

Rotated Linear Elements

- Green strain is quadratic not so nice
- Cauchy strain can't handle big rotations
- So instead, for each element factor deformation gradient A into a rotation Q times a deformation F: A=QF
 - Polar Decomposition
- Strain is now just F-I, compute stress, rotate forces back with Q^T
- See Mueller et al, "Interactive Virtual Materials", GI'04
- Quick and dirty version: use QR, F=symmetric part of R

Inverted Elements

- Too much external force will crush a mesh, cause elements to invert
- Usual definitions of strain can't handle this
- Instead can take SVD of A, flip smallest singular value if we have reflection
 - Strain is just diagonal now
- ◆ See Irving et al., "Invertible FEM", SCA'04

Embedded Geometry

- Common technique: simulation geometry isn't as detailed as rendered geometry
 - E.g. simulate cloth with a coarse mesh, but render smooth splines from it
- Can take this further: embedded geometry
 - Simulate deformable object dynamics with simple coarse mesh
 - Embed more detailed geometry inside the mesh for collision processing
 - Fast, looks good, avoids the need for complex (and finnicky) mesh generation
 - See e.g. "Skeletal Animation of Deformable Characters," Popovic et al., SIGGRAPH'02

cs533d-term1-2005

Quasi-Static Motion

- Assume inertia is unimportant---given any applied force, deformable object almost instantly comes to rest
- Then we are quasi-static: solve for current position where F_{internal}+F_{external}=0
- For linear elasticity, this is just a linear system
 - Potentially very fast, no need for time stepping etc.
 - Schur complement technique: assume external forces never applied to interior nodes, then can eliminate them from the equation... Just left with a small system of equations for surface nodes (i.e. just the ones we actually can see)

cs533d-term1-2005

Boundary Element Method

- For quasi-static linear elasticity and a homogeneous material, can set up PDE to eliminate interior unknowns---before discretization
 - Very accurate and efficient!
 - Essentially the limit of the Schur complement approach...
- ◆ See James & Pai, "ArtDefo...", SIGGRAPH'99
 - For interactive rates, can actually do more: preinvert BEM stiffness matrix
 - Need to be smart about updating inverse when boundary conditions change...

Modal Dynamics

- See Pentland and Williams, "Good Vibrations", SIGGRAPH'89
- Again assume linear elasticity
- Equation of motion is Ma+Dv+Kx=F_{external}
- M, K, and D are constant matrices
 - M is the mass matrix (often diagonal)
 - K is the stiffness matrix
 - D is the damping matrix: assume a multiple of K
- This a large system of coupled ODE's now
- We can solve eigen problem to diagonalize and decouple into scalar ODE's
 - M and K are symmetric, so no problems here complete orthogonal basis of real eigenvectors

Eigenstuff

- Say U=(u₁ | u₂ | ... | u_{3n}) is a matrix with the columns the eigenvectors of M⁻¹K (also M⁻¹D)
 - $M^{-1}Ku_i = \lambda_i u_i$ and $M^{-1}Du_i = \mu_i u_i$
 - Assume λ_i are increasing
 - We know $\lambda_1 = ... = \lambda_6 = 0$ and $\mu_1 = ... = \mu_6 = 0$ (with $u_1, ..., u_6$ the rigid body modes)
 - The rest are the deformation modes: the larger that λ_i is, the smaller scale the mode is
- Change equation of motion to this basis...

cs533d-term1-2005

Decoupling into modes

- Take y=U^Tx (so x=Uy) decompose positions (and velocities, accelerations) into a sum of modes
 Uÿ = −M⁻¹KUy − M⁻¹DUÿ + M⁻¹F_{ext}
- Multiply by U^T to decompose equations into modal components:

$$U^{T}U\ddot{y} = -U^{T}M^{-1}KUy - U^{T}M^{-1}DU\dot{y} + U^{T}M^{-1}F_{ex}$$
$$\ddot{y} = -diag(\lambda_{i})y - diag(\mu_{i})\dot{y} + U^{T}M^{-1}F_{ext}$$

- So now we have 3n independent ODE's
 - If F_{ext} is constant over the time step, can even write down exact formula for each

cs533d-term1-2005 10

Examining modes

• Mode i:

$$\ddot{y}_i = -\lambda_i y_i - \mu_i \dot{y}_i + u_i \cdot M^{-1} F_{ex}$$

- Rigid body modes have zero eigenvalues, so just depend on force
 - Roughly speaking, rigid translations will take average of force, rigid rotations will take cross-product of force with positions (torque)
 - Better to handle these as rigid body...
- The large eigenvalues (large i) have small length scale, oscillate (or damp) very fast
 - Visually irrelevant
- Left with small eigenvalues being important

Throw out high frequencies

- Only track a few low-frequency modes (5-10)
- Time integration is blazingly fast!
- Essentially reduced the degrees of freedom from thousands or millions down to 10 or so
 - But keeping full geometry, just like embedded element approach
- Collision impulses need to be decomposed into modes just like external forces

11

Simplifying eigenproblem

- Low frequency modes not affected much by high frequency geometry
 - And visually, difficult for observers to quantify if a mode is actually accurate
- So we can use a very coarse mesh to get the modes, or even analytic solutions for a block of comparable mass distribution
- Or use a Rayleigh-Ritz approximation to the eigensystem (eigen-version of Galerkin FEM)
 - E.g. assume low frequency modes are made up of affine and quadratic deformations
 - [Do FEM, get eigenvectors to combine them]

cs533d-term1-2005 13

More savings

- External forces (other than gravity, which is in the rigid body modes) rarely applied to interior, and we rarely see the interior deformation
- So just compute and store the boundary particles
 - E.g. see James and Pai, "DyRT...", SIGGRAPH'02 -- did this in graphics hardware!

cs533d-term1-2005 14

Plasticity & Fracture

- If material deforms too much, becomes permanently deformed: plasticity
 - Yield condition: when permanent deformation starts happening ("if stress is large enough")
 - Elastic strain: deformation that can disappear in the absence of applied force
 - Plastic strain: permanent deformation accumulated since initial state
 - Total strain: total deformation since initial state
 - Plastic flow: when yield condition is met, how elastic strain is converted into plastic strain
- Fracture: if material deforms too much, breaks
 - Fracture condition: "if stress is large enough"

For springs (1D)

- Go back to Terzopoulos and Fleischer
- Plasticity: change the rest length if the stress (tension) is too high
 - Maybe different yielding for compression and tension
 - Work hardening: make the yield condition more stringent as material plastically flows
 - Creep: let rest length settle towards current length at a given rate
- Fracture: break the spring if the stress is too high
 - Without plasticity: "brittle"
 - With plasticity first: "ductile"

cs533d-term1-2005

17

Fracturing meshes (1D)

- Breaking springs leads to volume loss: material disappears
- Solutions:
 - Break at the nodes instead (look at average tension around a node instead of on a spring)
 - Note: recompute mass of copied node
 - Cut the spring in half, insert new nodes
 - Note: could cause CFL problems...
 - Virtual node algorithm
 - Embed fractured geometry, copy the spring (see Molino et al. "A Virtual Node Algorithm..." SIGGRAPH'04)

cs533d-term1-2005 18

Multi-Dimensional Plasticity

- Simplest model: total strain is sum of elastic and plastic parts: $\epsilon = \epsilon_e + \epsilon_p$
- v Stress only depends on elastic part (so rest state includes plastic strain): $\sigma=\sigma(ε_e)$
- ν If σ is too big, we yield, and transfer some of $ε_e$ into $ε_p$ so that σ is acceptably small

Multi-Dimensional Yield criteria

- Lots of complicated stuff happens when materials yield
 - Metals: dislocations moving around
 - Polymers: molecules sliding against each other
 - Etc.
- Difficult to characterize exactly when plasticity (yielding) starts
 - Work hardening etc. mean it changes all the time too
- Approximations needed
 - Big two: Tresca and Von Mises

19

Yielding

- First note that shear stress is the important quantity
 - Materials (almost) never can permanently change their volume
 - Plasticity should ignore volume-changing stress
- So make sure that if we add kl to σ it doesn't change yield condition

cs533d-term1-2005

21

Tresca yield criterion

- This is the simplest description:
 - Change basis to diagonalize σ
 - Look at normal stresses (i.e. the eigenvalues of σ)
 - No yield if σ_{max} - $\sigma_{min} \leq \sigma_{Y}$
- v Tends to be conservative (rarely predicts yielding when it shouldn't happen)
- υ But, not so accurate for some stress states
 - Doesn't depend on middle normal stress at all
- υ Big problem (mathematically): not smooth

cs533d-term1-2005 22

Von Mises yield criterion

If the stress has been diagonalized:

$$\frac{1}{\sqrt{2}}\sqrt{\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}}\leq\sigma_{Y}$$

- More generally:
- $\sqrt{\frac{3}{2}}\sqrt{\left\|\boldsymbol{\sigma}\right\|_{F}^{2}-\frac{1}{3}Tr(\boldsymbol{\sigma})^{2}}\leq\boldsymbol{\sigma}_{Y}$ • This is the same thing as the Frobenius norm of the deviatoric part of stress
 - i.e. after subtracting off volume-changing part:

$$\sqrt{\frac{3}{2}} \left\| \boldsymbol{\sigma} - \frac{1}{3} Tr(\boldsymbol{\sigma}) \boldsymbol{I} \right\|_F \leq \boldsymbol{\sigma}_Y$$

Linear elasticity shortcut

- For linear (and isotropic) elasticity, apart from the volume-changing part which we cancel off, stress is just a scalar multiple of strain
 - (ignoring damping)
- So can evaluate von Mises with elastic strain tensor too (and an appropriately scaled vield strain)

Perfect plastic flow

- Once yield condition says so, need to start changing plastic strain
- The magnitude of the change of plastic strain should be such that we stay on the yield surface
 - I.e. maintain $f(\sigma)=0$ (where $f(\sigma) \le 0$ is, say, the von Mises condition)
- The direction that plastic strain changes isn't as straightforward
- "Associative" plasticity: $\dot{\varepsilon}_p = \gamma \frac{\partial f}{\partial \sigma}$

cs533d-term1-2005 25

Algorithm

- After a time step, check von Mises criterion: is $f(\sigma) = \sqrt{\frac{3}{2}} \left\| dev(\sigma) \right\|_{F} - \sigma_{Y} > 0$?
- ♦ If so, need to update plastic strain:

$$\varepsilon_p^{new} = \varepsilon_p + \gamma \frac{\partial f}{\partial \sigma}$$
$$= \varepsilon_p + \gamma \sqrt{\frac{3}{2}} \frac{dev(\sigma)}{\|dev(\sigma)\|_F}$$

• with γ chosen so that $f(\sigma^{\text{new}})=0$ (easy for linear elasticity)

> cs533d-term1-2005 26

Multi-Dimensional Fracture

- Smooth stress to avoid artifacts (average with neighbouring elements)
- Look at largest eigenvalue of stress in each element
- If larger than threshhold, introduce crack perpendicular to eigenvector
- Big question: what to do with the mesh?
 - Simplest: just separate along closest mesh face
 - Or split elements up: O'Brien and Hodgins
 - Or model crack path with embedded geometry: Molino et al.

cs533d-term1-2005 27