
Notes

• Assignment 4 due “today” (when I
check email tomorrow morning)

• Don’t be afraid to make assumptions,
approximate quantities, …
• In particular, method for computing time

step bound (look at max eigenvalue of
Jacobian) already made lots of
assumptions about linearity etc. so it won’t
hurt to make a few more!

Fluid mechanics

• We already figured out the equations of
motion for continuum mechanics

• Just need a constitutive model

• We’ll look at the constitutive model for
“Newtonian” fluids today
• Remarkably good model for water, air, and many

other simple fluids

• Only starts to break down in extreme situations, or
more complex fluids (e.g. viscoelastic substances)
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Inviscid Euler model

• Inviscid=no viscosity

• Great model for most situations
• Numerical methods end up with viscosity-like error

terms anyways…

• Constitutive law is very simple:

• New scalar unknown: pressure p

• Barotropic flows: p is just a function of density
(e.g. perfect gas law p=k(!-!0)+p0 perhaps)

• For more complex flows need heavy-duty
thermodynamics: an equation of state for pressure,
equation for evolution of internal energy (heat), …
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Lagrangian viewpoint

• We’ve been working with Lagrangian
methods so far
• Identify chunks of material,

track their motion in time,
differentiate world-space position or velocity w.r.t.
material coordinates to get forces

• In particular, use a mesh connecting particles to
approximate derivatives (with FVM or FEM)

• Bad idea for most fluids
• [vortices, turbulence]

• At least with a fixed mesh…



Eulerian viewpoint

• Take a fixed grid in world space, track how
velocity changes at a point

• Even for the craziest of flows, our grid is
always nice

• (Usually) forget about object space and
where a chunk of material originally came
from
• Irrelevant for extreme inelasticity

• Just keep track of velocity, density, and whatever
else is needed

Conservation laws

• Identify any fixed volume of space

• Integrate some conserved quantity in it
(e.g. mass, momentum, energy, …)

• Integral changes in time only according
to how fast it is being transferred
from/to surrounding space
• Called the flux

• [divergence form]
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Conservation of Mass

• Also called the continuity equation
(makes sure matter is continuous)

• Let’s look at the total mass of a volume
(integral of density)

• Mass can only be transferred by moving
it: flux must be !u
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Material derivative

• A lot of physics just naturally happens in the Lagrangian

viewpoint

• E.g. the acceleration of a material point results from the sum of

forces on it

• How do we relate that to rate of change of velocity measured at a

fixed point in space?

• Can’t directly: need to get at Lagrangian stuff somehow

• The material derivative of a property q of the material (i.e. a

quantity that gets carried along with the fluid) is
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Finding the material derivative

• Using object-space coordinates p and map x=X(p) to
world-space, then material derivative is just

• Notation: u is velocity (in fluids, usually use u but
occasionally v or V, and components of the velocity
vector are sometimes u,v,w)
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Compressible Flow

• In general, density changes as fluid
compresses or expands

• When is this important?
• Sound waves (and/or high speed flow where

motion is getting close to speed of sound - Mach
numbers above 0.3?)

• Shock waves

• Often not important scientifically, almost
never visually significant
• Though the effect of e.g. a blast wave is visible!

But the shock dynamics usually can be hugely
simplified for graphics

Incompressible flow

• So we’ll just look at incompressible flow,

where density of a chunk of fluid never

changes

• Note: fluid density may not be constant
throughout space - different fluids mixed
together…

• That is, D!/Dt=0

Simplifying

• Incompressibility:

• Conservation of mass:

• Subtract the two equations, divide by !:

• Incompressible == divergence-free velocity
• Even if density isn’t uniform!
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Conservation of momentum

• Short cut - in
use material derivative:

• Or go by conservation law, with the flux due
to transport of momentum and due to stress:

• Then simplify a bit using conservation of mass

! 

"˙ ̇ x =# $% + "g

! 

"
Du

Dt
=# $% + "g

" ut + u $ #u( ) =# $% + "g

! 

"u( )
t
+# $ u"u %&( ) = "g

Inviscid momentum equation

• Plug in simplest consitutive law ("=-p#)

from before to get

• Together with conservation of mass: the
Euler equations
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Incompressible inviscid flow

• So the equations are:

• 4 equations, 4 unknowns (u, p)

• Pressure p is just whatever it takes to make
velocity divergence-free

• In fact, incompressibility is a hard constraint;
div and grad are transposes of each other
and pressure p is the Lagrange multiplier
• Just like we figured out constraint forces before…
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Pressure solve

• To see what pressure is, take divergence of
momentum equation

• For constant density, just get Laplacian (and
this is Poisson’s equation)

• Important numerical methods use this
approach to find pressure
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Projection

• Note that %•ut=0 so in fact

• After we add %p/! to u•%u, divergence must
be zero

• So if we tried to solve for additional pressure,
we get zero

• Pressure solve is linear too

• Thus what we’re really doing is a projection
of u•%u onto the subspace of divergence-free
functions:   ut+P(u•%u)=g
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Viscosity

• In reality, nearby molecules travelling at

different velocities occasionally bump

into each other, transferring energy

• Differences in velocity reduced (damping)

• Measure this by strain rate (time derivative
of strain, or how far velocity field is from
rigid motion)

• Add terms to our constitutive law

Strain rate

• At any instant in time, measure how fast
chunk of material is deforming from its current
state
• Not from its original state

• So we’re looking at infinitesimal, incremental strain
updates

• Can use linear Cauchy strain!

• (In fact, in solids, this leads to a more advanced
“true” strain arrived at by integrating infinitesimal
strain increments… but not important here)

• So the strain rate tensor is
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Viscous stress

• As with linear elasticity, end up with two
parameters if we want isotropy:

• µ and $ are coefficients of viscosity (first and
second)

• These are not the Lame coefficients! Just use the
same symbols

• $ damps only compression/expansion

• Usually $!-2/3µ (exact for monatomic gases)

• So end up with
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Navier-Stokes

• Navier-Stokes equations include the

viscous stress

• Incompressible version:

• Often (but not always) viscosity µ is

constant, and this reduces to
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Boundary conditions

• We’ll sidestep this issue until it comes up in
numerical methods

• There are some subtle mathematical details
(and open problems) relating to what exactly
you can or need to specify

• Generally: specify some mix of velocity and
traction at the boundary

• Depends on whether or not you have viscosity

Inviscid boundaries

• Basic choice:
• At a closed boundary (“wall”) use the “no-stick”

condition

• Or if the boundary is moving in the normal
direction,

• At an open boundary (“free surface”) specify the
traction, i.e. the pressure. For example:

• Condition on normal derivative of u implicit
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Viscous (friction) boundaries

• Can use “no-slip” condition on walls:

  u=0

• Or u=uwall

• Traction is no longer so simple at a free

surface (stress tensor has more than

just pressure)



Other quantities

• We may want to carry around auxiliary
quantities
• E.g. temperature, the type of fluid (if we have a

mix), concentration of smoke, etc.

• Use material derivative as before

• E.g. if quantity doesn’t change, just is
transported (“advected”) around:
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Pressure stuff

• Just as we solved for pressure before,

can do the same here

• But we take the divergence of the
viscosity term as well

What now?

• Can solve numerically the full equations

• Will do this later

• Not so simple, could be expensive (3D)

• Or make assumptions and simplify them,

then solve numerically

• Simplify flow (e.g. irrotational)

• Simplify dimensionality (e.g. go to 2D)

Potential flow

• If velocity is irrotational:

• Which it often is in simple laminar flow

• Then there must be a stream function
(potential) such that:

• Solve for incompressibility:
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