
1cs533d-winter-2005

Notes

! Read “Physically Based Modelling”
SIGGRAPH course notes by Witkin and
Baraff (at least, rigid body sections)
• An alternative way to derive the equations of

motion for rigid bodies
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Von Mises yield criterion

! If the stress has been diagonalized:

! More generally:

! This is the same thing as the Frobenius norm of the
deviatoric part of stress
• i.e. after subtracting off volume-changing part:
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Linear elasticity shortcut

! For linear (and isotropic) elasticity, apart
from the volume-changing part which we
cancel off, stress is just a scalar multiple of
strain
• (ignoring damping)

! So can evaluate von Mises with elastic
strain tensor too (and an appropriately
scaled yield strain)
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Perfect plastic flow

! Once yield condition says so, need to start
changing plastic strain

! The magnitude of the change of plastic strain
should be such that we stay on the yield surface
• I.e. maintain f(!)=0

(where f(!)!0 is, say, the von Mises condition)

! The direction that plastic strain changes isn’t as
straightforward

! “Associative” plasticity:
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Algorithm

! After a time step, check von Mises criterion:
   is                                              ?

! If so, need to update plastic strain:

• with " chosen so that f(!new)=0
(easy for linear elasticity)
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Multi-Dimensional Fracture

! Smooth stress to avoid artifacts (average with
neighbouring elements)

! Look at largest eigenvalue of stress in each
element

! If larger than threshhold, introduce crack
perpendicular to eigenvector

! Big question: what to do with the mesh?
• Simplest: just separate along closest mesh face

• Or split elements up: O’Brien and Hodgins

• Or model crack path with embedded geometry:
Molino et al.
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Rigid Bodies
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Rigid Bodies

! Most volumes in the real world are very stiff---not
visibly deformable

! Rather than stiff and expensive deformable
mechanics, mathematically abstract this into
perfectly rigid bodies
• Constrain motion to rigid body modes

• Avoid having to model internal “constraint” forces
which keep bodies rigid

! More efficient, but rigid abstraction can cause
problems…

! Still, best approach especially for real-time
simulations of such objects - e.g. games
• Even large objects which deform may be best

decomposed into rigid parts
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Object Space vs. World Space

! As before, we have rest/reference/object space
configuration (label points with variable p)

! And current/real/world space configuration
(position is x(p))

! First note:
• If it ever gets confusing, replace continuous matter

with a finite set of mass points (object space positions
p1, p2, … and world space positions x1, x2, …)

! Rigidity means that x(p,t)=R(t)p+X(t)
• R is a rotation matrix (orthogonal and det(R)=1)

• X is a translation vector
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Kinematics

! Differentiate map in time:

! Invert map for p:

! Thus:

! 1st term: rotation,  2nd term: translation
• Let’s simplify the rotation

! 

v = ˙ R p + V

! 

p = R
T
(x " X)

! 

v = ˙ R R
T
(x " X) + V
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Skew-Symmetry

! Differentiate RRT=# w.r.t. time:

$ Skew-symmetric! Thus can write as:

$ Call this matrix %"    (built from a vector %)
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The cross-product matrix

! Note that:

! So we have:

$ % is the angular velocity of the object

$ Magnitude gives speed of rotation, direction gives axis of
rotation
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Velocity Modes

! Think of linear space of all possible velocities,
and choose a set of basis vectors for the
subspace of allowed motions (rigid body
motions)
• Think back to modal dynamics…

! In this case, velocity is a linear combination of 3
translations and 3 rotations, with coefficients V
and %

$ Write this as v=Su, or

  

! 

v(x) = S(x)u
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Virtual Work

! The internal “constraint” forces are going to keep
v in the span of S, so v=Su for some coefficients
u

! But assume (and this is the key assumption) that
they don’t mess with these allowed modes

! That is, they are orthogonal:
• STFint=0

• They do no “virtual work”

! For example, internal forces won’t cause an
object to out of the blue start translating, or
rotating…
• Can derive from, for example, the assumption that

down at some level forces between particles are in
the direction between particles
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Constrained Dynamics

! We have F=Ma, i.e.

! Now plug in form for constrained velocity

! And eliminate the internal forces:
! 
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Working it out

! What is the matrix multiplying du/dt?

! Using total mass M (not the matrix!) and
centre of mass XCM this simplifies to:
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Can we do better?

! We have some freedom in defining S
! Don’t have to rotate about the origin: can rotate

around the centre of mass instead
• This will let us zero out the off-diagonal blocks, make

it simpler to invert the 6x6 matrix

! That is, X=XCM so that STMS becomes

! We call I(t) the “inertia tensor”
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Change of S

! There was also the dS/dt term
! Note that identity matrix is constant: disappears
! We get

! Note simplification from mivi summing to MV
! Left with dI(t)/dt in lower right corner
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What about the external forces?

! What is STFext?

! We call F the net force, and & the net
torque
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Equations of Motion

! Plugging it all in (and assuming centre of mass
is at the origin in object space)

! Call L=I(t)% the angular momentum
• The component of momentum in the rotational mode

! Also add in

! 

M ˙ V = F

d

dt
I(t)"( ) = #

! 

˙ X = V

˙ R ="*
R
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To Do

! Figure out I(t) efficiently

! Numerically integrate the ODE’s
• Turns out R is not a good representation for

the current rotation

! Look at the net force and torque of some
external forces
• Gravity

• Collisions


