
1cs533d-winter-2005

Notes

! More optional reading on web for collision
detection

2cs533d-winter-2005

Triangles

! Given x1, x2, x3 the plane normal is

! Interference with a closed mesh
• Cast a ray to infinity, parity of number of

intersections gives inside/outside

! So intersection is more fundamental
• The same problem as in ray-tracing

!

n =
(x

2
" x

1
) # (x

3
" x

1
)

(x
2
" x

1
) # (x

3
" x

1
)

3cs533d-winter-2005

Triangle intersection

! The best approach: reduce to simple predicates
• Spend the effort making them exact, accurate, or at

least consistent

• Then it’s just some logic on top

• Common idea in computational geometry

! In this case, predicate is sign of signed volume
(is a tetrahedra inside-out?)

!

orient x0,x1,x2,x3() = sign det

x1 " x0 y1 " y0 z1 " z0
x2 " x0 y2 " y0 z2 " z0
x3 " x0 y3 " y0 z3 " z0

$

%
%

&

'

(
(

4cs533d-winter-2005

Using orient()

! Line-triangle
• If line includes x4 and x5 then intersection if

orient(1,2,4,5)=orient(2,3,4,5)=orient(3,1,4,5)

• I.e. does the line pass to the left (right) of each
directed triangle edge?

• If normalized, the values of the determinants give the
barycentric coordinates of plane intersection point

! Segment-triangle
• Before checking line as above, also check if

orient(1,2,3,4) != orient(1,2,3,5)

• I.e. are the two endpoints on different sides of the
triangle?

5cs533d-winter-2005

Other Standard Approach

! Find where line intersects plane of triangle
! Check if it’s on the segment
! Find if that point is inside the triangle
• Use barycentric coordinates

! Slightly slower, but worse: less robust
• round-off error in intermediate result: the intersection

point

• What happens for a triangle mesh?

! Note the predicate approach, even with floating-
point, can handle meshes well
• Consistent evaluation of predicates for neighbouring

triangles
6cs533d-winter-2005

Distance to Triangle

! If surface is open, define interference in terms of
distance to mesh

! Typical approach: find closest point on triangle,
then distance to that point
• Direction to closest point also parallel to natural

normal

! First step: barycentric coordinates
• Normalized signed volume determinants equivalent to

solving least squares problem of closest point in plane

! If coordinates all in [0,1] we’re done
! Otherwise negative coords identify possible

closest edges
! Find closest points on edges

7cs533d-winter-2005

Testing Against Meshes

! Can check every triangle if only a few, but
too slow usually

! Use an acceleration structure:
• Spatial decomposition:

background grid, hash grid, octree, kd-tree,
BSP-tree, …

• Bounding volume hierarchy:
axis-aligned boxes, spheres, oriented boxes,
…

8cs533d-winter-2005

Moving Triangles

! Collision detection: find a time at which particle
lies inside triangle

! Need a model for what triangle looks like at
intermediate times
• Simplest: vertices move with constant velocity,

triangle always just connects them up

! Solve for intermediate time when four points are
coplanar (determinant is zero)
• Gives a cubic equation to solve

! Then check barycentric coordinates at that time
• See e.g. X. Provot, “Collision and self-collision

handling in cloth model dedicated to design garment",
Graphics Interface’97

9cs533d-winter-2005

For Later…

! We now can do all the basic particle vs.
object tests for repulsions and collisions

! Once we get into simulating solid objects,
we’ll need to do object vs. object instead
of just particle vs. object

! Core ideas remain the same

10cs533d-winter-2005

Elasticity

11cs533d-winter-2005

Elastic objects

! Simplest model: masses and springs

! Split up object into regions

! Integrate density in each region to get mass (if
things are uniform enough, perhaps equal mass)

! Connect up neighbouring regions with springs
• Careful: need chordal graph

! Now it’s just a particle system
• When you move a node, neighbours pulled along with

it, etc.

12cs533d-winter-2005

Masses and springs

! But: how strong should the springs be? Is
this good in general?
• [anisotropic examples]

! General rule: we don’t want to see the
mesh in the output
• Avoid “grid artifacts”

• We of course will have numerical error, but
let’s avoid obvious patterns in the error

13cs533d-winter-2005

1D masses and springs

! Look at a homogeneous elastic rod, length 1, linear
density !

! Parameterize by p (x(p)=p in rest state)

! Split up into intervals/springs
• 0 = p0 < p1 < … < pn = 1

• Mass mi=!(pi+1-pi-1)/2 (+ special cases for ends)

• Spring i+1/2 has rest length

and force

!

f
i+ 1

2

= k
i+ 1

2

xi+1 " xi " Li+ 1
2

L
i+ 1

2

!

L
i+ 1

2

= pi+1 " pi

14cs533d-winter-2005

Figuring out spring constants

! So net force on i is

! We want mesh-independent response (roughly),
e.g. for static equilibrium
• Rod stretched the same everywhere: xi="pi

• Then net force on each node should be zero
(add in constraint force at ends…)

!

Fi = k
i+ 1

2

xi+1 " xi " Li+ 1
2

L
i+ 1

2

" k
i" 1

2

xi " xi"1 " Li" 1
2

L
i" 1

2

= k
i+ 1

2

xi+1 " xi
pi+1 " pi

"1

$
%

&

'
(" ki" 1

2

xi " xi"1
pi " pi"1

"1

$
%

&

'
(

15cs533d-winter-2005

Young’s modulus

! So each spring should have the same k
• Note we divided by the rest length

• Some people don’t, so they have to make their
constant scale with rest length

! The constant k is a material property (doesn’t
depend on our discretization) called the Young’s
modulus
• Often written as E

! The one-dimensional Young’s modulus is simply
force per percentage deformation

16cs533d-winter-2005

The continuum limit

! Imagine !p (or !x) going to zero
• Eventually can represent any kind of

deformation

• [note force and mass go to zero too]

• If density and Young’s modulus constant,

!

˙ ̇ x (p) =
1

"

#

#p
E(p)

#

#a
x(p) $1

%

&
'

(

)
*

%

&
'

(

)
*

!

" 2x

"t 2
=
E

#

" 2x

"p2

17cs533d-winter-2005

Sound waves

! Try solution x(p,t)=x0(p-ct)

! And x(p,t)=x0(p+ct)

! So speed of “sound” in rod is

! Courant-Friedrichs-Levy (CFL) condition:
• Numerical methods only will work if information

transmitted numerically at least as fast as in reality
(here: the speed of sound)

• Usually the same as stability limit for good explicit
methods [what are the eigenvalues here]

• Implicit methods transmit information infinitely fast

!

E

"

