- Assignment 2 going okay?
 - Make sure you understand what needs to be done before the weekend
- Read Guendelman et al, "Nonconvex rigid bodies with stacking", SIGGRAPH'03

 $= \begin{pmatrix} \sum_{i} f_{i} \\ \sum_{i} f_{i} \\ x_{i} - X \end{pmatrix} \times f_{i} \end{pmatrix}$

cs533d-winter-2005

cs533d-winter-2005

cs533d-winter-2005

3

 $S^{T}F_{\text{ext}} = \sum \left(\frac{\delta}{\chi^{*T} - \chi^{*T}}\right) f_{i}$ Mistake last class: (forgot a transpose in calculating torque)

Inertia Tensor Simplified

- Reduce expense of calculating I(t): $I(t) = \sum_{i} m_{i} (x_{i} - X)^{*T} (x_{i} - X)^{*}$ $= \sum_{i=1}^{T} m_{i} \left[(x_{i} - X)^{T} (x_{i} - X) \delta - (x_{i} - X) (x_{i} - X)^{T} \right]$
 - Now use x_i -X=Rp_i and use R^TR= δ

$$I(t) = \sum_{i} m_{i} \left[p_{i}^{T} R^{T} R p_{i} \delta - R p_{i} p_{i}^{T} R^{T} \right]$$
$$= R \underbrace{\left(\sum_{i} m_{i} \left(p_{i}^{T} p_{i} \delta - p_{i} p_{i}^{T} \right) \right)}_{I_{body}} R^{T}$$

cs533d-winter-2005

Inertia Tensor Simplified 2

- So just compute inertia tensor once, for object space configuration
- ♦ Then I(t)=RI_{body}R^T
- ♦ And I(t)⁻¹=R(I_{body})⁻¹R^T
 - So precompute inverse too
- In fact, since I is symmetric, know we have an orthogonal eigenbasis Q
- Rotate object-space orientation by Q
 - Then Ibody is just diagonal!

Degenerate Inertia Tensors

- Inertia tensor can always be inverted unless all the points of the object line up (object is a rod) • Or there's only one point
- We don't care though, since we can't track rotation around that axis anyways
 - · So diagonalize I, and only invert nonzero elements

cs533d-winter-2005

Taking the limit

- Letting our decomposition of the object into point masses go to infinity:
 - Instead of sum over particles, integral over object volume
 - Instead of particle mass. density at that point in space

$$\sum_{i} m_i \operatorname{foo}(x_i) \to \iiint_{x} \rho(x) \operatorname{foo}(x) dx$$

Computing Inertia Tensors

- Do the integrals: $I_{body} = \iiint_{p} \rho(p^T p \delta p p^T) dp$
- Lots of "fun"
- You may just want to look them up instead • E.g. Eric Weisstein's World of Science on the web
- If not.... align axis perpendicular to planes of symmetry (of ρ) in object space
 - · Guarantees some off-diagonal zeros
- Example: sphere, uniform density, radius R

$$\begin{pmatrix} \frac{2}{5}MR^2 & 0 & 0\\ 0 & \frac{2}{5}MR^2 & 0\\ 0 & 0 & \frac{2}{5}MR^2 \end{pmatrix}$$

cs533d-winter-2005

Approximating Inertia Tensors

- For complicated geometry, don't really need exact answer
- Could just take the inertia tensor from a simpler geometric figure (will anyone notice?)
- Or numerically approximate integral
 - If we can afford to spend a lot of time precomputing, life is simple
 - Grid approach: sample density...
 - Monte Carlo approach: random samples

cs533d-winter-2005 7

Combining Objects

- What if object is union of two simpler objects?
- Integrals are additive
 - But DO NOT USE I₁(t)+I₂(t):
 - World-space formulas (x-X) use the X for the object: $X^{}_{1}$ and $X^{}_{2}$ may be different
 - Simplified I_{body} formula based on having centre of mass at origin
 - Let's work it out from the integral of I(t)
- Combined mass: M=M₁+M₂
- Centre of mass of combined object:

$$X = \frac{\int_{\Omega_1 \cup \Omega_2} \rho x}{\int_{\Omega_1 \cup \Omega_2} \rho} = \frac{M_1 X_1 + M_2 X_2}{M}$$

cs533d-winter-2005

Combined Inertia Tensor

Numerical Integration

Recall equations of motion

$$\frac{\frac{d}{dt}V = F/M \quad \frac{d}{dt}L = T$$

$$\frac{\frac{d}{dt}X = V \qquad \omega = I(t)^{-1}L$$

$$\frac{\frac{d}{dt}R = \omega^*R$$

- X and V is just like particle motion
- Angular components trickier: R must remain orthogonal, but standard integration will cause it to drift
 - Can use Gram-Schmidt, but expensive and biased

cs533d-winter-2005 10

Improving on R

- Instead of 9 numbers for 3 DOF, use a less redundant representation
- Euler angles: 3 numbers
 - But updating with angular velocity is painful
- Quaternions: 4 numbers

What are quaternions?

- Instead of R, use q=(s,x,y,z) with lql=1
 - Can think of q as a "super complex number" s+xi+yj+zk
 - i²=j²=k²=-1, ij=-ji=k, jk=-kj=i, ki=-ik=j
 - Quaternions don't commute! $q_1q_2 \neq q_2q_1$ in general
- Represents "half" a rotation:
 - s=cos(θ/2)
 - lx,y,zl²⁼sin²(θ/2)
 - Axis of rotation is (x,y,z)
- Conjugate (inverse for unit norm) is $\overline{q} = (s, -x, -y, -z)$

Rotating with quaternions

- Instead of Rp, calculate $q(0,p)\overline{q}$
- Composing a rotation of Δtω to advance a time step:

$$q_{n+1} = \left(\cos \left| \Delta t \frac{\omega}{2} \right|, \sin \left| \Delta t \frac{\omega}{2} \right| \frac{\omega}{|\omega|} \right) q_n$$

 $\upsilon~$ For small $\Delta t \omega$ approximate:

$$q_{n+1} = \left(1, \Delta t \frac{\omega}{2}\right) q_n = q_n + \Delta t \frac{(0, \omega)}{2} q_n$$

 $\upsilon~$ From this get the differential equation:

$$\dot{q} = \frac{1}{2}(0,\omega)q$$

cs533d-winter-2005 13

Integrating Rotation

- Can update like Symplectic Euler, but need to renormalize q after each step
- For reasonable accuracy, limit time step according to rate of rotation
 - Don't try for more than a quarter turn per time step, say
 - Stability is not an issue due to renormalization
- For more accurate methods, see S. R. Buss, "Accurate and efficient simulation of rigid body rotations", JCP 2000

cs533d-winter-2005 14

Converting q to R

- Clearly superior to use quaternions for storing and updating orientation
- But, slightly faster to transform points with rotation matrix
- If you need to transform a lot of points (collision detection...) may want to convert q into R
- ◆ Basic idea: columns of R are rotated axes R(1,0,0)^T, R(0,1,0)^T, and R(0,0,1)^T
- Do the rotation with q instead.
 Can simplify and antimize for the zeroe.
 - Can simplify and optimize for the zeros look it up

cs533d-winter-2005 15

Gravity

- Force on a point is m_ig
- Net force:

$$F = \sum_{i} m_{i}g = Mg$$

• Net torque: $\tau = \sum (x_i - X) \times m_i g$

$$= \left(\left(\sum_{i}^{i} m_{i} x_{i} \right) - M X \right) \times g$$

cs533d-winter-2005 16

Collision Impulses

- Can use same collision detection as deformable objects
 - Since geometry is fixed, may be cheaper
 - E.g. can use level set approximation to geometry
- But applying collision impulses is more complicated than for simple particles
 - Need to take into account angular motion too
- Use same principle though for the colliding points
 - What is the impulse that causes their relative velocity to change as desired?

cs533d-winter-2005 17

Frictionless impulse

- Object velocities at point:
 - $v_i = \omega_i \times (x X_i) + V_i$
- Relative velocity v=v₁-v₂
 Normal component v_n=v•n
- Want post-collision relative normal velocity to be $v_n^{after} = -\epsilon v_n$
- υ Apply an impulse $j=j_nn$ in the normal direction to achieve this $V^{after} V + M^{-1}i$

$$\begin{array}{l} \bigvee_{i} = \bigvee_{i} + M_{i} \quad j_{i} \\ L_{i}^{after} = L_{i} + \left(x - X_{i}\right) \times j_{i} \\ \omega_{i}^{after} = \omega_{i} + I_{i}(t)^{-1} \left(x - X_{i}\right) \times j_{i} \\ j_{i} = (-1)^{i+1} j_{n} n \end{array}$$

Computing frictionless impulse

$$K_{i} = \frac{1}{M_{i}} \delta + (x - X_{i})^{*T} I_{i}^{-1} (x - X_{i})^{*}$$

$$j = \frac{-(1+\varepsilon)v_n}{n^T (K_1 + K_2)n} n$$

Computing friction

- ♦ Static friction valid only in "friction cone" $|j_T| \le \mu |j_n|$
- Approach:
 - Calculate static friction impulse (whatever it takes to make relative velocity zero)
 - Check if it's in the friction cone
 - If so, we're done
 - If not, try again with sliding

Computing static friction

$$v^{after} = -\varepsilon v_n n$$
$$j = (K_1 + K_2)^{-1} (-v - \varepsilon v_n n)$$

Sliding friction

- If computed static friction impulse fails friction cone test
- We'll assume sliding direction stays constant during impact: tangential impulse just in the initial relative velocity direction
 - Not true in some situations...

$$T = \frac{v - v_n n}{|v - v_n n|}$$
$$j = j_n n - \mu j_n T$$
$$j_n = \frac{-(1 + \varepsilon)v_n}{n^T (K_1 + K_2)(n - \mu T)}$$

Rigid Collision Algorithms

- Use the same collision response algorithm as with particles
 - Identify colliding points as perhaps the deepest penetrating points, or the first points to collide
 - Make sure they are colliding, not separating!
- Problem: multiple contact points
 - Fixing one at a time can cause rattling.
 - Can fix by being more gentle in resolving contacts negative coefficient of restitution
- Problem: multiple collisions (stacks)
 - Fixing one penetration causes others
 - Solve either by resolving simultaneously or enforcing order of resolution

cs533d-winter-2005 19

cs533d-winter-2005 21

cs533d-winter-2005 20

cs533d-winter-2005 22