
1cs533d-term1-2005

Notes

2cs533d-term1-2005

Shallow water

! Simplified linear analysis before had dispersion relation

• For shallow water, kH is small (that is, wave lengths are
comparable to depth)

• Approximate tanh(x)=x for small x:

! Now wave speed is independent of wave number, but
dependent on depth
• Waves slow down as they approach the beach

� 

c =
g

k
tanhkH

� 

c = gH

3cs533d-term1-2005

What does this mean?

! We see the effect of the bottom
• Submerged objects (H decreased) show up

as places where surface waves pile up on
each other

• Waves pile up on each other (eventually
should break) at the beach

• Waves refract to be parallel to the beach

! We can!t use Fourier analysis

4cs533d-term1-2005

PDE’s

! Saving grace: wave speed independent of k means we
can solve as a 2D PDE

! We!ll derive these “shallow water equations”
• When we linearize, we!ll get same wave speed

! Going to PDE!s also let!s us handle non-square domains,
changing boundaries
• The beach, puddles, …

• Objects sticking out of the water (piers, walls, …) with the right
reflections, diffraction, …

• Dropping objects in the water



5cs533d-term1-2005

Kinematic assumptions

! We!ll assume as before water surface is a height field y=h(x,z,t)

! Water bottom is y=-H(x,z,t)

! Assume water is shallow (H is smaller than wave lengths) and calm
(h is much smaller than H)

• For graphics, can be fairly forgiving about violating this…

! On top of this, assume velocity field doesn!t vary much in the y
direction

• u=u(x,z,t), w=w(x,z,t)

• Good approximation since there isn!t room for velocity to vary much in
y(otherwise would see disturbances in small length-scale features on
surface)

! Also assume pressure gradient is essentially vertical

• Good approximation since p=0 on surface, domain is very thin

6cs533d-term1-2005

Conservation of mass

! Integrate over a column of water with cross-
section dA and height h+H

• Total mass is !(h+H)dA

• Mass flux around cross-section is
!(h+H)(u,w)

" Write down the conservation law

" In differential form (assuming constant density):

• Note: switched to 2D so u=(u,w) and #=("/"x, "/"z)

� 

!

!t
h + H( ) + " # (h + H)u( ) = 0

7cs533d-term1-2005

Pressure

! Look at y-component of momentum equation:

! Assume small velocity variation - so dominant
terms are pressure gradient and gravity:

! Boundary condition at water surface is p=0
again, so can solve for p:

� 

vt + u ! "v +
1

#

$p

$y
= %g + &"2

v

� 

1

!

"p

"y
= #g

� 

p = !g h " y( )
8cs533d-term1-2005

Conservation of momentum

! Total momentum in a column:

! Momentum flux is due to two things:
• Transport of material at velocity u with its own

momentum:

• And applied force due to pressure. Integrate
pressure from bottom to top:

� 

p
!H

h

" = #g h ! y( )
!H

h

" =
#g
2

h + H( )
2

  

� 

!! u 
"H

h

# = !! u h + H( )

  

� 

!! u ( )
! 
u 

"H

h

#



9cs533d-term1-2005

Pressure on bottom

! Not quite done… If the bottom isn!t flat,
there!s pressure exerted partly in the
horizontal plane
• Note p=0 at free surface, so no net force there

! Normal at bottom is:

! Integrate x and z components of pn over
bottom
• (normalization of n and cosine rule for area

projection cancel each other out)
� 

n = !H
x
,!1,!H

z( )

� 

!"g h + H( )#H dA
10cs533d-term1-2005

Shallow Water Equations

! Then conservation of momentum is:

! Together with conservation of mass

we have the Shallow Water Equations

  

� 

!
!t

"! u (h + H)( ) + # $ "! u 
! 
u (h + H) +

"g

2
(h + H)

2
% 

& 
' 

( 

) 
* + "g(h + H)#H = 0

� 

!

!t
h + H( ) + " # (h + H)u( ) = 0

11cs533d-term1-2005

Note on conservation form

! At least if H=constant, this is a system of
conservation laws

! Without viscosity, “shocks” may develop
• Discontinuities in solution (need to go to weak integral

form of equations)

• Corresponds to breaking waves - getting steeper and
steeper until heightfield assumption breaks down

12cs533d-term1-2005

Simplifying Conservation of Mass

! Expand the derivatives:

! Label the depth h+H with $:

! So water depth gets advected around by
velocity, but also changes to take into
account divergence

� 

!(h + H)

!t
+ u " #(h + H) + (h + H)# " u = 0

D(h + H)

Dt
= $(h + H)# " u

� 

D!

Dt
= "!# $ u



13cs533d-term1-2005

Simplifying Momentum

! Expand the derivatives:

! Subtract off conservation of mass times velocity:

! Divide by density and depth:

! Note depth minus H is just h:

� 

!"u( )
t

+ # $ !uu" +
!g
2
"2

% 

& 
' 

( 

) 
* + !g"#H = 0

!"ut + !u"t + !u# $ "u( ) + !"u $ #u+ !g"#" + !g"#H = 0

� 

!"ut + !"u # $u+ !g"$" % !g"$H = 0

� 

ut + u ! "u+ g"# $ g"H = 0

� 

ut + u ! "u+ g"h = 0

Du

Dt
= #g"h

14cs533d-term1-2005

Interpreting equations

! So velocity is advected around, but also
accelerated by gravity pulling down on
higher water

! For both height and velocity, we have two
operations:
• Advect quantity around (just move it)

• Change it according to some spatial
derivatives

! Our numerical scheme will treat these
separately: “splitting”

15cs533d-term1-2005

Wave equation

! Only really care about heightfield for
rendering

! Differentiate height equation in time and
plug in u equation

! Neglect nonlinear (quadratically small)
terms to get

� 

htt = gH!
2
h

16cs533d-term1-2005

Deja vu

! This is the linear wave equation, with wave
speed c2=gH

! Which is exactly what we derived from the
dispersion relation before (after linearizing the
equations in a different way)

! But now we have it in a PDE that we have some
confidence in
• Can handle varying H, irregular domains…



17cs533d-term1-2005

Shallow water equations

! To recap, using eta for depth=h+H:

! We!ll discretize this using “splitting”
• Handle the material derivative first, then the

right-hand side terms next

• Intermediate depth and velocity from just the
advection part

� 

D!

Dt
= "!# $ u

Du

Dt
= "g#h

18cs533d-term1-2005

Advection

! Let!s discretize just the material derivative
(advection equation):

! For a Lagrangian scheme this is trivial: just
move the particle that stores q, don!t
change the value of q at all

! For Eulerian schemes it!s not so simple

� 

qt + u ! "q = 0 or
Dq

Dt
= 0

� 

q x(t), t( ) = q x
0
,0( )

19cs533d-term1-2005

Scalar advection in 1D

! Let!s simplify even more, to just one
dimension:  qt+uqx=0

! Further assume u=constant

! And let!s ignore boundary conditions for
now
• E.g. use a periodic boundary

! True solution just translates q around at
speed u - shouldn!t change shape

20cs533d-term1-2005

First try: central differences

! Centred-differences give better accuracy
• More terms cancel in Taylor series

! Example:

• 2nd order accurate in space

! Eigenvalues are pure imaginary - rules out
Forward Euler and RK2 in time

! But what does the solution look like?

� 

!qi
!t

= "u
qi+1

" qi"1
2#x

$ 

% 
& 

' 

( 
) 



21cs533d-term1-2005

Testing a pulse

! We know things have to work out nicely in the limit
(second order accurate)
• I.e. when the grid is fine enough

• What does that mean? -- when the sampled function looks
smooth on the grid

! In graphics, it!s just redundant to use a grid that fine
• we can fill in smooth variations with interpolation later

! So we!re always concerned about coarse grids == not
very smooth data

! Discontinuous pulse is a nice test case

22cs533d-term1-2005

A pulse (initial conditions)

23cs533d-term1-2005

Centered finite differences

! A few time steps (RK4, small #t) later
• u=1, so pulse should just move right without changing shape

24cs533d-term1-2005

Centred finite differences

! A little bit later…



25cs533d-term1-2005

Centred finite differences

! A fair bit later

26cs533d-term1-2005

What went wrong?

! Lots of ways to interpret this error

! Example - phase analysis
• Take a look at what happens to a sinusoid wave

numerically

• The amplitude stays constant (good), but the wave
speed depends on wave number (bad) - we get
dispersion

• So the sinusoids that initially sum up to be a square
pulse move at different speeds and separate out
! We see the low frequency ones moving faster…

• But this analysis won!t help so much in multi-
dimensions, variable u…

27cs533d-term1-2005

Modified PDE’s

! Another way to interpret error - try to account for
it in the physics

! Look at truncation error more carefully:

! Up to high order error, we numerically solve

� 

qi+1 = qi + !x
"q

"x
+
!x

2

2

"
2
q

"x
2

+
!x

3

6

"
3
q

"x
3

+ O !x
4( )

qi#1 = qi #!x
"q

"x
+
!x

2

2

"
2
q

"x
2
#
!x

3

6

"
3
q

"x
3

+ O !x
4( )

qi+1 # qi#1

2!x
=
"q

"x
+
!x

2

6

"
3
q

"x
3

+ O !x
3( )

� 

qt + uqx = !
u"x

2

6
qxxx

28cs533d-term1-2005

Interpretation

! Extra term is “dispersion”
• Does exactly what phase analysis tells us

• Behaves a bit like surface tension…

! We want a numerical method with a different sort of
truncation error
• Any centred scheme ends up giving an odd truncation error ---

dispersion

! Let!s look at one-sided schemes

� 

qt + uqx = !
u"x

6

6
qxxx



29cs533d-term1-2005

Upwind differencing

! Think physically:
• True solution is that q just translates at

velocity u

! Information flows with u

! So to determine future values of q at a grid
point, need to look “upwind” -- where the
information will blow from
• Values of q “downwind” only have any

relevance if we know q is smooth -- and we!re
assuming it isn!t

30cs533d-term1-2005

1st order upwind

! Basic idea: look at sign of u to figure out
which direction we should get information

! If u<0   then "q/"x$(qi+1-qi)/#x

! If u>0   then "q/"x$(qi-qi-1)/#x

! Only 1st order accurate though
• Let!s see how it does on the pulse…

31cs533d-term1-2005 32cs533d-term1-2005



33cs533d-term1-2005 34cs533d-term1-2005

35cs533d-term1-2005

Modified PDE again

! Let!s see what the modified PDE is this time

! For u<0 then we have

! And for u>0 we have (basically flip sign of #x)

! Putting them together, 1st order upwind
numerical solves (to 2nd order accuracy)

� 

qi+1 = qi + !x
"q

"x
+
!x

2

2

"
2
q

"x
2

+ O !x
3( )

qi+1 # qi

!x
=
"q

"x
+
!x

2

"
2
q

"x
2

+ O !x
2( )

� 

qt + uqx = !
u"x

2
qxx

� 

qt + uqx =
u!x

2
qxx

� 

qt + uqx =
u!x

2
qxx

36cs533d-term1-2005

Interpretation

! The extra term (that disappears as we refine the grid) is
diffusion or viscosity

! So sharp pulse gets blurred out into a hump, and
eventually melts to nothing

! It looks a lot better, but still not great
• Again, we want to pack as much detail as possible onto our

coarse grid

• With this scheme, the detail melts away to nothing pretty fast

! Note: unless grid is really fine, the numerical viscosity is
much larger than physical viscosity - so might as well not
use the latter



37cs533d-term1-2005

Fixing upwind method

! Natural answer - reduce the error by going to higher
order - but life isn!t so simple

! High order difference formulas can overshoot in
extrapolating
• If we difference over a discontinuity

• Stability becomes a real problem

! Go nonlinear (even though problem is linear)
• “limiters” - use high order unless you detect a (near-)overshoot,

then go back to 1st order upwind

• “ENO” - try a few different high order formulas, pick smoothest

38cs533d-term1-2005

Hamilton-Jacobi Equations

! In fact, the advection step is a simple example of
a Hamilton-Jacobi equation (HJ)
• qt+H(q,qx)=0

! Come up in lots of places
• Level sets…

! Lots of research on them, and numerical
methods to solve them
• E.g. 5th order HJ-WENO

! We don!t want to get into that complication

39cs533d-term1-2005

Other problems

! Even if we use top-notch numerical
methods for HJ, we have problems
• Time step limit: CFL condition

! Have to pick time step small enough that
information physically moves less than a grid cell:
#t<#x/u

• Schemes can get messy at boundaries

• Discontinuous data still gets smoothed out to
some extent (high resolution schemes drop to
first order upwinding)

40cs533d-term1-2005

Exploiting Lagrangian view

! But wait! This was trivial for Lagrangian (particle)
methods!

! We still want to stick an Eulerian grid for now,
but somehow exploit the fact that
• If we know q at some point x at time t, we just follow a

particle through the flow starting at x to see where
that value of q ends up

� 

q x(t + !t),t + !t( ) = q x(t), t( )

dx

dt
= u x( ), x(t) = x

0



41cs533d-term1-2005

Looking backwards

! Problem with tracing particles - we want values at grid
nodes at the end of the step
• Particles could end up anywhere

! But… we can look backwards in time

! Same formulas as before - but new interpretation
• To get value of q at a grid point, follow a particle backwards

through flow to wherever it started

� 

qijk = q x(t !"t),t !"t( )

dx

dt
= u x( ), x(t) = xijk

42cs533d-term1-2005

Semi-Lagrangian method

! Developed in weather prediction, going back to the 50!s

! Also dubbed “stable fluids” in graphics (reinvention by
Stam %99)

! To find new value of q at a grid point, trace particle
backwards from grid point (with velocity u) for -#t and
interpolate from old values of q

! Two questions
• How do we trace?

• How do we interpolate?

43cs533d-term1-2005

Tracing

! The errors we make in tracing backwards
aren!t too big a deal
• We don!t compound them - stability isn!t an

issue

• How accurate we are in tracing doesn!t effect
shape of q much, just location
! Whether we get too much blurring, oscillations, or

a nice result is really up to interpolation

! Thus look at “Forward” Euler and RK2

44cs533d-term1-2005

Tracing: 1st order

! We!re at grid node (i,j,k) at position xijk

! Trace backwards through flow for -#t

• Note - using u value at grid point (what we know
already) like Forward Euler.

! Then can get new q value (with interpolation)� 

xold = xijk !"t uijk

� 

qijk
n+1

= q
n
xold( )

= q
n
xijk !"tuijk( )



45cs533d-term1-2005

Interpolation

! “First” order accurate: nearest neighbour
• Just pick q value at grid node closest to xold

• Doesn!t work for slow fluid (small time steps) --
nothing changes!

• When we divide by grid spacing to put in terms of
advection equation, drops to zero!th order accuracy

! “Second” order accurate: linear or bilinear (2D)
• Ends up first order in advection equation

• Still fast, easy to handle boundary conditions…

• How well does it work?

46cs533d-term1-2005

Linear interpolation

! Error in linear interpolation is proportional to

! Modified PDE ends up something like…

• We have numerical viscosity, things will smear out

• For reasonable time steps, k looks like 1/#t ~ 1/#x

! [Equivalent to 1st order upwind for CFL #t]

! In practice, too much smearing for inviscid fluids

� 

!x
2 "

2
q

"x
2

� 

Dq

Dt
= k !t( )!x 2

"
2
q

"x
2

47cs533d-term1-2005

Nice properties of lerping

! Linear interpolation is completely stable
• Interpolated value of q must lie between the

old values of q on the grid

• Thus with each time step, max(q) cannot
increase, and min(q) cannot decrease

! Thus we end up with a fully stable
algorithm - take #t as big as you want
• Great for interactive applications

• Also simplifies whole issue of picking time
steps

48cs533d-term1-2005

Cubic interpolation

! To fix the problem of excessive smearing,
go to higher order

! E.g. use cubic splines
• Finding interpolating C2 cubic spline is a little

painful, an alternative is the

• C1 Catmull-Rom (cubic Hermite) spline
! [derive]

! Introduces overshoot problems
• Stability isn!t so easy to guarantee anymore



49cs533d-term1-2005

Min-mod limited Catmull-Rom

! See Fedkiw, Stam, Jensen %01

! Trick is to check if either slope at the endpoints
of the interval has the wrong sign
• If so, clamp the slope to zero

• Still use cubic Hermite formulas with more reliable
slopes

! This has same stability guarantee as linear
interpolation
• But in smoother parts of flow, higher order accurate

• Called “high resolution”

! Still has issues with boundary conditions…

50cs533d-term1-2005

Back to Shallow Water

! So we can now handle advection of both
water depth and each component of water
velocity

! Left with the divergence and gradient
terms

� 

!"
!t

= #"
!u
!x

+
!w
!z

$ 

% 
& 

' 

( 
) 

!u
!t

= #g
!h
!x

!w
!t

= #g
!h
!z

51cs533d-term1-2005

MAC grid

! We like central differences - more
accurate, unbiased

! So natural to use a staggered grid for
velocity and height variables
• Called MAC grid after the Marker-and-Cell

method (Harlow and Welch %65) that
introduced it

! Heights at cell centres
! u-velocities at x-faces of cells
! w-velocities at z-faces of cells

52cs533d-term1-2005

Spatial Discretization

! So on the MAC grid:

� 

!"ij

!t
= #"ij

u
i+ 1

2, j
# u

i# 12, j

$x
+
w
i, j+ 1

2

# w
i, j# 12

$z

% 

& 
' 

( 

) 
* 

!u
i+ 1

2, j

!t
= #g

hi+1, j # hi, j
$x

!w
i, j+ 1

2

!t
= #g

hi, j+1
# hi, j

$z


