Notes Fluid mechanics

» Assignment 4 due “today” (when | » We already figured out the equations of
check email tomorrow morning) motion for continuum mechanics

e Don’t be afraid to make assumptions, . Just need px:z-tq+pgd |
approximate quantities, ... ustneed a constituitive mode

* In particular, method for computing time o= G(x’ t’g’é)

step b_ound (look at max eigenvalue of » We'll look at the constitutive model for
Jacobian) already made lots of “Newtonian” fluids today

assumptions about linearity etc. so it won'’t + Remarkably good model for water, air, and many
hurt to make a few more! other simple fluids

e Only starts to break down in extreme situations, or
more complex fluids (e.g. viscoelastic substances)

Inviscid Euler model Lagrangian viewpoint
* Inviscid=no viscosity * We've been working with Lagrangian
« Great model for most situations methods so far

* |dentify chunks of material,
track their motion in time,
differentiate world-space position or velocity w.r.t.

* Numerical methods end up with viscosity-like error
terms anyways...

» Constitutive Iav! IS V(Sery simple: material coordinates to get forces
O ==P9Y; * In particular, use a mesh connecting particles to
* New scalar unknown: pressure p approximate derivatives (with FVM or FEM)
* Barotropic flows: p is just a function of density e Bad idea for most fluids

(e.g. perfect gas law p=k(p-py)+p, perhaps)
¢ For more complex flows need heavy-duty

thermodynamics: an equation of state for pressure,
equation for evolution of internal energy (heat), ...

* [vortices, turbulence]
» At least with a fixed mesh...



Eulerian viewpoint

Take a fixed grid in world space, track how
velocity changes at a point

Even for the craziest of flows, our grid is
always nice

(Usually) forget about object space and
where a chunk of material originally came
from

* Irrelevant for extreme inelasticity

e Just keep track of velocity, density, and whatever
else is needed

Conservation of Mass

Also called the continuity equation
(makes sure matter is continuous)

Let’s look at the total mass of a volume
(integral of density)

Mass can only be transferred by moving
it: flux must be pu

J
—Jop=—[ P
p,+V-(pu)=0

Conservation laws

Identify any fixed volume of space

Integrate some conserved quantity in it
(e.g. mass, momentum, energy, ...)

Integral changes in time only according
to how fast it is being transferred
from/to surrounding space

* Called the flux
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« [divergence form] EfQCF—f(mf(Cl)'”
q+V-f=0

Material derivative

A lot of physics just naturally happens in the Lagrangian
viewpoint
¢ E.g. the acceleration of a material point results from the sum of
forces on it

* How do we relate that to rate of change of velocity measured at a
fixed point in space?
¢ Can't directly: need to get at Lagrangian stuff somehow

The material derivative of a property q of the material (i.e. a
quantity that gets carried along with the fluid) is

Dq
Dt



Finding the material derivative

» Using object-space coordinates p and map x=X(p) to
world-space, then material derivative is just

D d
543 = Eq(t,X(t,p))

o 0.
_% g,
ot ot
=q,+u-Vq
« Notation: u is velocity (in fluids, usually use u but

occasionally v or V, and components of the velocity
vector are sometimes u,v,w)

Incompressible flow

* So we'll just look at incompressible flow,
where density of a chunk of fluid never
changes

* Note: fluid density may not be constant

throughout space - different fluids mixed
together...

e Thatis, Dp/Dt=0

Compressible Flow

In general, density changes as fluid
compresses or expands
When is this important?

» Sound waves (and/or high speed flow where
motion is getting close to speed of sound - Mach
numbers above 0.37)

* Shock waves

Often not important scientifically, almost
never visually significant

» Though the effect of e.g. a blast wave is visible!
But the shock dynamics usually can be hugely
simplified for graphics

Simplifying

Incompressibility: % =p,+u-Vp=0
t

Conservation of mass:  p, + V- (pu)=0
p,+Vp-u+pV-u=0
Subtract the two equations, divide by p:
V-u=0

Incompressible == divergence-free velocity
» Even if density isn’t uniform!



Conservation of momentum

Short cut - in px=V- -0+ pg
use material derivative:

Du
—=V-o+
th Pg

p(u, +u-Vu)=V-0+pg

Or go by conservation law, with the flux due
to transport of momentum and due to stress:
» Then simplify a bit using conservation of mass

(pu), + V- (upu-0) = pg

Incompressible inviscid flow

So the equations are: u,+u-Vu+ %Vp =g

V-u=0
4 equations, 4 unknowns (u, p)

Pressure p is just whatever it takes to make
velocity divergence-free

In fact, incompressibility is a hard constraint;
div and grad are transposes of each other
and pressure p is the Lagrange multiplier

¢ Just like we figured out constraint forces before...

Inviscid momentum equation

* Plug in simplest consitutive law (o=-pd)
from before to get
p(u, +u-Vu)=-Vp+ pg

u,+u-Vu+le=g
P

» Together with conservation of mass: the
Euler equations

Pressure solve

» To see what pressure is, take divergence of
momentum equation

V-(u, + u-Vu+%Vp)=0
V'(%Vp)=—V'(ut +u- Vi)
» For constant density, just get Laplacian (and

this is Poisson’s equation)

* Important numerical methods use this
approach to find pressure



Projection

Note that V+u,=0 so in fact

V-%Vp=—V-(u-Vu)
After we add Vp/p to u-Vu, divergence must
be zero

So if we tried to solve for additional pressure,
we get zero

Pressure solve is linear too

Thus what we’re really doing is a projection
of uVu onto the subspace of divergence-free
functions: u+P(u-Vu)=g

Strain rate

At any instant in time, measure how fast
chunk of material is deforming from its current
state

* Not from its original state

« So we’re looking at infinitesimal, incremental strain
updates

» Can use linear Cauchy strain!

¢ (In fact, in solids, this leads to a more advanced
“true” strain arrived at by integrating infinitesimal
strain increments... but not important here)

So the strain rate tensor is (&u,» +%)

1
gl“ = = ——
ij 2
&xj ox.
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Viscosity

* In reality, nearby molecules travelling at
different velocities occasionally bump
into each other, transferring energy

» Differences in velocity reduced (damping)

» Measure this by strain rate (time derivative
of strain, or how far velocity field is from
rigid motion)

» Add terms to our constitutive law

Viscous stress

* As with linear elasticity, end up with two
parameters if we want isotropy:

viscous . .
0" =2ué; + AEL0,

* u and A are coefficients of viscosity (first and
second)

» These are not the Lame coefficients! Just use the
same symbols
e A damps only compression/expansion

* Usually A=-2/3u (exact for monatomic gases)
° SO end Up Wlth O_;i.scous - M %_‘_ %—%%61
! dx, dx, 3ox, "

J 2



Navier-Stokes Boundary conditions

» Navier-Stokes equations include the » We'll sidestep this issue until it comes up in
viscous stress numerical methods

» There are some subtle mathematical details
(and open problems) relating to what exactly
you can or need to specify

* Incompressible version:
u,+u-Vu+5Vp= g+%V'u(Vu+VuT)

V-u=0 e Generally: specify some mix of velocity and
» Often (but not always) viscosity u is traction at the boundary
constant, and this reduces to » Depends on whether or not you have viscosity

ut+u'Vu+%Vp=g+%V2u

Inviscid boundaries Viscous (friction) boundaries
« Basic choice: » Can use “no-slip” condition on walls:
« At a closed boundary (“wall”) use the “no-stick” u=0
condition u-n=0
L4 Or U=Uwa”

 Orif the boundary is moving in the normal

direction  Traction is no longer so simple at a free
 un=u

wail ~ Tt surface (stress tensor has more than
¢ At an open boundary (“free surface”) specify the jUS’[ pressure)
traction, i.e. the pressure. For example:
u
= _—= O
p parm an

¢ Condition on normal derivative of u implicit



Other quantities Pressure stuff

« We may want to carry around auxiliary  Just as we solved for pressure before,

quantities o can do the same here
» E.g. temperature, the type of fluid (if we have a )
mix), concentration of smoke, etc. » But we take the divergence of the
 Use material derivative as before viscosity term as well

» E.g. if quantity doesn’t change, just is
transported (“advected”) around:

Dq
—=q,+u-Vg=0
Dt qt (Iz/tdvectioqn
What now? Potential flow
« Can solve numerically the full equations * If velocity is irrotational:
 Will do this later Vxu=0

* Not so simple, could be expensive (3D)

0 K " d simplifv th » Which it often is in simple laminar flow

f MaKe assumprions and simpily them, e Then there must be a stream function
then solve numerically (potential) such that:
« Simplify flow (e.g. irrotational) u=Vgo



