
1cs533d-winter-2005

Notes

! Assignment 1 is not out yet :-)

! http://www.cs.ubc.ca/~rbridson/
 courses/533d-winter-2005

2cs533d-winter-2005

Monotonicity

! Test equation with real, negative !
• True solution is x(t)=x0e

!t, which smoothly decays to
zero, doesn’t change sign (monotone)

! Forward Euler at stability limit:
• x=x0, -x0, x0, -x0, …

! Not smooth, oscillating sign: garbage!
! So monotonicity limit stricter than stability
! RK3 has the same problem
• But the even order RK are fine for linear problems

• TVD-RK3 designed so that it’s fine when F.E. is, even
for nonlinear problems!

3cs533d-winter-2005

Monotonicity and
Implicit Methods

! Backward Euler is unconditionally
monotone
• No problems with oscillation, just too much

damping

! Trapezoidal Rule suffers though, because
of that half-step of F.E.
• Beware: could get ugly oscillation instead of

smooth damping

• For nonlinear problems, quite possibly hit
instability

4cs533d-winter-2005

Summary 1

! Particle Systems: useful for lots of stuff
! Need to move particles in velocity field

! Forward Euler
• Simple, first choice unless problem has

oscillation/rotation

! Runge-Kutta if happy to obey stability limit
• Modified Euler may be cheapest method
• RK4 general purpose workhorse
• TVD-RK3 for more robustness with

nonlinearity (more on this later in the course!)

5cs533d-winter-2005

Summary 2

! If stability limit is a problem, look at implicit
methods
• e.g. need to guarantee a frame-rate, or

explicit time steps are way too small

! Trapezoidal Rule
• If monotonicity isn’t a problem

! Backward Euler
• Almost always works, but may over-damp!

6cs533d-winter-2005

Second Order Motion

7cs533d-winter-2005

Second Order Motion

! If particle state is just position (and colour, size, …) then
1st order motion
• No inertia

• Good for very light particles that stay suspended : smoke, dust…

• Good for some special cases (hacks)

! But most often, want inertia
• State includes velocity, specify acceleration

• Can then do parabolic arcs due to gravity, etc.

! This puts us in the realm of standard Newtonian physics
• F=ma

! Alternatively put:
• dx/dt=v

• dv/dt=F(x,v,t)/m (i.e. a(x,v,t))

! For systems (with many masses) say dv/dt=M-1F(x,v,t)
where M is the “mass matrix” - masses on the diagonal

8cs533d-winter-2005

What’s New?

! If x=(x,v) this is just a special form of 1st
order: dx/dt=v(x,t)

! But since we know the special structure,
can we take advantage of it?
(i.e. better time integration algorithms)
• More stability for less cost?
• Handle position and velocity differently to

better control error?

9cs533d-winter-2005

Linear Analysis

! Approximate acceleration:

! Split up analysis into different cases

! Begin with first term dominating:
constant acceleration
• e.g. gravity is most important

!

a x,v() " a0 +
#a

#x
x +

#a

#v
v

10cs533d-winter-2005

Constant Acceleration

! Solution is

! No problem to get v(t) right:
just need 1st order accuracy

! But x(t) demands 2nd order accuracy

! So we can look at mixed methods:
• 1st order in v

• 2nd order in x

!

v(t) = v
0

+ a
0
t

x(t) = x
0

+ v
0
t + 1

2
a
0
t
2

11cs533d-winter-2005

! Dependence on x and v dominates:
 a(x,v)=-Kx-Dv

! Do the analysis as before:

! Eigenvalues of this matrix?

!

d

dt

x

v

"

$
%

&
' =

0 I

(K (D

"

$

%

&
'
x

v

"

$
%

&
'

Linear Acceleration

12cs533d-winter-2005

More Approximations…

! Typically K and D are symmetric semi-definite
(there are good reasons)
• What does this mean about their eigenvalues?

! Often, D is a linear combination of K and I
(“Rayleigh damping”), or at least close to it
• Then K and D have the same eigenvectors

(but different eigenvalues)

• Then the eigenvectors of the Jacobian are of the form
(u, "u)T

• [work out what " is in terms of !K and !D]

13cs533d-winter-2005

Simplification

" is the eigenvalue of the Jacobian, and

! Same as eigenvalues of

! Can replace K and D (matrices) with
corresponding eigenvalues (scalars)
• Just have to analyze 2x2 system

!

" = # 1

2
$
D

± 1

2
$
D()

2

$
K

!

0 1

"#
K

"#
D

$

%
&

'

(
)

14cs533d-winter-2005

Split Into More Cases

! Still messy! Simplify further

! If D dominates (e.g. air drag, damping)

• Exponential decay and constant

! If K dominates (e.g. spring force)

!

" # $%
D
, 0{ }

!

" # ±i $
K

15cs533d-winter-2005

Three Test Equations

! Constant acceleration (e.g. gravity)
• a(x,v,t)=g

• Want exact (2nd order accurate) position

! Position dependence (e.g. spring force)
• a(x,v,t)=-Kx
• Want stability but low damping

• Look at imaginary axis

! Velocity dependence (e.g. damping)
• a(x,v,t)=-Dv

• Want stability, smooth decay

• Look at negative real axis

16cs533d-winter-2005

Explicit methods from before

! Forward Euler
• Constant acceleration: bad (1st order)

• Position dependence: very bad (unstable)

• Velocity dependence: ok (conditionally
monotone/stable)

! RK3 and RK4
• Constant acceleration: great (high order)

• Position dependence: ok (conditionally stable, but
damps out oscillation)

• Velocity dependence: ok (conditionally
monotone/stable)

17cs533d-winter-2005

Implicit methods from before

! Backward Euler
• Constant acceleration: bad (1st order)
• Position dependence: ok (stable, but damps)

• Velocity dependence: great (monotone)

! Trapezoidal Rule
• Constant acceleration: great (2nd order)
• Position dependence: great (stable, no

damping)
• Velocity dependence: good (stable but only

conditionally monotone)

18cs533d-winter-2005

Setting Up Implicit Solves

! Let’s take a look at actually using Backwards
Euler, for example

! Eliminate position, solve for velocity:

! Linearize at guess vk, solving for vn+1 ! vk+"v

! Collect terms, multiply by M

!

x
n+1 = x

n
+"t v

n+1

v
n+1 = v

n
+"t M #1

F x
n+1,vn+1()

!

v
n+1 = v

n
+"t M #1

F x
n

+"t v
n+1,vn+1()

!

v
k +"v = v

n
+"t M #1

F x
n

+"tvk ,vk() +"t
$F

$x
"v+

$F

$v
"v

%

&
'

(

)
*

!

M "#t
$F

$v
"#t 2

$F

$x

%

&
'

(

)
* #v = M v

n
" vk() +#t F x

n
+#tvk ,vk()

19cs533d-winter-2005

Symmetry

! Why multiply by M?
! Physics often demands that and

are symmetric
• And M is symmetric, so this means matrix is

symmetric, hence easier to solve

• (Actually, physics generally says matrix is SPD - even
better)

• If the masses are not equal, the acceleration form of
the equations results in an unsymmetric matrix - bad.

! Unfortunately the matrix is usually
unsymmetric
• Makes solving with it considerably less efficient

• See Baraff & Witkin, “Large steps in cloth simulation”,
SIGGRAPH ‘98 for one solution: throw out bad part

!

"Fposition

"x

!

"Fvelocity

"v

!

"Fvelocity

"x

20cs533d-winter-2005

Specialized 2nd Order Methods

! This is again a big subject

! Again look at explicit methods, implicit
methods

! Also can treat position and velocity
dependence differently:
mixed implicit-explicit methods

21cs533d-winter-2005

Symplectic Euler

! Like Forward Euler, but updated velocity used
for position

! Some people flip the steps (= relabel vn)

! (Symplectic means certain qualities are
preserved in discretization; useful in science, not
necessarily in graphics)

! [work out test cases]

!

v
n+1 = v

n
+ "ta x

n
,v

n()
x
n+1 = x

n
+ "tv

n+1

22cs533d-winter-2005

! Constant acceleration: bad
• Velocity right, position off by O("t)

! Position dependence: good
• Stability limit

• No damping!

! Velocity dependence: ok
• Monotone limit

• Stability limit

!

"t <
2

K

!

"t <1 D

!

"t < 2 D

Symplectic Euler performance

23cs533d-winter-2005

Tweaking Symplectic Euler

! [sketch algorithms]

! Stagger the velocity to improve x

! Start off with

! Then proceed with

! Finish off with

!

v 1
2

= v
0

+ 1

2
"ta x

0
,v
0()

!

v
n+ 12

= v
n" 12

+ 1

2
(t
n+1 " tn"1)a xn,vn" 12()

x
n+1 = x

n
+ #tv

n+ 12

!

v
N

= v
N" 12

+ 1

2
#ta x

N
,v

N" 12()
24cs533d-winter-2005

Staggered Symplectic Euler

! Constant acceleration: great!
• Position is exact now

! Other cases not effected
• Was that magic? Main part of algorithm unchanged

(apart from relabeling) yet now it’s more accurate!

! Only downside to staggering
• At intermediate times, position and velocity not known

together

• May need to think a bit more about collisions and
other interactions with outside algorithms…

25cs533d-winter-2005

A common explicit method

! May see this one pop up:

! Constant acceleration: great

! Velocity dependence: ok
• Conditionally stable/monotone

! Position dependence: BAD
• Unconditionally unstable!

!

v
n+1 = v

n
+ "ta x

n
,v

n()
x
n+1 = x

n
+ "t 1

2
v
n

+ 1

2
v
n+1() = x

n
+ "tv

n
+ 1

2
"t

2
a
n

26cs533d-winter-2005

An Implicit Compromise

! Backward Euler is nice due to
unconditional monotonicity
• Although only 1st order accurate, it has the

right characteristics for damping

! Trapezoidal Rule is great for everything
except damping with large time steps
• 2nd order accurate, doesn’t damp pure

oscillation/rotation

! How can we combine the two?

27cs533d-winter-2005

Implicit Compromise

! Use Backward Euler for velocity dependence,
Trapezoidal Rule for the rest:

! Constant acceleration: great (2nd order)

! Position dependence: great (2nd order, no
damping)

! Velocity dependence: great (unconditionally
monotone)

!

x
n+1 = x

n
+ "t 1

2
v
n

+ 1

2
v
n+1()

v
n+1 = v

n
+ "ta 1

2
x
n

+ 1

2
x
n+1,vn+1,tn+ 12()

