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Notes

! Today 4pm, Dempster 310
Demetri Terzopoulos is talking

! Please read Pentland and Williams, “Good
vibrations”, SIGGRAPH!89
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Simplifications of Elasticity
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Rotated Linear Elements

! Green strain is quadratic - not so nice
! Cauchy strain can!t handle big rotations
! So instead, for each element factor deformation

gradient A into a rotation Q times a deformation
F: A=QF
• Polar Decomposition

! Strain is now just F-I, compute stress, rotate
forces back with QT

! See Mueller et al, “Interactive Virtual Materials”,
GI!04

! Quick and dirty version: use QR, F=symmetric
part of R
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Inverted Elements

! Too much external force will crush a mesh,
cause elements to invert

! Usual definitions of strain can!t handle this

! Instead can take SVD of A, flip smallest
singular value if we have reflection
• Strain is just diagonal now

! See Irving et al., “Invertible FEM”, SCA!04
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Embedded Geometry

! Common technique: simulation geometry isn!t as
detailed as rendered geometry
• E.g. simulate cloth with a coarse mesh, but render

smooth splines from it

! Can take this further: embedded geometry
• Simulate deformable object dynamics with simple

coarse mesh
• Embed more detailed geometry inside the mesh for

collision processing

• Fast, looks good, avoids the need for complex (and
finnicky) mesh generation

• See e.g. “Skeletal Animation of Deformable
Characters,"  Popovic et al., SIGGRAPH!02
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Quasi-Static Motion

! Assume inertia is unimportant---given any
applied force, deformable object almost instantly
comes to rest

! Then we are quasi-static: solve for current
position where Finternal+Fexternal=0

! For linear elasticity, this is just a linear system
• Potentially very fast, no need for time stepping etc.

• Schur complement technique: assume external forces
never applied to interior nodes, then can eliminate
them from the equation…
Just left with a small system of equations for surface
nodes (i.e. just the ones we actually can see)
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Boundary Element Method

! For quasi-static linear elasticity and a
homogeneous material, can set up PDE to
eliminate interior unknowns---before
discretization
• Very accurate and efficient!

• Essentially the limit of the Schur complement
approach…

! See James & Pai, “ArtDefo…”, SIGGRAPH!99
• For interactive rates, can actually do more: preinvert

BEM stiffness matrix

• Need to be smart about updating inverse when
boundary conditions change…
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Modal Dynamics

! See Pentland and Williams, “Good Vibrations”,
SIGGRAPH!89

! Again assume linear elasticity
! Equation of motion is Ma+Dv+Kx=Fexternal

! M, K, and D are constant matrices
• M is the mass matrix (often diagonal)

• K is the stiffness matrix

• D is the damping matrix: assume a multiple of K

! This a large system of coupled ODE!s now

! We can solve eigen problem to diagonalize and
decouple into scalar ODE!s
• M and K are symmetric, so no problems here - complete

orthogonal basis of real eigenvectors
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Eigenstuff

! Say U=(u1 | u2 | … | u3n) is a matrix with
the columns the eigenvectors of M-1K (also
M-1D)
• M-1Kui=!iui   and   M-1Dui=µiui

• Assume !i are increasing

• We know !1=…=!6=0 and µ1=…=µ6=0
(with u1, …, u6 the rigid body modes)
• The rest are the deformation modes: the

larger that !i is, the smaller scale the mode is

! Change equation of motion to this basis…
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Decoupling into modes

! Take y=UTx (so x=Uy) - decompose positions (and
velocities, accelerations) into a sum of modes

! Multiply by UT to decompose equations into modal
components:

! So now we have 3n independent ODE!s
• If Fext is constant over the time step, can even write down exact

formula for each
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Examining modes

! Mode i:

! Rigid body modes have zero eigenvalues, so just
depend on force
• Roughly speaking, rigid translations will take average of force,

rigid rotations will take cross-product of force with positions
(torque)

• Better to handle these as rigid body…

! The large eigenvalues (large i) have small length scale,
oscillate (or damp) very fast
• Visually irrelevant

! Left with small eigenvalues being important
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Throw out high frequencies

! Only track a few low-frequency modes (5-10)

! Time integration is blazingly fast!

! Essentially reduced the degrees of freedom from
thousands or millions down to 10 or so
• But keeping full geometry, just like embedded

element approach

! Collision impulses need to be decomposed into
modes just like external forces



13cs533d-term1-2005

Simplifying eigenproblem

! Low frequency modes not affected much by high
frequency geometry
• And visually, difficult for observers to quantify if a mode is

actually accurate

! So we can use a very coarse mesh to get the modes, or
even analytic solutions for a block of comparable mass
distribution

! Or use a Rayleigh-Ritz approximation to the
eigensystem (eigen-version of Galerkin FEM)
• E.g. assume low frequency modes are made up of affine and

quadratic deformations

• [Do FEM, get eigenvectors to combine them]
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More savings

! External forces (other than gravity, which
is in the rigid body modes) rarely applied
to interior, and we rarely see the interior
deformation

! So just compute and store the boundary
particles
• E.g. see James and Pai, “DyRT…”,

SIGGRAPH!02 -- did this in graphics
hardware!
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Inelasticity: Plasticity & Fracture
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Plasticity & Fracture

! If material deforms too much, becomes
permanently deformed: plasticity
• Yield condition: when permanent deformation starts

happening (“if stress is large enough”)

• Elastic strain: deformation that can disappear in the
absence of applied force

• Plastic strain: permanent deformation accumulated
since initial state

• Total strain: total deformation since initial state

• Plastic flow: when yield condition is met, how elastic
strain is converted into plastic strain

! Fracture: if material deforms too much, breaks
• Fracture condition: “if stress is large enough”
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For springs (1D)

! Go back to Terzopoulos and Fleischer
! Plasticity: change the rest length if the stress

(tension) is too high
• Maybe different yielding for compression and tension

• Work hardening: make the yield condition more
stringent as material plastically flows

• Creep: let rest length settle towards current length at
a given rate

! Fracture: break the spring if the stress is too
high
• Without plasticity: “brittle”

• With plasticity first: “ductile”
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Fracturing meshes (1D)

! Breaking springs leads to volume loss: material
disappears

! Solutions:
• Break at the nodes instead (look at average tension

around a node instead of on a spring)
! Note: recompute mass of copied node

• Cut the spring in half, insert new nodes
! Note: could cause CFL problems…

• Virtual node algorithm
! Embed fractured geometry, copy the spring (see Molino et al.

“A Virtual Node Algorithm…” SIGGRAPH!04)
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Multi-Dimensional Plasticity

! Simplest model: total strain is sum of
elastic and plastic parts:  "="e+ "p

# Stress only depends on elastic part
(so rest state includes plastic strain):
$=$("e)

# If $ is too big, we yield, and transfer some
of "e into "p so that $ is acceptably small

20cs533d-term1-2005

Multi-Dimensional Yield criteria

! Lots of complicated stuff happens when
materials yield
• Metals: dislocations moving around

• Polymers: molecules sliding against each other

• Etc.

! Difficult to characterize exactly when plasticity
(yielding) starts
• Work hardening etc. mean it changes all the time too

! Approximations needed
• Big two: Tresca and Von Mises
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Yielding

! First note that shear stress is the important
quantity
• Materials (almost) never can permanently

change their volume

• Plasticity should ignore volume-changing
stress

! So make sure that if we add kI to $ it
doesn!t change yield condition
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Tresca yield criterion

! This is the simplest description:

• Change basis to diagonalize $

• Look at normal stresses (i.e. the eigenvalues of $)

• No yield if $max-$min " $Y

# Tends to be conservative (rarely predicts
yielding when it shouldn!t happen)

# But, not so accurate for some stress states
• Doesn!t depend on middle normal stress at all

# Big problem (mathematically): not smooth
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Von Mises yield criterion

! If the stress has been diagonalized:

! More generally:

! This is the same thing as the Frobenius norm of the
deviatoric part of stress
• i.e. after subtracting off volume-changing part:
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Linear elasticity shortcut

! For linear (and isotropic) elasticity, apart
from the volume-changing part which we
cancel off, stress is just a scalar multiple of
strain
• (ignoring damping)

! So can evaluate von Mises with elastic
strain tensor too (and an appropriately
scaled yield strain)
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Perfect plastic flow

! Once yield condition says so, need to start
changing plastic strain

! The magnitude of the change of plastic strain
should be such that we stay on the yield surface

• I.e. maintain f($)=0
(where f($)"0 is, say, the von Mises condition)

! The direction that plastic strain changes isn!t as
straightforward

! “Associative” plasticity:
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Algorithm

! After a time step, check von Mises criterion:
   is                                              ?

! If so, need to update plastic strain:

• with % chosen so that f($new)=0
(easy for linear elasticity)
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Multi-Dimensional Fracture

! Smooth stress to avoid artifacts (average with
neighbouring elements)

! Look at largest eigenvalue of stress in each
element

! If larger than threshhold, introduce crack
perpendicular to eigenvector

! Big question: what to do with the mesh?
• Simplest: just separate along closest mesh face

• Or split elements up: O!Brien and Hodgins

• Or model crack path with embedded geometry:
Molino et al.


