advection boundary conditions

! But first, one last issue

! Semi-Lagrangian procedure may need to
interpolate from values of u outside the domain,
or inside solids
• Outside: no correct answer. Extrapolating from

nearest point on domain is fine, or assuming some
far-field velocity perhaps

• Solid walls: velocity should be velocity of wall (usually
zero)
! Technically only normal component of velocity needs to be

taken from wall, in absence of viscosity the tangential
component may be better extrapolated from the fluid

6cs533d-winter-2005

Continuous pressure

! Before we discretize in space, last step is
to take u(3), figure out the pressure p that
makes un+1 incompressible:
• Want

• Plug in pressure update formula:

• Rearrange:

• Solve this Poisson problem (often density is
constant and you can rescale p by it, also !t)
! Make this assumption from now on:

!

" # u
n+1

= 0

!

" # u(3) $%t 1
&
"p() = 0

!

" # $t 1
%
"p() =" # u(3)

!

"
2
p =" # u

(3)

u
n+1

= u
(3)
$"p

7cs533d-winter-2005

Pressure boundary conditions

! Issue of what to do for p and u at
boundaries in pressure solve

! Think in terms of control volumes:
subtract pn from u on boundary so that
integral of u•n is zero

! So at closed boundary we end up with

!

u
n+1
" n = 0

u
n+1
" n = u

(3)
" n #

$p

$n
8cs533d-winter-2005

Pressure BC’s cont’d.

! At closed wall boundary have two choices:
• Set u•n=0 first, then solve for p with "p/"n=0,

don’t update velocity at boundary

• Or simply solve for p with "p/"n=u•n and
update u•n at boundary with -"p/"n

• Equivalent, but the second option make sense
in the continuous setting, and generally keeps
you more honest

! At open (or free-surface) boundaries, no
constraint on u•n, so typically pick p=0

9cs533d-winter-2005

Approximate projection

! Can now directly discretize Poisson equation on
a grid

! Central differences - 2nd order, no bias

!

"2
p()

ijk
=
2p

#x 2
+
2p

#y 2
+
2p

#z2
$

%
&

'

(
)

*
pi+1 jk + 2pijk + pi+1 jk

,x 2
+
pij+1k + 2pijk + pij+1k

,y 2
+
pijk+1 + 2pijk + pijk+1

,z2

" - u()
ijk

=
#u

#x
+
#v

#y
+
#w

#z

$

%
&

'

(
)
ijk

*
ui+1 jk + ui+1 jk

2,x
+
vij+1k + vij+1k

2,y
+
wijk+1 + wijk+1

2,z

"p()
ijk
*

pi+1 jk + pi+1 jk
2,x

,
pij+1k + pij+1k

2,y
,
pijk+1 + pijk+1
2,z

.

/
0

1

2
3

10cs533d-winter-2005

Issues

! On the plus side: simple grid, simple discretization,
becomes exact in limit for smooth u…

! But it doesn’t work
• Divergence part of equation can’t “see” high frequency

compression waves

• Left with high frequency oscillatory error

• Need to filter this out - smooth out velocity field before
subtracting off pressure gradient

• Filtering introduces more numerical viscosity, eliminates features
on coarse grids

! Also: doesn’t exactly make u incompressible
• Measuring divergence of result gives nonzero

! So let’s look at exactly enforcing the incompressibility
constraint

11cs533d-winter-2005

Exact projection (1st try)

! Connection
• use the discrete divergence as a hard

constraint to enforce, pressure p turns out to
be the Lagrange multipliers…

! Or let’s just follow the route before, but
discretize divergence and gradient first
• First try: use centred differences as before

• u and p all “live” on same grid: uijk, pijk

• This is called a “collocated” scheme

12cs533d-winter-2005

Exact collocated projection

! So want

! Update with discrete gradient of p

! Plug in update formula to solve for p

!

" # u
n+1()

ijk
= 0

ui+1 jk
n+1

$ ui$1 jk
n+1

2%x
+
vij+1k
n+1

$ vij$1k
n+1

2%y
+
wijk+1

n+1
$ wijk$1

n+1

2%z
= 0

!

u
n+1

= u
(3)
"#p

!

uijk
n+1

= uijk
(3) "

pi+1 jk " pi"1 jk
2#x

,
pij+1k " pij"1k

2#y
,
pijk+1 " pijk"1
2#z

$

%
&

'

(
)

!

pi+2 jk " 2pijk + pi"2 jk

4#x
2

+
pij+2k " 2pijk + pij"2k

4#y
2

+
pijk+2 " 2pijk + pijk"2

4#z
2

=

ui+1 jk
(3)

" ui"1 jk
(3)

2#x
+
vij+1k
(3)

" vij"1k
(3)

2#y
+
wijk+1

(3)
" wijk"1

(3)

2#z

13cs533d-winter-2005

Problems

! Pressure problem decouples into 8 independent
subproblems

! “Checkerboard” instability
• Divergence still doesn’t see high-frequency

compression waves

! Really want to avoid differences over 2 grid
points, but still want centred

! Thus use a staggered MAC grid, as in last class

14cs533d-winter-2005

Staggered grid

! Pressure p lives in centre of cell, pijk

! u lives in centre of x-faces, ui+1/2,j,k

! v in centre of y-faces, vi,j+1/2,k

! w in centre of z-faces, wi,j,k+1/2

! Whenever we need to take a difference
(grad p or div u) result is where it should be

! Works beautifully with “stair-step” boundaries
• Not so simple to generalize to other boundary

geometry

15cs533d-winter-2005

Exact staggered projection

! Do it discretely as before, but now want

! And update is
!

" # u
n+1()

ijk
= 0

ui+1/ 2 jk
n+1

$ ui$1/ 2 jk
n+1

%x
+
vij+1/ 2k
n+1

$ vij$1/ 2k
n+1

%y
+
wijk+1/ 2

n+1
$ wijk$1/ 2

n+1

%z
= 0

!

ui+1/ 2 jk
n+1

= ui+1/ 2 jk
(3)

"
pi+1 jk " pijk

#x

vij+1/ 2k
n+1

= vij+1/ 2k
(3)

"
pij+1k " pijk

#y

wijk+1/ 2

n+1
= wijk+1/ 2

(3)
"
pijk+1 " pijk

#z 16cs533d-winter-2005

(Continued)

! Plugging in to solve for p

! This is for all i,j,k: gives a linear system to
solve -Ap=d

!

pi+1 jk " 2pijk + pi"1 jk

#x
2

+
pij+1k " 2pijk + pij"1k

#y
2

+
pijk+1 " 2pijk + pijk"1

#z
2

=

ui+1/ 2 jk
(3)

" ui"1/ 2 jk
(3)

#x
+
vij+1/ 2k
(3)

" vij"1/ 2k
(3)

#y
+
wijk+1/ 2

(3)
" wijk"1/ 2

(3)

#z

17cs533d-winter-2005

Pressure solve simplified

! Assume for simplicity that !x=!y=!z=h

! Then we can actually rescale pressure (again - already
took in density and !t) to get

! At boundaries where p is known, replace (say) pi+1jk with
known value, move to right-hand side (be careful to
scale if not zero!)

! At boundaries where (say) "p/"y=v, replace pij+1k with
pijk+v (so finite difference for "p/"y is correct at boundary)

!

6pijk " pi+1 jk " pi"1 jk " pij+1k " pij"1k " pijk+1 " pijk"1 =

"ui+1/ 2 jk
(3)

+ ui"1/ 2 jk
(3)

" vij+1/ 2k
(3)

+ vij"1/ 2k
(3)

" wijk+1/ 2

(3)
+ wijk"1/ 2

(3)

18cs533d-winter-2005

Solving the Linear System

! So we’re left with the problem of efficiently
finding p

! Luckily, linear system Ap=-d is symmetric
positive definite

! Incredibly well-studied A, lots of work out
there on how to do it fast

19cs533d-winter-2005

How to solve it

! Direct Gaussian Elimination does not work well
• This is a large sparse matrix - will end up with lots of

fill-in (new nonzeros)

! If domain is square with uniform boundary
conditions, can use FFT
• Fourier modes are eigenvectors of the matrix A,

everything works out

! But in general, will need to go to iterative
methods
• Luckily - have a great starting guess! Pressure from

previous time step [appropriately rescaled]

20cs533d-winter-2005

Convergence

! Need to know when to stop iterating

! Ideally - when error is small

! But if we knew the error, we’d know the solution

! We can measure the residual for Ap=b: it’s just
r=b-Ap
• Related to the error: Ae=r

! So check if norm(r)<tol*norm(b)
• Play around with tol (maybe 1e-4 is good enough?)

! For smoke, may even be enough to just take a
fixed number of iterations

21cs533d-winter-2005

Conjugate Gradient

! Standard iterative method for solving
symmetric positive definite systems

! For a fairly exhaustive description, read
• “An Introduction to the Conjugate Gradient

Method Without the Agonizing Pain”, by J. R.
Shewchuk

! Basic idea: steepest descent

22cs533d-winter-2005

Plain vanilla CG

! r=b-Ap (p is initial guess)

! "=rTr, check if already solved

! s=r (first search direction)

! Loop:
• t=As

• #= "/(sTt) (optimum step size)

• x+= #s, r-= #t, check for convergence

• "new=rTr

• $= "new /"

• s=r+ $s (updated search direction)

• "="new

