More optional reading on web for collision detection • Given x_1, x_2, x_3 the plane normal is

 $n = \frac{(x_2 - x_1) \times (x_3 - x_1)}{|(x_2 - x_1) \times (x_3 - x_1)|}$

- Interference with a closed mesh
 - Cast a ray to infinity, parity of number of intersections gives inside/outside
- So intersection is more fundamental
 - The same problem as in ray-tracing

cs533d-winter-2005 2

Triangle intersection

- The best approach: reduce to simple predicates
 - Spend the effort making them exact, accurate, or at least consistent
 - Then it's just some logic on top
 - Common idea in computational geometry
- In this case, predicate is sign of signed volume (is a tetrahedra inside-out?)

orient (x_0, x_1, x_2, x_3) = sign det $\begin{pmatrix} x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \\ x_3 - x_0 & y_3 - y_0 & z_3 - z_0 \end{pmatrix}$

~3 ~0/

cs533d-winter-2005

cs533d-winter-2005

Using orient()

- Line-triangle
 - If line includes x₄ and x₅ then intersection if orient(1,2,4,5)=orient(2,3,4,5)=orient(3,1,4,5)
 - I.e. does the line pass to the left (right) of each directed triangle edge?
 - If normalized, the values of the determinants give the barycentric coordinates of plane intersection point
- Segment-triangle
 - Before checking line as above, also check if orient(1,2,3,4) != orient(1,2,3,5)
 - I.e. are the two endpoints on different sides of the triangle?

cs533d-winter-2005

Other Standard Approach

- Find where line intersects plane of triangle
- Check if it's on the segment
- Find if that point is inside the triangle
 - Use barycentric coordinates
- Slightly slower, but worse: less robust
 - round-off error in intermediate result: the intersection point
 - What happens for a triangle mesh?
- Note the predicate approach, even with floatingpoint, can handle meshes well
 - Consistent evaluation of predicates for neighbouring triangles
 Cossid-winter-2005
 Cossid-winter-2005

Distance to Triangle

- If surface is open, define interference in terms of distance to mesh
- Typical approach: find closest point on triangle, then distance to that point
 - Direction to closest point also parallel to natural normal
- First step: barycentric coordinates
 - Normalized signed volume determinants equivalent to solving least squares problem of closest point in plane
- If coordinates all in [0,1] we're done
- Otherwise negative coords identify possible closest edges
- Find closest points on edges

----, - ---

3

Testing Against Meshes

- Can check every triangle if only a few, but too slow usually
- Use an acceleration structure:
 - Spatial decomposition: background grid, hash grid, octree, kd-tree, BSP-tree, ...
 - Bounding volume hierarchy: axis-aligned boxes, spheres, oriented boxes,
 ...

cs533d-winter-2005

cs533d-winter-2005

9

7

Moving Triangles

- Collision detection: find a time at which particle lies inside triangle
- Need a model for what triangle looks like at intermediate times
 - Simplest: vertices move with constant velocity, triangle always just connects them up
- Solve for intermediate time when four points are coplanar (determinant is zero)
 - Gives a cubic equation to solve
- Then check barycentric coordinates at that time
 - See e.g. X. Provot, "Collision and self-collision handling in cloth model dedicated to design garment", Graphics Interface'97

cs533d-winter-2005 8

For Later...

- We now can do all the basic particle vs. object tests for repulsions and collisions
- Once we get into simulating solid objects, we'll need to do object vs. object instead of just particle vs. object
- Core ideas remain the same

Elastic objects

- Simplest model: masses and springs
- Split up object into regions
- Integrate density in each region to get mass (if things are uniform enough, perhaps equal mass)
- Connect up neighbouring regions with springs
 - Careful: need chordal graph
- Now it's just a particle system
 - When you move a node, neighbours pulled along with it, etc.

Elasticity

cs533d-winter-2005 10

Masses and springs

- But: how strong should the springs be? Is this good in general?
 - [anisotropic examples]
- General rule: we don't want to see the mesh in the output
 - · Avoid "grid artifacts"
 - We of course will have numerical error, but let's avoid obvious patterns in the error

1D masses and springs

- $\bullet\,$ Look at a homogeneous elastic rod, length 1, linear density ρ
- Parameterize by p (x(p)=p in rest state)
- Split up into intervals/springs
 - $0 = p_0 < p_1 < \ldots < p_n = 1$
 - Mass $m_i = \rho(p_{i+1}-p_{i-1})/2$ (+ special cases for ends)
 - Spring i+1/2 has rest length

and force

$$L_{i+\frac{1}{2}} = p_{i+1} - p_{i+1}$$

$$f_{i+\frac{1}{2}} = k_{i+\frac{1}{2}} \frac{x_{i+1} - x_i - L_{i+\frac{1}{2}}}{L_{i+\frac{1}{2}}}$$

cs533d-winter-2005 13

Figuring out spring constants

So net force on i is

$$\begin{split} F_{i} &= k_{i+\frac{1}{2}} \frac{x_{i+1} - x_{i} - L_{i+\frac{1}{2}}}{L_{i+\frac{1}{2}}} - k_{i-\frac{1}{2}} \frac{x_{i} - x_{i-1} - L_{i-\frac{1}{2}}}{L_{i-\frac{1}{2}}} \\ &= k_{i+\frac{1}{2}} \left(\frac{x_{i+1} - x_{i}}{p_{i+1} - p_{i}} - 1 \right) - k_{i-\frac{1}{2}} \left(\frac{x_{i} - x_{i-1}}{p_{i} - p_{i-1}} - 1 \right) \end{split}$$

- We want mesh-independent response (roughly), e.g. for static equilibrium
 - Rod stretched the same everywhere: x_i=αp_i
 - Then net force on each node should be zero (add in constraint force at ends...)

cs533d-winter-2005 14

Young's modulus

- So each spring should have the same k
 - Note we divided by the rest length
 - Some people don't, so they have to make their constant scale with rest length
- The constant k is a material property (doesn't depend on our discretization) called the Young's modulus
 - Often written as E
- The one-dimensional Young's modulus is simply force per percentage deformation

cs533d-winter-2005 15

The continuum limit

- Imagine Δp (or Δx) going to zero
 - Eventually can represent any kind of deformation
 - [note force and mass go to zero too]

$$\ddot{x}(p) = \frac{1}{\rho} \frac{\partial}{\partial p} \left(E(p) \left(\frac{\partial}{\partial a} x(p) - 1 \right) \right)$$

• If density and Young's modulus constant,

$$\frac{\partial^2 x}{\partial t^2} = \frac{E}{\rho} \frac{\partial^2 x}{\partial p^2}$$

cs533d-winter-2005 16

Sound waves

- Try solution x(p,t)=x₀(p-ct)
- And $x(p,t)=x_0(p+ct)$
- So speed of "sound" in rod is \overline{E}
- Courant-Friedrichs-Levy (CFL) condition:
 - Numerical methods only will work if information transmitted numerically at least as fast as in reality (here: the speed of sound)
 - Usually the same as stability limit for good explicit methods [what are the eigenvalues here]
 - · Implicit methods transmit information infinitely fast