
1cs533d-winter-2005

Notes

! Read “Physically Based Modelling”
SIGGRAPH course notes by Witkin and
Baraff (at least, rigid body sections)
• An alternative way to derive the equations of

motion for rigid bodies

2cs533d-winter-2005

Von Mises yield criterion

! If the stress has been diagonalized:

! More generally:

! This is the same thing as the Frobenius norm of the
deviatoric part of stress
• i.e. after subtracting off volume-changing part:

!

1

2
"
1
#"

2()
2

+ "
2
#"

3()
2

+ "
3
#"

1()
2

$"
Y

!

3

2
"

F

2

1

3
Tr "()

2

$"
Y

!

3

2
" # 1

3
Tr "()I

F
$"

Y

3cs533d-winter-2005

Linear elasticity shortcut

! For linear (and isotropic) elasticity, apart
from the volume-changing part which we
cancel off, stress is just a scalar multiple of
strain
• (ignoring damping)

! So can evaluate von Mises with elastic
strain tensor too (and an appropriately
scaled yield strain)

4cs533d-winter-2005

Perfect plastic flow

! Once yield condition says so, need to start
changing plastic strain

! The magnitude of the change of plastic strain
should be such that we stay on the yield surface
• I.e. maintain f(!)=0

(where f(!)!0 is, say, the von Mises condition)

! The direction that plastic strain changes isn’t as
straightforward

! “Associative” plasticity:

!

˙ " p = #
$f

$%

5cs533d-winter-2005

Algorithm

! After a time step, check von Mises criterion:
 is ?

! If so, need to update plastic strain:

• with " chosen so that f(!new)=0
(easy for linear elasticity)

!

f (") = 3

2
dev "()

F
#"Y > 0

!

"p
new

= "p + #
$f

$%

= "p + # 3

2

dev(%)

dev(%)
F

6cs533d-winter-2005

Multi-Dimensional Fracture

! Smooth stress to avoid artifacts (average with
neighbouring elements)

! Look at largest eigenvalue of stress in each
element

! If larger than threshhold, introduce crack
perpendicular to eigenvector

! Big question: what to do with the mesh?
• Simplest: just separate along closest mesh face

• Or split elements up: O’Brien and Hodgins

• Or model crack path with embedded geometry:
Molino et al.

7cs533d-winter-2005

Rigid Bodies

8cs533d-winter-2005

Rigid Bodies

! Most volumes in the real world are very stiff---not
visibly deformable

! Rather than stiff and expensive deformable
mechanics, mathematically abstract this into
perfectly rigid bodies
• Constrain motion to rigid body modes

• Avoid having to model internal “constraint” forces
which keep bodies rigid

! More efficient, but rigid abstraction can cause
problems…

! Still, best approach especially for real-time
simulations of such objects - e.g. games
• Even large objects which deform may be best

decomposed into rigid parts

9cs533d-winter-2005

Object Space vs. World Space

! As before, we have rest/reference/object space
configuration (label points with variable p)

! And current/real/world space configuration
(position is x(p))

! First note:
• If it ever gets confusing, replace continuous matter

with a finite set of mass points (object space positions
p1, p2, … and world space positions x1, x2, …)

! Rigidity means that x(p,t)=R(t)p+X(t)
• R is a rotation matrix (orthogonal and det(R)=1)

• X is a translation vector

10cs533d-winter-2005

Kinematics

! Differentiate map in time:

! Invert map for p:

! Thus:

! 1st term: rotation, 2nd term: translation
• Let’s simplify the rotation

!

v = ˙ R p + V

!

p = R
T
(x " X)

!

v = ˙ R R
T
(x " X) + V

11cs533d-winter-2005

Skew-Symmetry

! Differentiate RRT=# w.r.t. time:

$ Skew-symmetric! Thus can write as:

$ Call this matrix %" (built from a vector %)

!

˙ R R
T + R ˙ R

T = 0 " ˙ R R
T = # ˙ R R

T()
T

!

˙ R R
T

=

0 "#
2

#
1

#
2

0 "#
0

"#
1

#
0

0

$

%

&
&
&

'

(

)
)
)

!

˙ R R
T

="#
$ ˙ R ="#

R

12cs533d-winter-2005

The cross-product matrix

! Note that:

! So we have:

$ % is the angular velocity of the object

$ Magnitude gives speed of rotation, direction gives axis of
rotation

!

"#
x =

0 $"
2

"
1

"
2

0 $"
0

$"
1

"
0

0

%

&

'
'
'

(

)

*
*
*

x
0

x
1

x
2

%

&

'
'
'

(

)

*
*
*

=

"
1
x
2
$"

2
x
1

"
2
x
0
$"

0
x
2

"
0
x
1
$"

1
x
0

%

&

'
'
'

(

)

*
*
*

=" + x

!

v =" # x $ X() +V

13cs533d-winter-2005

Velocity Modes

! Think of linear space of all possible velocities,
and choose a set of basis vectors for the
subspace of allowed motions (rigid body
motions)
• Think back to modal dynamics…

! In this case, velocity is a linear combination of 3
translations and 3 rotations, with coefficients V
and %

$ Write this as v=Su, or

!

v(x) = S(x)u

= " X
* # x*() V$

%
&
'
(
)
* =V # (x # X) +$K[]

14cs533d-winter-2005

Virtual Work

! The internal “constraint” forces are going to keep
v in the span of S, so v=Su for some coefficients
u

! But assume (and this is the key assumption) that
they don’t mess with these allowed modes

! That is, they are orthogonal:
• STFint=0

• They do no “virtual work”

! For example, internal forces won’t cause an
object to out of the blue start translating, or
rotating…
• Can derive from, for example, the assumption that

down at some level forces between particles are in
the direction between particles

15cs533d-winter-2005

Constrained Dynamics

! We have F=Ma, i.e.

! Now plug in form for constrained velocity

! And eliminate the internal forces:
!

M ˙ v = F
int

+ F
ext

!

MS˙ u + M ˙ S u = F
int

+ F
ext

!

S
T

MS˙ u + S
T

M ˙ S u = S
T
F

int

= 0

1 2 3
+ S

T
F

ext

S
T

MS() ˙ u + S
T

M ˙ S ()u = S
T
F

ext

16cs533d-winter-2005

Working it out

! What is the matrix multiplying du/dt?

! Using total mass M (not the matrix!) and
centre of mass XCM this simplifies to:

!

S
T
MS =

"
X
*T # x

i

*T

$
%
&

'
(
) M

i
" X

* # x
i

*()
i

*

= m
i

" X
* # x

i

*

X
*T # x

i

*T
X
* # x

i

*()
T

X
* # x

i

*()

$

%
& &

'

(
))

i

*

!

M" MX
* #MX

CM

*

MX
*T #MX

CM

*T
m

i
X # x

i()
*T

X # x
i()
*

i

$
%

&

'
'

(

)

*
*

17cs533d-winter-2005

Can we do better?

! We have some freedom in defining S
! Don’t have to rotate about the origin: can rotate

around the centre of mass instead
• This will let us zero out the off-diagonal blocks, make

it simpler to invert the 6x6 matrix

! That is, X=XCM so that STMS becomes

! We call I(t) the “inertia tensor”

!

M" 0

0 m
i
X # x

i()
*T
X # x

i()
*

i

$
%

&
'
'

(

)
*
* =

M" 0
0 I(t)

%
&
'

(
)
*

18cs533d-winter-2005

Change of S

! There was also the dS/dt term
! Note that identity matrix is constant: disappears
! We get

! Note simplification from mivi summing to MV
! Left with dI(t)/dt in lower right corner

!

S
T
M ˙ S = m

i

"
X

*T # x
i

*T

$
%
&

'
(
) 0 V

* # v
i

*()
i

*

= m
i

0 V
* # v

i

*

0 X # x
i()

*T

V # v
i()

*

$

%
&

'

(
)

i

*

=
0 0

0 m
i

i
* X # x

i()
*T

V # v
i()

*

$

%
&

'

(
)

19cs533d-winter-2005

What about the external forces?

! What is STFext?

! We call F the net force, and & the net
torque

!

S
T
F
ext

=
"

X
*T # xi

*T

$
%
&

'
(
) f i

i

*

=
f i

i
*
xi # X()

i
* + f i

$

%

&
&

'

(

)
)

=
F
,
$
%
&
'
(
)

20cs533d-winter-2005

Equations of Motion

! Plugging it all in (and assuming centre of mass
is at the origin in object space)

! Call L=I(t)% the angular momentum
• The component of momentum in the rotational mode

! Also add in

!

M ˙ V = F

d

dt
I(t)"() = #

!

˙ X = V

˙ R ="*
R

21cs533d-winter-2005

To Do

! Figure out I(t) efficiently

! Numerically integrate the ODE’s
• Turns out R is not a good representation for

the current rotation

! Look at the net force and torque of some
external forces
• Gravity

• Collisions

