Notes

¢ Please read

* Fedkiw, Stam, Jensen, “Visual simulation of
smoke”, SIGGRAPH ‘01
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Operator Splitting

1

+ Generally a bad idea to treat
incompressible flow as conservation laws
with constraints

+ Instead: split equations up into easy
chunks, just like Shallow Water

u,+uVu=0

u, =vwWu
u =8
U, ++5Vp=0 (V-u=0)
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Advection boundary conditions
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¢ But first, one last issue

+ Semi-Lagrangian procedure may need to
interpolate from values of u outside the domain,
or inside solids

® Qutside: no correct answer. Extrapolating from
nearest point on domain is fine, or assuming some
far-field velocity perhaps

* Solid walls: velocity should be velocity of wall (usually
zero)

= Technically only normal component of velocity needs to be
taken from wall, in absence of viscosity the tangential
component may be better extrapolated from the fluid
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Solving Full Equations

+ Let’s now solve the full incompressible
Euler or Navier-Stokes equations

+ We'll avoid interfaces (e.g. free surfaces)
+ Think smoke
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Time integration

« Don’t mix the steps at all - 1st order accurate
u = advect(u" ,At)
u® = u + vArVu®
u® = u® + Atg
u'™ =u® - ArLVp
+ We've already seen how to do the advection step

« Often can ignore the second step (viscosity)
« Let’s focus for now on the last step (pressure)
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Continuous pressure

+ Before we discretize in space, last step is
to take u®, figure out the pressure p that
makes u™' incompressible:
e Want V-u""' =0
* Plug in pressure update formula: V- (u”-At£Vp)=0
® Rearrange: V- (ArLVp)= V- u
® Solve this Poisson problem (often density is

constant and you can rescale p by it, also At)

= Make this assumption from now on:
Vp=V-u®

1 3
' =u¥-vp
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Pressure boundary conditions Pressure BC’s cont’d.

# Issue of what to do for p and u at + At closed wall boundary have two choices:
boundaries in pressure solve * Set u*n=0 first, then solve for p with dp/dn=0,
# Think in terms of control volumes: don't update velocity at boundary
subtract pn from u on boundary so that * Or simply solve for p with dp/on=u-n and
integral of usn |S Zero Update u-n at bOUndary with -aplan

® Equivalent, but the second option make sense

+ So at closed boundary we end up with in the continuous setting, and generally keeps

Wt n=0 you more honest
op + At open (or free-surface) boundaries, no
utn=u n-=- constraint on u-n, so typically pick p=0
on
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Approximate projection Issues
+ Can now directly discretize Poisson equation on ¢ On the plus side: simple grid, simple discretization,
a grid Fp Fp P becomes exact in limit for smooth u...
(V%),, =(,‘,7*y* (;zz) + But it doesn’t work
Do =2+ Psi Py = 2P+ Pooe Pyt = 2Py + Py * Divergence part of equation can’t “see” high frequency
= Ax’ + A2 + AZ compression waves
) i - ® Left with high frequency oscillatory error
(V-u), =(@+ﬂ+ﬂJ * Need to filter this out - smooth out velocity field before
oAy 0Ty, subtracting off pressure gradient
2 Mo T M Vi = Vi Wik = Wi ¢ Filtering introduces more numerical viscosity, eliminates features
T 2Ax 2Ay 2Az on coarse grids
(Vo) g[p,,l,k—p,,,,k Pk = Py Pigat = Pt « Also: doesn’t exactly make u incompressible
P 20 28y T 24 ® Measuring divergence of result gives nonzero
+ Central differences - 2nd order, no bias + So let sllook at exactly enforcing the incompressibility
constraint
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Exact projection (1st try) Exact collocated projection
. Lo+l _
+ Connection s Sowant (V:u™), =0
* use the discrete divergence as a hard W~ Wk, Vit Vit | Wikn =W
constraint to enforce, pressure p turns out to 2Ax 24y 24z

be the Lagrange multipliers...

y ¢ Update with discrete gradient of p ,,»+1 _ ;3 _
# Or let’s just follow the route before, but P 9 Pu™ =u®-Vp

. . . . . it 3 | Pisije = Picvie Pijaik ~ Piioie Pkt ~ Pyt
discretize divergence and gradient first R B I T T
® First try: use centred differences as before + Plug in update formula to solve for p
* u and p all “live” on same grid: uj, Py Prozn = 2P+ Pran | P = 2P P Pige: _2p”i+p"’k'2 -
el “ ” 4Ax*" 4Ay2 4AZ'
* This is called a “collocated” scheme 5 e o P
Ui — Uilij + Viiee ~ Vil + Wik = Wit
2Ax 2Ay 2Az
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Problems

& Pressure problem decouples into 8 independent
subproblems

+ “Checkerboard” instability

* Divergence still doesn’t see high-frequency
compression waves

+ Really want to avoid differences over 2 grid
points, but still want centred

+ Thus use a staggered MAC grid, as in last class
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Exact staggered projection

+ Do it discretely as before, but now want

(V . un+l) -0
ijk
n+l n+l n+l n+l n+l n+l
Uiioje — Uisiio e + Viistar = Viici2k + Wiar2 = Wik12 -0
Ax Ay Az

un+| _ u(3) Pm/k - pl/k

i+1/2jk = Yivl2je T
J J Ax

) Pijaix ~ P
j+1/2k = Vij+2k T
ij ij Ay
n+l _ 3 pi/‘k+l - pi/’k

Wijk+l/2 = W:/k+1/2 - A
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Pressure solve simplified

+ Assume for simplicity that Ax=Ay=Az=h

& Then we can actually rescale pressure (again - already
took in density and At) to get

6pijk “Pistjg — Picrje — Pijsik = Pijie ~ Pijgnt ~ Pijp1 =

(3) (3) 3) 3) (3) (3)
Ui T Ui~ Vigeoe T Vit = Wiz T Wiz

+ At boundaries where p is known, replace (say) p;, with
known value, move to right-hand side (be careful to
scale if not zero!)

+ At boundaries where (say) dp/dy=v, replace pj,, with
pii+V (so finite difference for dp/dy is correct at boundary)

¢s533d-winter-2005 17

Staggered grid

+ Pressure p lives in centre of cell, py,
+ u lives in centre of x-faces, U;, 1«
+ v in centre of y-faces, Vijr12

+ w in centre of z-faces, W 1/

o Whenever we need to take a difference
(grad p or div u) result is where it should be

o Works beautifully with “stair-step” boundaries
* Not so simple to generalize to other boundary
geometry
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(Continued)

+ Plugging in to solve for p

Pisij —2p”.,( + Disijk . DPijik _2pijk + Dy + Pijksi _2p1/k + Dijior _
Ax? Ay? A7’

3 3 3 3 3 3
u() (3) 3) (3) (3) (3)

2k~ Wilio i + Vistizk ~ViiZuok + Wiksti2 = Win1/2

Ax Ay Az

« This is for all i,j,k: gives a linear system to
solve -Ap=d
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Solving the Linear System

+ So we're left with the problem of efficiently
finding p

« Luckily, linear system Ap=-d is symmetric
positive definite

+ Incredibly well-studied A, lots of work out
there on how to do it fast
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How to solve it

¢ Direct Gaussian Elimination does not work well

® This is a large sparse matrix - will end up with lots of
fill-in (new nonzeros)

o |f domain is square with uniform boundary
conditions, can use FFT

* Fourier modes are eigenvectors of the matrix A,
everything works out

« But in general, will need to go to iterative
methods

® Luckily - have a great starting guess! Pressure from
previous time step [appropriately rescaled]
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Conjugate Gradient

# Standard iterative method for solving
symmetric positive definite systems

+ For a fairly exhaustive description, read

* “An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain”, by J. R.
Shewchuk

+ Basic idea: steepest descent
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Convergence

+ Need to know when to stop iterating
+ |deally - when error is small
« But if we knew the error, we’d know the solution
¢ We can measure the residual for Ap=b: it’s just
r=b-Ap
* Related to the error: Ae=r
+ So check if norm(r)<tol*norm(b)
® Play around with tol (maybe 1e-4 is good enough?)

+ For smoke, may even be enough to just take a
fixed number of iterations
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Plain vanilla CG
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o r=b-Ap (pis initial guess)
v p=rTr, check if already solved
v s=r (first search direction)
v Loop:
* t=As
® o= p/(sTt) (optimum step size)
x+=as, r-=at, check forconvergence
Prew=r""
B= Prew /p
s=r+ s (updated search direction)

P=Prew
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