
1cs533d-winter-2005

Notes

! Assignment 2 instability - don’t worry
about it right now

! Please read

• D. Baraff, “Fast contact force computation for
nonpenetrating rigid bodies”, SIGGRAPH ‘94

• D. Baraff, “Linear-time dynamics using
Lagrange multipliers”, SIGGRAPH ’96

2cs533d-winter-2005

Rigid Collision Algorithms

! Use the same collision response algorithm as
with particles
• Identify colliding points as perhaps the deepest

penetrating points, or the first points to collide

• Make sure they are colliding, not separating!

! Problem: multiple contact points
• Fixing one at a time can cause rattling.
• Can fix by being more gentle in resolving contacts -

negative coefficient of restitution

! Problem: multiple collisions (stacks)
• Fixing one penetration causes others

• Solve either by resolving simultaneously
or enforcing order of resolution

3cs533d-winter-2005

Stacking

! Guendelman et al. “shock propagation”
! After applying contact impulses (but penetrations

remain)
• Form contact graph: “who is resting on whom”

! Check new position of each object against the other objects’
old positions --- any penetrations indicate a directed edge

• Find “bottom-up” ordering: order fixed objects such as
the ground first, then follow edges
! Union loops into a single group

• Fix penetrations in order, freezing objects after they
are fixed
! Slight improvement: combine objects into a single composite

rigid body rather than simply freezing

4cs533d-winter-2005

Stacking continued

! Advantages:
• Simple, fast

! Problems:
• Overly stable sometimes

• Doesn’t really help with loops

! To resolve problems, need to really solve
the global contact problem (not just at
single contact points)

5cs533d-winter-2005

The Contact Problem

! See e.g. Baraff “Fast contact force
computation…”, SIGGRAPH’94

! Identify all contact points
• Where bodies are close enough

! For each contact point, find relative velocity as a
(linear) function of contact impulses
• Just as we did for pairs

! Frictionless contact problem:
• Find normal contact impulses that cause normal

relative velocities to be non-negative
• Subject to constraint: contact impulse is zero if normal

relative velocity is positive

• Called a linear complementary problem (LCP)
6cs533d-winter-2005

Frictional Contact Problem

! Include tangential contact impulses
• Either relative velocity is zero (static friction)

or tangential impulse is on the friction cone

• By approximating the friction cone with planar
facets, can reduce to LCP again

! Note: modeling issue - the closer to the
true friction cone you get, the more
variables and equations in the LCP

7cs533d-winter-2005

Constrained Dynamics

8cs533d-winter-2005

Constrained Dynamics

! We just dealt with one constraint: rigid
motion only

! More general constraints on motion are
useful too
• E.g. articulated rigid bodies, gears, scripting

part of the motion, …

! Same basic issue: modeling the constraint
forces
• Principle of virtual work - constraint forces

shouldn’t influence the unconstrained part of
the motion

9cs533d-winter-2005

Three major approaches

! “Soft” constraint forces (penalty terms)
• Like repulsions

! Solve explicitly for unknown constraint
forces (lagrange multipliers)
• Closely related: projection methods

! Solve in terms of reduced number of
degrees of freedom (generalized
coordinates)

10cs533d-winter-2005

Equality constraints

! Generally, want motion to satisfy C(x,v)=0
• C is a vector of constraints

! Inequalities also possible - C(x,v)!0 - but let’s
ignore for now
• Generalizes notion of contact forces

• Also can do things like joint limits, etc.
• Generally need to solve with heavy-duty optimization,

may run into NP-hard problems

• One approach: figure out or guess which constraints
are “active” (equalities) and just do regular equality
constraints, maybe iterating

11cs533d-winter-2005

Soft Constraints

! First assume C=C(x)
• No velocity dependence

! We won’t exactly satisfy constraint, but will add
some force to not stray too far
• Just like repulsion forces for contact/collision

! First try:
• define a potential energy minimized when C(x)=0

• C(x) might already fit the bill, if not use

• Just like hyper-elasticity!

!

E = 1

2
KC

T
C

12cs533d-winter-2005

Potential force

! We’ll use the gradient of the potential as a
force:

! This is just a generalized spring pulling the
system back to constraint

! But what do undamped springs do?
!

F = "
#E

#x

$

%
&

'

(
)

T

= "K
#C

#x

$

%
&

'

(
)

T

C

13cs533d-winter-2005

Rayleigh Damping

! Need to add damping force that doesn’t
damp valid motion of the system

! Rayleigh damping:
• Damping force proportional to the negative

rate of change of C(x)
! No damping valid motions that don’t change C(x)

• Damping force parallel to elastic force
! This is exactly what we want to damp

!

F
d

= "D
#C

#x

$

%
&

'

(
)

T

˙ C = "D
#C

#x

$

%
&

'

(
)

T

#C

#x
v

14cs533d-winter-2005

Issues

! Need to pick K and D
• Don’t want oscillation - critical damping

• If K and D are very large, could be expensive
(especially if C is nonlinear)

• If K and D are too small, constraint will be grossly
violated

! Big issue: the more the applied forces try to
violate constraint, the more it is violated…
• Ideally want K and D to be a function of the applied

forces

15cs533d-winter-2005

Pseudo-time Stepping

! Alternative: simulate all the applied force
dynamics for a time step

! Then simulate soft constraints in pseudo-time
• No other forces at work, just the constraints

• “Real” time is not advanced

• Keep going until at equilibrium

• Non-conflicting constraints will be satisfied

• Balance found between conflicting constraints

• Doesn’t really matter how big K and D are (adjust the
pseudo-time steps accordingly)

16cs533d-winter-2005

Issues

! Still can be slow
• Particularly if there are lots of adjoining

constraints

! Could be improved with implicit time steps
• Get to equilibrium as fast as possible…

! This will come up again…

17cs533d-winter-2005

Constraint forces

! Idea: constraints will be satisfied because
Ftotal=Fapplied+Fconstraint

! Have to decide on form for Fconstraint

! [example: y=0]

! We have too much freedom…

! Need to specify the problem better

18cs533d-winter-2005

Virtual work

! Assume for now C=C(x)

! Require that all the (real) work done in the
system is by the applied forces
• The constraint forces do no work

! Work is Fc•"x
• So pick the constraint forces to be perpendicular to all

valid velocities

• The valid velocities are along isocontours of C(x)

• Perpendicular to them is the gradient:

! So we take

!

"C

"x

T

!

F
c

=
"C

"x

$
%

&

'
(

T

)

19cs533d-winter-2005

What is !?

! Say C(x)=0 at start, want it to remain 0

! Take derivative:

! Take another to get to accelerations

! Plug in F=ma, set equal to 0

!

˙ C (x) =
"C

"x
˙ x =

"C

"x
v = 0

!

˙ ̇ C (x) =
" ˙ C

"x
˙ x +

" ˙ C

"v
˙ v =

" ˙ C

"x
v +

"C

"x
˙ v = 0

!

" ˙ C

"x
v +

"C

"x
M

#1
F

a
+ F

c()() = 0

20cs533d-winter-2005

Finding constraint forces

! Rearranging gives:

! Plug in the form we chose for constraint force:

! Note: SPD matrix!
!

"C

"x
M

#1
F

c
= #

"C

"x
M

#1
F

a
#
" ˙ C

"x
v

!

"C

"x
M

#1 "C

"x

T$

%
&

'

(
) * = #

"C

"x
M

#1
F

a
#
" ˙ C

"x
v

21cs533d-winter-2005

Modified equations of motion

! So can write down (exact) differential equations
of motion with constraint force

! Could run our standard solvers on it

! Problem: drift
• We make numerical errors, both in the regular

dynamics and the constraints!

! We’ll just add “stabilization”: additional soft
constraint forces to keep us from going too far
• Don’t worry about K and D in this context!

• Don’t include them in formula for ! - this is
post-processing to correct drift

22cs533d-winter-2005

Velocity constraints

! How do we handle C(v)=0?

! Take time derivative as before:

! And again apply principle of virtual work just like
before:

! And end up solving:
!

"C

"v
˙ v = 0

!

F
c

=
"C

"v

$
%

&

'
(

T

)

!

"C

"v
M

#1 "C

"v

T$

%
&

'

(
) * = #

"C

"v
M

#1
F
a

23cs533d-winter-2005

J notation

! Both from C(x)=0 and two time derivatives, and
C(v)=0 and one time derivative, get constraint
force equation:

(J is for Jacobian)

! We assume Fc=JT!

! This gives SPD system for !: JM-1JT !=b!

JM
"1
F
c

= "JM
"1
F
a
" c

24cs533d-winter-2005

Discrete projection method

! It’s a little ugly to have to add even more stuff for
dealing with drift - and still isn’t exactly on
constraint

! Instead go to discrete view
(treat numerical errors as applied forces too)

! After a time step (or a few), calculate constraint
impulse to get us back
• Similar to what we did with collision and contact

! Can still have soft or regular constraint forces for
better accuracy…

25cs533d-winter-2005

The algorithm

! Time integration takes us over "t from (xn, vn) to
(xn+1

", vn+1
")

We want to add an impulse
vn+1= vn+1

" + M-1i
xn+1= xn+1

" + "t M-1i
such that new x and v satisfy constraint:
C(xn+1, vn+1)=0

In general C is nonlinear: difficult to solve
• But if we’re not too far from constraint, can linearize

and still be accurate

26cs533d-winter-2005

The constraint impulse

! Plug in changes in x and v:

! Using principle of virtual work:

 where

!

0 = C x
n+1,vn+1() " C x

n+1

#
,v

n+1

#() +
$C

$x
n+1

#

%x +
$C

$v
n+1

#

%v

!

"t
#C

#x
M

$1
i +

#C

#v
M

$1
i = $C

n+1

%

"t
#C

#x
+
#C

#v

&

'
(

)

*
+ M

$1
i = $C

n+1

%

!

i = J
T"

!

J = "t
#C

#x
+
#C

#v

27cs533d-winter-2005

Projection

! We’re solving JM-1JT!=-C

• Same matrix again - particularly in limit

! In case where C is linear, we actually are
projecting out part of motion that violates
the constraint

28cs533d-winter-2005

Nonlinear C

! We can accept we won’t exactly get back to
constraint
• But notice we don’t drift too badly: every time step we

do try to get back the entire way

! Or we can iterate, just like Newton
• Keep applying corrective impulses until close enough

to satisfying constraint

! This is very much like running soft constraint
forces in pseudo-time with implicit steps, except
now we know exactly the best parameters

