
1cs533d-winter-2005

533D: Animation Physics

! http://www.cs.ubc.ca/~rbridson/courses/
 533d-winter-2005

! Course schedule
• Slides online, but you need to take notes too!

! Reading
• Relevant animation papers as we go

! Assignments + Final Project information

! Resources

2cs533d-winter-2005

Contacting Me

! Robert Bridson
• CICSR 189 (moving to CS2 in reading week)

• Drop by, or make an appointment

• 604-822-1993 (or just 21993)

• email rbridson@cs.ubc.ca

• Newsgroup ubc.courses.cpsc.533b

! I always like feedback!

3cs533d-winter-2005

Evaluation

! 4 assignments (60%)
• See the web for details + when they are due

• Mostly programming, with a little analysis (writing)

! Also a final project (40%)
• Details will come later, but basically you need to

either significantly extend an assignment or animate
something else - talk to me about topics

• Present in final class - informal talk, show movies

! Late: without a good reason, 20% off per day
• For final project starts after final class

• For assignments starts morning after due

4cs533d-winter-2005

Why?

! Natural phenomena: passive motion
! Film/TV: difficult with traditional techniques
• When you control every detail of the motion, it’s hard

to make it look like it’s not being controlled!

! Games: difficult to handle everything
convincingly with prescripted motion

! Computer power is increasing, audience
expectations are increasing, artist power isn’t:
need more automatic methods

! Directly simulate the underlying physics to get
realistic motion

5cs533d-winter-2005

Topics

! Particle Systems
• the basics

! Deformable Bodies
• e.g. cloth and flesh

! Constrained Dynamics
• e.g. rigid bodies

! Fluids
• e.g. water

6cs533d-winter-2005

Particle Systems

7cs533d-winter-2005

Particle Systems

! Read:
Reeves, “Particle Systems…”, SIGGRAPH’83
Sims, “Particle animation and rendering using
data parallel computation", SIGGRAPH '90

! Some phenomena is most naturally
described as many small particles
• Rain, snow, dust, sparks, gravel, …

! Others are difficult to get a handle on
• Fire, water, grass, …

8cs533d-winter-2005

Particle Basics

! Each particle has a position
• Maybe orientation, age, colour, velocity,

temperature, radius, …

• Call the state x

! Seeded randomly somewhere at start
• Maybe some created each frame

! Move (evolve state x) each frame
according to some formula

! Eventually die when some condition met

9cs533d-winter-2005

Example

! Sparks from a campfire

! Every frame (1/24 s) add 2-3 particles
• Position randomly in fire

• Initialize temperature randomly

! Move in specified turbulent smoke flow
• Also decrease temperature

! Render as a glowing dot (blackbody
radiation from temperature)

! Kill when too cold to glow visibly

10cs533d-winter-2005

Rendering

! We won’t talk much about rendering in
this course, but most important for
particles

! The real strength of the idea of particle
systems: how to render
• Could just be coloured dots

• Or could be shards of glass, or animated
sprites (e.g. fire), or deforming blobs of
water, or blades of grass, or birds in flight,
or …

11cs533d-winter-2005

First Order Motion

12cs533d-winter-2005

First Order Motion

! For each particle, have a simple 1st order
differential equation:

! Analytic solutions hopeless

! Need to solve this numerically forward in
time from x(t=0) to
x(frame1), x(frame2), x(frame3), …
• May be convenient to solve at some

intermediate times between frames too

!

dx

dt
= v x, t()

13cs533d-winter-2005

Forward Euler

! Simplest method:

Or:

! Can show it’s first order accurate:
• Error accumulated by a fixed time is O(!t)

! Thus it converges to the right answer
• Do we care?

!

x
n+1 " xn

#t
=v x

n
,t
n()

!

x
n+1 = x

n
+ "t v x

n
,t
n()

14cs533d-winter-2005

Aside on Error

! General idea - want error to be small
• Obvious approach: make !t small

• But then need more time steps - expensive

! Also note - O(1) error made in modeling
• Even if numerical error was 0, still wrong!

• In science, need to validate against experiments

• In graphics, the experiment is showing it to an
audience: does it look real?

! So numerical error can be huge, as long as your
solution has the right qualitative look

15cs533d-winter-2005

Forward Euler Stability

! Big problem with Forward Euler:
it’s not very stable

! Example:

! Real solution smoothly decays to zero,
always positive

! Run Forward Euler with !t=11
• x=1, -10, 100, -1000, 10000, …

• Instead of 1, 1.7*10-5, 2.8*10-10, …
!

dx dt = "x, x(0) =1

!

e
"t

16cs533d-winter-2005

Linear Analysis

! Approximate

! Ignore all but the middle term (the one that
could cause blow-up)

! Look at x parallel to eigenvector of A:
the “test equation”

!

v x, t() " v x#,t#() +
$v

$x
% (x & x

#
) +

$v

$t
% (t & t

#
)

!

dx dt = Ax

!

dx dt = "x

17cs533d-winter-2005

The Test Equation

! Get a rough, hazy, heuristic picture of the
stability of a method

! Note that eigenvalue ! can be complex

! But, assume that for real physics
• Things don’t blow up without bound
• Thus real part of eigenvalue ! is " 0

! Beware!
• Nonlinear effects can cause instability

• Even with linear problems, what follows assumes
constant time steps - varying (but supposedly stable)
steps can induce instability
! see J. P. Wright, “Numerical instability due to varying time

steps…”, JCP 1998

18cs533d-winter-2005

Using the Test Equation

! Forward Euler on test equation is

! Solving gives

! So for stability, need
!

x
n+1 = x

n
+ "t#x

n

!

x
n

= 1+ "#t()
n

x
0

!

1+ "#t <1

19cs533d-winter-2005

Stability Region

! Can plot all the values of !!t on the
complex plane where F.E. is stable:

20cs533d-winter-2005

Real Eigenvalue

! Say eigenvalue is real (and negative)
• Corresponds to a damping motion, smoothly

coming to a halt

! Then need:

! Is this bad?
• If eigenvalue is big, could mean small time

steps

• But, maybe we really need to capture that
time scale anyways, so no big deal

!

"t <
2

#

21cs533d-winter-2005

Imaginary Eigenvalue

! If eigenvalue is pure imaginary…
• Oscillatory or rotational motion

! Cannot make !t small enough

! Forward Euler unconditionally unstable for
these kinds of problems!

! Need to look at other methods

22cs533d-winter-2005

!

x
n+ 12

= x
n

+ 1

2
"tv x

n
,t
n()

x
n+1 = x

n
+ "tv x

n+ 12
,t
n+ 12()

Runge-Kutta Methods

! Also “explicit”
• next x is an explicit function of previous

! But evaluate v at a few locations to get a
better estimate of next x

! E.g. midpoint method (one of RK2)

23cs533d-winter-2005

Midpoint RK2

! Second order: error is O(!t2) when smooth

! Larger stability region:

! But still not stable on imaginary axis: no point

24cs533d-winter-2005

Modified Euler

! (Not an official name)
! Lose second-order accuracy, get stability

on imaginary axis:

! Parameter " between 0.5 and 1 gives
trade-off between imaginary axis and real
axis

!

x
n+" = x

n
+"#tv x

n
,t
n()

x
n+1 = x

n
+ #tv x

n+" ,tn+"()

25cs533d-winter-2005

Modified Euler (2)

! Stability region for "=2/3

Great! But twice the cost of Forward Euler

! Can you get more stability per v-
evaluation?

26cs533d-winter-2005

Higher Order Runge-Kutta

! RK3 and up naturally include part of the
imaginary axis

27cs533d-winter-2005

TVD-RK3

! RK3 useful because it can be written as a
combination of Forward Euler steps and
averaging: can guarantee stuff!

!

˜ x
n +1

= x
n

+ "tv x
n
,t

n()
˜ x

n +2
= ˜ x

n +1
+ "tv ˜ x

n +1
,t

n +1()
˜ x

n + 1
2

= 3

4
x

n
+ 1

4
˜ x

n +2

˜ x
n + 3

2

= ˜ x
n + 1

2

+ "tv ˜ x
n + 1

2

,t
n + 1

2
()

x
n +1

= 1

3
x

n
+ 2

3
˜ x

n + 3
2

28cs533d-winter-2005

RK4

! Often most bang for the buck

!

v
1

= v x
n
,t
n()

v
2

= v x
n

+ 1

2
"tv

1
,t
n+ 12()

v
3

= v x
n

+ 1

2
"tv

2
,t
n+ 12()

v
4

= v x
n

+ "tv
3
,t
n+1()

x
n+1 = x

n
+ "t 1

6
v
1
+ 2

6
v
2

+ 2

6
v
3

+ 1

6
v
4()

29cs533d-winter-2005

Selecting Time Steps

30cs533d-winter-2005

Selecting Time Steps

! Hack: try until it looks like it works
! Stability based:
• Figure out a bound on magnitude of Jacobian
• Scale back by a fudge factor (e.g. 0.9, 0.5)

! Try until it looks like it works… (remember all the
dubious assumptions we made for linear stability
analysis!)

! Why is this better than just hacking around in the
first place?

! Adaptive error based:
• Usually not worth the trouble in graphics

31cs533d-winter-2005

Time Stepping

! Sometimes can pick constant !t
• One frame, or 1/8th of a frame, or …

! Often need to allow for variable !t
• Changing stability limit due to changing Jacobian

• Difficulty in Newton converging

• …

! But prefer to land at the exact frame time
• So clamp !t so you can’t overshoot the frame

32cs533d-winter-2005

Example Time Stepping Algorithm

! Set done = false

! While not done
• Find good !t

• If t+!t # tframe

! Set !t = tframe-t

! Set done = true

• Else if t+1.5!t # tframe

! Set !t = 0.5(tframe-t)

• …process time step…

• Set t = t+!t

! Write out frame data, continue to next frame

33cs533d-winter-2005

Implicit Methods

34cs533d-winter-2005

Large Time Steps

! Look at the test equation
! Exact solution is

! Explicit methods approximate this with
polynomials (e.g. Taylor)

! Polynomials must blow up as t gets big
• Hence explicit methods have stability limit

! We may want a different kind of approximation
that drops to zero as !t gets big
• Avoid having a small stability limit when error says it

should be fine to take large steps (“stiffness”)

!

dx

dt
= "x

!

x(t
n+1) = e"#t x(t

n
) = 1+"#t + 1

2
"#t()

2
+K()x(tn)

35cs533d-winter-2005

Simplest stable approximation

! Instead use

! That is,

! Rewriting:

! This is an “implicit” method: the next x is
an implicit function of the previous x
• Need to solve equations to figure it out

!

e
"#t
$

1

1%"#t

!

x
n+1 =

1

1"#$t
x
n

!

x
n+1 = x

n
+"t #x

n+1

36cs533d-winter-2005

Backward Euler

! The simplest implicit method:

! First order accurate
! Test equation shows stable when

! This includes everything except a circle in the
positive real-part half-plane

! It’s stable even when the physics is unstable!
! This is the biggest problem: damps out motion

unrealistically

!

x
n+1 = x

n
+ "tv x

n+1,tn+1()

!

1" #$t >1

37cs533d-winter-2005

Aside: Solving Systems

! If v is linear in x, just a system of linear
equations
• If very small, use determinant formula

• If small, use LAPACK
• If large, life gets more interesting…

! If v is mildly nonlinear, can approximate
with linear equations (“semi-implicit”)

!

x
n+1 = x

n
+"tv x

n+1()

x
n

+"t v(x
n
)+
$v(x

n
)

$x
(x

n+1 % xn)
&

'
(

)

*
+

38cs533d-winter-2005

Newton’s Method

! For more strongly nonlinear v, need to iterate:
• Start with guess xn for xn+1 (for example)

• Linearize around current guess, solve linear system
for next guess

• Repeat, until close enough to solved

! Note: Newton’s method is great when it works,
but it might not work
• If it doesn’t, can reduce time step size to make

equations easier to solve, and try again

• Maybe use higher power optimization methods (e.g.
at least use line search)

39cs533d-winter-2005

Newton’s Method: B.E.

! Start with x0=xn (simplest guess for xn+1)

! For k=1, 2, … find xk+1=xk+!x by solving

! To include line-search for more robustness, change
update to xk+1=xk+"!x and choose 0 < " " 1 that
minimizes

! Stop when right-hand side is small enough, set xn+1=xk

!

x
k+1

= x
n

+ "t v(xk) +
#v(xk)

#x
(x

k+1 $ xk)
%

&
'

(

)
*

+ I $"t
#v(xk)

#x

%

&
'

(

)
* "x = x

n
+ "tv(xk) $ xk

!

x
n

+"tv xk+1
,t
n+1()# xk+1

40cs533d-winter-2005

Trapezoidal Rule

! Can improve by going to second order:

! This is actually just a half step of F.E., followed
by a half step of B.E.
• F.E. is under-stable, B.E. is over-stable, the

combination is just right

! Stability region is the left half of the plane:
exactly the same as the physics!

! Really good for pure rotation
(doesn’t amplify or damp)

!

x
n+1 = x

n
+ "t 1

2
v(x

n
,t
n
) + 1

2
v(x

n+1,tn+1)()

