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Notes

! Assignment 1 is not out yet :-)

! http://www.cs.ubc.ca/~rbridson/
                      courses/533d-winter-2005
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Monotonicity

! Test equation with real, negative !
• True solution is x(t)=x0e

!t, which smoothly decays to
zero, doesn’t change sign (monotone)

! Forward Euler at stability limit:
• x=x0,  -x0,  x0,  -x0, …

! Not smooth, oscillating sign: garbage!
! So monotonicity limit stricter than stability
! RK3 has the same problem
• But the even order RK are fine for linear problems

• TVD-RK3 designed so that it’s fine when F.E. is, even
for nonlinear problems!
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Monotonicity and
Implicit Methods

! Backward Euler is unconditionally
monotone
• No problems with oscillation, just too much

damping

! Trapezoidal Rule suffers though, because
of that half-step of F.E.
• Beware: could get ugly oscillation instead of

smooth damping

• For nonlinear problems, quite possibly hit
instability
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Summary 1

! Particle Systems: useful for lots of stuff
! Need to move particles in velocity field

! Forward Euler
• Simple, first choice unless problem has

oscillation/rotation

! Runge-Kutta if happy to obey stability limit
• Modified Euler may be cheapest method
• RK4 general purpose workhorse
• TVD-RK3 for more robustness with

nonlinearity (more on this later in the course!)
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Summary 2

! If stability limit is a problem, look at implicit
methods
• e.g. need to guarantee a frame-rate, or

explicit time steps are way too small

! Trapezoidal Rule
• If monotonicity isn’t a problem

! Backward Euler
• Almost always works, but may over-damp!
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Second Order Motion
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Second Order Motion

! If particle state is just position (and colour, size, …) then
1st order motion
• No inertia

• Good for very light particles that stay suspended : smoke, dust…

• Good for some special cases (hacks)

! But most often, want inertia
• State includes velocity, specify acceleration

• Can then do parabolic arcs due to gravity, etc.

! This puts us in the realm of standard Newtonian physics
• F=ma

! Alternatively put:
• dx/dt=v

• dv/dt=F(x,v,t)/m     (i.e. a(x,v,t) )

! For systems (with many masses) say dv/dt=M-1F(x,v,t)
where M is the “mass matrix” - masses on the diagonal
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What’s New?

! If x=(x,v) this is just a special form of 1st
order: dx/dt=v(x,t)

! But since we know the special structure,
can we take advantage of it?
(i.e. better time integration algorithms)
• More stability for less cost?
• Handle position and velocity differently to

better control error?
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Linear Analysis

! Approximate acceleration:

! Split up analysis into different cases

! Begin with first term dominating:
constant acceleration
• e.g. gravity is most important

! 

a x,v( ) " a0 +
#a

#x
x +

#a

#v
v
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Constant Acceleration

! Solution is

! No problem to get v(t) right:
just need 1st order accuracy

! But x(t) demands 2nd order accuracy

! So we can look at mixed methods:
• 1st order in v

• 2nd order in x

! 

v(t) = v
0

+ a
0
t

x(t) = x
0

+ v
0
t + 1

2
a
0
t
2
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! Dependence on x and v dominates:
               a(x,v)=-Kx-Dv

! Do the analysis as before:

! Eigenvalues of this matrix?
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Linear Acceleration
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More Approximations…

! Typically K and D are symmetric semi-definite
(there are good reasons)
• What does this mean about their eigenvalues?

! Often, D is a linear combination of K and I
(“Rayleigh damping”), or at least close to it
• Then K and D have the same eigenvectors

(but different eigenvalues)

• Then the eigenvectors of the Jacobian are of the form
(u, "u)T

• [work out what " is in terms of !K and !D]
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Simplification

# " is the eigenvalue of the Jacobian, and

! Same as eigenvalues of

! Can replace K and D (matrices) with
corresponding eigenvalues (scalars)
• Just have to analyze 2x2 system

! 
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Split Into More Cases

! Still messy! Simplify further

! If D dominates (e.g. air drag, damping)

• Exponential decay and constant

! If K dominates (e.g. spring force)

! 

" # $%
D
, 0{ }

! 

" # ±i $
K
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Three Test Equations

! Constant acceleration (e.g. gravity)
• a(x,v,t)=g

• Want exact (2nd order accurate) position

! Position dependence (e.g. spring force)
• a(x,v,t)=-Kx
• Want stability but low damping

• Look at imaginary axis

! Velocity dependence (e.g. damping)
• a(x,v,t)=-Dv

• Want stability, smooth decay

• Look at negative real axis
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Explicit methods from before

! Forward Euler
• Constant acceleration: bad (1st order)

• Position dependence: very bad (unstable)

• Velocity dependence: ok (conditionally
monotone/stable)

! RK3 and RK4
• Constant acceleration: great (high order)

• Position dependence: ok (conditionally stable, but
damps out oscillation)

• Velocity dependence: ok (conditionally
monotone/stable)
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Implicit methods from before

! Backward Euler
• Constant acceleration: bad (1st order)
• Position dependence: ok (stable, but damps)

• Velocity dependence: great (monotone)

! Trapezoidal Rule
• Constant acceleration: great (2nd order)
• Position dependence: great (stable, no

damping)
• Velocity dependence: good (stable but only

conditionally monotone)
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Setting Up Implicit Solves

! Let’s take a look at actually using Backwards
Euler, for example

! Eliminate position, solve for velocity:

! Linearize at guess vk, solving for vn+1 ! vk+"v

! Collect terms, multiply by M

! 

x
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Symmetry

! Why multiply by M?
! Physics often demands that              and

are symmetric
• And M is symmetric, so this means matrix is

symmetric, hence easier to solve

• (Actually, physics generally says matrix is SPD - even
better)

• If the masses are not equal, the acceleration form of
the equations results in an unsymmetric matrix - bad.

! Unfortunately the matrix            is usually
unsymmetric
• Makes solving with it considerably less efficient

• See Baraff & Witkin, “Large steps in cloth simulation”,
SIGGRAPH ‘98 for one solution: throw out bad part

! 

"Fposition

"x

! 

"Fvelocity

"v

! 

"Fvelocity

"x
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Specialized 2nd Order Methods

! This is again a big subject

! Again look at explicit methods, implicit
methods

! Also can treat position and velocity
dependence differently:
mixed implicit-explicit methods
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Symplectic Euler

! Like Forward Euler, but updated velocity used
for position

! Some people flip the steps (= relabel vn)

! (Symplectic means certain qualities are
preserved in discretization; useful in science, not
necessarily in graphics)

! [work out test cases]

! 

v
n+1 = v

n
+ "ta x

n
,v

n( )
x
n+1 = x

n
+ "tv

n+1

22cs533d-winter-2005

! Constant acceleration: bad
• Velocity right, position off by O("t)

! Position dependence: good
• Stability limit

• No damping!

! Velocity dependence: ok
• Monotone limit

• Stability limit

! 

"t <
2

K

! 

"t <1 D

! 

"t < 2 D

Symplectic Euler performance
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Tweaking Symplectic Euler

! [sketch algorithms]

! Stagger the velocity to improve x

! Start off with

! Then proceed with

! Finish off with

! 
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Staggered Symplectic Euler

! Constant acceleration: great!
• Position is exact now

! Other cases not effected
• Was that magic? Main part of algorithm unchanged

(apart from relabeling) yet now it’s more accurate!

! Only downside to staggering
• At intermediate times, position and velocity not known

together

• May need to think a bit more about collisions and
other interactions with outside algorithms…
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A common explicit method

! May see this one pop up:

! Constant acceleration: great

! Velocity dependence: ok
• Conditionally stable/monotone

! Position dependence: BAD
• Unconditionally unstable!

! 
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An Implicit Compromise

! Backward Euler is nice due to
unconditional monotonicity
• Although only 1st order accurate, it has the

right characteristics for damping

! Trapezoidal Rule is great for everything
except damping with large time steps
• 2nd order accurate, doesn’t damp pure

oscillation/rotation

! How can we combine the two?
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Implicit Compromise

! Use Backward Euler for velocity dependence,
Trapezoidal Rule for the rest:

! Constant acceleration: great (2nd order)

! Position dependence: great (2nd order, no
damping)

! Velocity dependence: great (unconditionally
monotone)

! 
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