
1cs533d-winter-2005

Notes

! Assignment 2 going okay?
• Make sure you understand what needs to be

done before the weekend

! Read Guendelman et al, “Nonconvex rigid
bodies with stacking”, SIGGRAPH’03

! Mistake last class:
(forgot a transpose
in calculating torque)
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Inertia Tensor Simplified

! Reduce expense of calculating I(t):

• Now use xi-X=Rpi and use RTR=!
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Inertia Tensor Simplified 2

! So just compute inertia tensor once, for object
space configuration

! Then I(t)=RIbodyR
T

! And I(t)-1=R(Ibody)
-1RT

• So precompute inverse too

! In fact, since I is symmetric, know we have an
orthogonal eigenbasis Q

! Rotate object-space orientation by Q
• Then Ibody is just diagonal!
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Degenerate Inertia Tensors

! Inertia tensor can always be inverted unless all
the points of the object line up (object is a rod)
• Or there’s only one point

! We don’t care though, since we can’t track
rotation around that axis anyways
• So diagonalize I, and only invert nonzero elements
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Taking the limit

! Letting our decomposition of the object
into point masses go to infinity:
• Instead of sum over particles,

integral over object volume

• Instead of particle mass,
density at that point in space
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Computing Inertia Tensors

! Do the integrals:

! Lots of “fun”

! You may just want to look them up instead
• E.g. Eric Weisstein’s World of Science on the web

! If not…. align axis perpendicular to planes of
symmetry (of ") in object space

• Guarantees some off-diagonal zeros

! Example: sphere, uniform density, radius R

! 

Ibody = " p
T
p# $ ppT( )dp

p

%%%

! 

2

5
MR

2
0 0

0
2

5
MR

2
0

0 0
2

5
MR

2

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 



7cs533d-winter-2005

Approximating Inertia Tensors

! For complicated geometry, don’t really need
exact answer

! Could just take the inertia tensor from a simpler
geometric figure (will anyone notice?)

! Or numerically approximate integral
• If we can afford to spend a lot of time precomputing,

life is simple

• Grid approach: sample density…

• Monte Carlo approach: random samples
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Combining Objects

! What if object is union of two simpler objects?

! Integrals are additive
• But DO NOT USE I1(t)+I2(t):

! World-space formulas (x-X) use the X for the object: X1 and
X2 may be different

! Simplified Ibody formula based on having centre of mass at
origin

• Let’s work it out from the integral of I(t)

! Combined mass: M=M1+M2

! Centre of mass of combined object:
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Combined Inertia Tensor
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Numerical Integration

! Recall equations of motion

! X and V is just like particle motion
! Angular components trickier:

R must remain orthogonal, but standard
integration will cause it to drift
• Can use Gram-Schmidt, but expensive and biased! 
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Improving on R

! Instead of 9 numbers for 3 DOF, use a
less redundant representation

! Euler angles: 3 numbers
• But updating with angular velocity is painful

! Quaternions: 4 numbers
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What are quaternions?

! Instead of R, use q=(s,x,y,z) with |q|=1
• Can think of q as a “super complex number”

s+xi+yj+zk

• i2=j2=k2=-1, ij=-ji=k, jk=-kj=i, ki=-ik=j

• Quaternions don’t commute! q1q2!q2q1 in general

! Represents “half” a rotation:
• s=cos(#/2)

• |x,y,z|2=sin2(#/2)

• Axis of rotation is (x,y,z)

! Conjugate (inverse for unit norm) is

! 

q = (s,"x,"y,"z)
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Rotating with quaternions

! Instead of Rp, calculate

! Composing a rotation of "t$ to advance a time step:

% For small "t$ approximate:

% From this get the differential equation:
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Integrating Rotation

! Can update like Symplectic Euler, but
need to renormalize q after each step

! For reasonable accuracy, limit time step
according to rate of rotation
• Don’t try for more than a quarter turn per time

step, say

• Stability is not an issue due to renormalization

! For more accurate methods, see S. R.
Buss, “Accurate and efficient simulation of
rigid body rotations”, JCP 2000
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Converting q to R

! Clearly superior to use quaternions for storing
and updating orientation

! But, slightly faster to transform points with
rotation matrix

! If you need to transform a lot of points (collision
detection…) may want to convert q into R

! Basic idea: columns of R are rotated axes
R(1,0,0)T, R(0,1,0)T, and R(0,0,1)T

! Do the rotation with q instead.
• Can simplify and optimize for the zeros - look it up
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Gravity

! Force on a point is mig

! Net force:

! Net torque:
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Collision Impulses

! Can use same collision detection as deformable
objects
• Since geometry is fixed, may be cheaper

• E.g. can use level set approximation to geometry

! But applying collision impulses is more
complicated than for simple particles
• Need to take into account angular motion too

! Use same principle though for the colliding
points
• What is the impulse that causes their relative velocity

to change as desired?
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Frictionless impulse

! Object velocities at point:
• vi=$i&(x-Xi)+Vi

! Relative velocity v=v1-v2

• Normal component vn=v•n

! Want post-collision relative normal velocity to be
vn

after=-'vn

% Apply an impulse j=jnn in the normal direction to
achieve this

! 
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Computing frictionless impulse
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Computing friction

! Static friction valid only in “friction cone”

! Approach:
• Calculate static friction impulse (whatever it

takes to make relative velocity zero)

• Check if it’s in the friction cone

• If so, we’re done

• If not, try again with sliding

! 

jT " µ jn
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Computing static friction
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Sliding friction

! If computed static friction impulse fails
friction cone test

!We’ll assume sliding direction stays
constant during impact: tangential
impulse just in the initial relative
velocity direction
• Not true in some situations…
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Computing sliding friction
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Rigid Collision Algorithms

! Use the same collision response algorithm as
with particles
• Identify colliding points as perhaps the deepest

penetrating points, or the first points to collide

• Make sure they are colliding, not separating!

! Problem: multiple contact points
• Fixing one at a time can cause rattling.
• Can fix by being more gentle in resolving contacts -

negative coefficient of restitution

! Problem: multiple collisions (stacks)
• Fixing one penetration causes others

• Solve either by resolving simultaneously
or enforcing order of resolution


