Von Mises yield criterion

- Read "Physically Based Modelling" SIGGRAPH course notes by Witkin and Baraff (at least, rigid body sections)
 - An alternative way to derive the equations of motion for rigid bodies
- If the stress has been diagonalized: $\frac{1}{\sqrt{2}}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2} \le \sigma_Y$
- More generally: $\sqrt{\frac{3}{2}}\sqrt{\left\|\sigma\right\|_{F}^{2}-\frac{1}{3}Tr(\sigma)^{2}} \leq \sigma_{Y}$
- This is the same thing as the Frobenius norm of the deviatoric part of stress
 - i.e. after subtracting off volume-changing part:

$$\sqrt{\frac{3}{2}} \left\| \sigma - \frac{1}{3} Tr(\sigma) I \right\|_F \le \sigma_Y$$

cs533d-winter-2005

Linear elasticity shortcut

- For linear (and isotropic) elasticity, apart from the volume-changing part which we cancel off, stress is just a scalar multiple of strain
 - (ignoring damping)
- So can evaluate von Mises with elastic strain tensor too (and an appropriately scaled yield strain)

Perfect plastic flow

- Once yield condition says so, need to start changing plastic strain
- The magnitude of the change of plastic strain should be such that we stay on the yield surface
 I.e. maintain f(σ)=0
 - (where $f(\sigma) \le 0$ is, say, the von Mises condition)
- The direction that plastic strain changes isn't as straightforward
- "Associative" plasticity: $\dot{\varepsilon}_p = \gamma \frac{\partial f}{\partial \sigma}$

cs533d-winter-2005

Algorithm

- After a time step, check von Mises criterion: is $f(\sigma) = \sqrt{\frac{3}{2}} \|dev(\sigma)\|_{E} - \sigma_{Y} > 0$?
- If so, need to update plastic strain:

$$\sum_{p}^{new} = \varepsilon_p + \gamma \frac{\partial J}{\partial \sigma}$$
$$= \varepsilon_p + \gamma \sqrt{\frac{3}{2}} \frac{dev(\sigma)}{\|dev(\sigma)\|}$$

 with γ chosen so that f(σ^{new})=0 (easy for linear elasticity)

ε

Multi-Dimensional Fracture

- Smooth stress to avoid artifacts (average with neighbouring elements)
- Look at largest eigenvalue of stress in each element
- If larger than threshold, introduce crack perpendicular to eigenvector
- Big question: what to do with the mesh?
 - Simplest: just separate along closest mesh face
 - Or split elements up: O'Brien and Hodgins
 - Or model crack path with embedded geometry: Molino et al.

cs533d-winter-2005

cs533d-winter-2005

3

Rigid Bodies

Rigid Bodies

- Most volumes in the real world are very stiff---not visibly deformable
- Rather than stiff and expensive deformable mechanics, mathematically abstract this into perfectly rigid bodies
 - · Constrain motion to rigid body modes
 - Avoid having to model internal "constraint" forces which keep bodies rigid
- More efficient, but rigid abstraction can cause problems...
- Still, best approach especially for real-time simulations of such objects - e.g. games
 - Even large objects which deform may be best decomposed into rigid parts
 CSS334-winter-2005

Object Space vs. World Space

- As before, we have rest/reference/object space configuration (label points with variable p)
- And current/real/world space configuration (position is x(p))
- First note:
 - If it ever gets confusing, replace continuous matter with a finite set of mass points (object space positions p₁, p₂, ... and world space positions x₁, x₂, ...)
- Rigidity means that x(p,t)=R(t)p+X(t)
- R is a rotation matrix (orthogonal and det(R)=1)
 - X is a translation vector

cs533d-winter-2005 9

cs533d-winter-2005

7

Kinematics

- Differentiate map in time: v = Rp + V
- Invert map for p: $p = R^T(x X)$
- Thus: $v = \dot{R}R^T(x X) + V$
- 1st term: rotation, 2nd term: translation
 Let's simplify the rotation

cs533d-winter-2005 10

Skew-Symmetry

• Differentiate $RR^T = \delta$ w.r.t. time:

$$\dot{R}R^{T} + R\dot{R}^{T} = 0 \implies \dot{R}R^{T} = -(\dot{R}R^{T})^{T}$$

 $\upsilon~$ Skew-symmetric! Thus can write as:

$$\dot{R}R^{T} = \begin{pmatrix} 0 & -\omega_{2} & \omega_{1} \\ \omega_{2} & 0 & -\omega_{0} \\ -\omega_{1} & \omega_{0} & 0 \end{pmatrix}$$

v Call this matrix $ω^*$ (built from a vector ω)

$$\dot{R}R^T = \omega^* \implies \dot{R} = \omega^*R$$

The cross-product matrix

Note that:

٠

$$\omega^* x = \begin{pmatrix} 0 & -\omega_2 & \omega_1 \\ \omega_2 & 0 & -\omega_0 \\ -\omega_1 & \omega_0 & 0 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \omega_1 x_2 - \omega_2 x_1 \\ \omega_2 x_0 - \omega_0 x_2 \\ \omega_0 x_1 - \omega_1 x_0 \end{pmatrix} = \omega \times x$$

So we have:
$$v = \omega \times (x - X) + V$$

- $\upsilon \quad \omega$ is the angular velocity of the object
- $\boldsymbol{\upsilon}$ Magnitude gives speed of rotation, direction gives axis of rotation

Velocity Modes

- Think of linear space of all possible velocities. and choose a set of basis vectors for the subspace of allowed motions (rigid body motions)
 - Think back to modal dynamics...
- In this case, velocity is a linear combination of 3 translations and 3 rotations, with coefficients V and ω
- υ Write this as v=Su, or

$$v(x) = S(x)u$$

= $\left(\delta \quad X^* - x^*\right) \begin{pmatrix} V \\ \omega \end{pmatrix}$ [= $V - (x - X) \times \omega \dots$]

Virtual Work

- The internal "constraint" forces are going to keep v in the span of S, so v=Su for some coefficients u
- But assume (and this is the key assumption) that they don't mess with these allowed modes
- That is, they are orthogonal:
 - S^TF_{int}=0
 - They do no "virtual work"
- For example, internal forces won't cause an object to out of the blue start translating, or rotating...
 - Can derive from, for example, the assumption that down at some level forces between particles are in the direction between particles cs533d-winter-2005

14

Constrained Dynamics

- We have F=Ma, i.e. $M\dot{v} = F_{\rm int} + F_{\rm ext}$ Now plug in form for constrained velocity

 $MS\dot{u} + M\dot{S}u = F_{\rm int} + F_{\rm ext}$

And eliminate the internal forces: $S^T M S \dot{u} + S^T M \dot{S} u = S^T F_{int} + S^T F_{ext}$

cs533d-winter-2005

cs533d-winter-2005

17

15

$$(S^T M S)\dot{u} + (S^T M \dot{S})u = S^T \overset{\circ}{F}_{ext}^{o}$$

Working it out

What is the matrix multiplying du/dt?

$$S^{T}MS = \sum_{i} {\delta \choose X^{*T} - x_{i}^{*T}} M_{i} {\delta \quad X^{*} - x_{i}^{*}}$$
$$= \sum_{i} m_{i} {\delta \quad X^{*} - x_{i}^{*} \choose X^{*T} - x_{i}^{*T} \quad (X^{*} - x_{i}^{*})^{T} (X^{*} - x_{i}^{*})}$$

 Using total mass M (not the matrix!) and centre of mass X_{CM} this simplifies to:

Can we do better?

- We have some freedom in defining S
- Don't have to rotate about the origin: can rotate around the centre of mass instead
 - · This will let us zero out the off-diagonal blocks, make it simpler to invert the 6x6 matrix
- That is, X=X_{CM} so that S^TMS becomes

$$\begin{pmatrix} M\delta & 0\\ 0 & \sum_{i} m_{i} (X - x_{i})^{*T} (X - x_{i})^{*} \end{pmatrix} = \begin{pmatrix} M\delta & 0\\ 0 & I(t) \end{pmatrix}$$

We call I(t) the "inertia tensor"

Change of S

- There was also the dS/dt term
- Note that identity matrix is constant: disappears

We get
$$S^{T}M\dot{S} = \sum_{i} m_{i} \left(X^{*T} - x_{i}^{*T} \right) \left(0 \quad V^{*} - v_{i}^{*} \right)$$

 $= \sum_{i} m_{i} \left(\begin{matrix} 0 & V^{*} - v_{i}^{*} \\ 0 & (X - x_{i})^{*T} (V - v_{i})^{*} \end{matrix} \right)$
 $= \left(\begin{matrix} 0 & 0 \\ 0 & \sum_{i} m_{i} (X - x_{i})^{*T} (V - v_{i})^{*} \end{matrix} \right)$

- Note simplification from m_iv_i summing to MV
- Left with dl(t)/dt in lower right corner

What about the external forces?

- What is S^TF_{ext}? $S^{T}F_{ext} = \sum_{i} \begin{pmatrix} \delta \\ X^{*T} x_{i}^{*T} \end{pmatrix} f_{i}$ $= \begin{pmatrix} \sum_{i} f_{i} \\ \sum_{i} (x_{i} - X) \times f_{i} \end{pmatrix}$ $= \begin{pmatrix} F \\ \tau \end{pmatrix}$
- We call F the net force, and τ the net torque

cs533d-winter-2005 19

Equations of Motion

 Plugging it all in (and assuming centre of mass is at the origin in object space)

$$MV = F$$
$$\frac{d}{dt}(I(t)\omega) = \tau$$

Call L=I(t) the angular momentum
 The component of momentum in the rotational mode

$$X = V$$
$$\dot{R} = \omega^* R$$

cs533d-winter-2005 20

To Do

- ◆ Figure out I(t) efficiently
- Numerically integrate the ODE's
 - Turns out R is not a good representation for the current rotation
- Look at the net force and torque of some external forces
 - Gravity
 - Collisions

cs533d-winter-2005 21