Notes

- Typo in blending function for homework 6 viewer
 - Thanks to Albert Wong for pointing it out
- We’ve almost finished surveying physics-based animation
 - If you want me to review anything, get into more detail anywhere, talk about anything more exotic, let me know!

Fire

- [Nguyen, Fedkiw, Jensen ‘02]
- Gaseous fuel/air mix (from a burner, or a hot piece of wood, or ...) heats up
- When it reaches ignition temperature, starts to burn
 - “blue core” - see the actual flame front due to emission lines of excited hydrocarbons
- Gets really hot while burning - glows orange from blackbody radiation of smoke/soot
- Cools due to radiation, mixing
 - Left with regular smoke

Defining the flow

- Inside and outside blue core, regular incompressible flow with buoyancy
- But an interesting boundary condition at the flame front
 - Gaseous fuel and air chemically reacts to produce a different gas with a different density
 - Mass is conserved, so volume has to change
 - Gas instantly expands at the flame front
- And the flame front is moving too
 - At the speed of the flow plus the reaction speed

Interface speed

- Interface = flame front = blue core surface
- \(D = V_f - S \) is the speed of the flame front
 - It moves with the fuel flow, and on top of that, moves according to reaction speed \(S \)
 - \(S \) is fixed for a given fuel mix
- We can track the flame front with a level set \(\phi \)
- Level set moves by
 \[
 \frac{\partial \phi}{\partial t} + D \nabla \phi = 0
 \]
 \[
 \phi_t + u_{LS} \cdot \nabla \phi = 0
 \]
- Here \(u_{LS} \) is \(u_f - Sn \)
Numerical method

- For water we had to work hard to move interface accurately.
- Here it’s ok just to use semi-Lagrangian method (with reinitialization).
- Why?
 - We’re not conserving volume of blue core - if reaction is a little too fast or slow, that’s fine.
 - Numerical error looks like mean curvature.
 - Real physics actually says reaction speed varies with mean curvature.

Conservation of mass

- Mass per unit area entering flame front is $\rho_f(V_f - D)$ where
 - $V_f = u_f \cdot n$ is the normal component of fuel velocity.
 - D is the (normal) speed of the interface.
- Mass per unit area leaving flame front is $\rho_h(V_h - D)$ where
 - $V_h = u_h \cdot n$ is the normal component of hot gaseous products velocity.
- Equating the two gives:
 $$\rho_f(V_f - D) = \rho_h(V_h - D)$$

Velocity jump

- Plugging interface speed D into conservation of mass at the flame front gives:
 $$\rho_f S = \rho_h \left(V_h - V_f + S\right)$$
 $$\rho_h V_h = \rho_h V_f + \rho_f S - \rho_h S$$
 $$V_h = V_f + \left(\frac{\rho_f}{\rho_h} - 1\right) S$$

Ghost velocities

- This is a “jump condition”: how the normal component of velocity jumps when you go over the flame interface.
- This lets us define a “ghost” velocity field that is continuous.
 - When we want to get a reasonable value of u_h for semi-Lagrangian advection of hot gaseous products on the fuel side of the interface, or vice versa (and also for moving interface).
 - When we compute divergence of velocity field.
- Simply take the velocity field, add/subtract $(\rho_f/\rho_h - 1) S n$.
Conservation of momentum

- Momentum is also conserved at the interface.
- Fuel momentum per unit area "entering" the interface is
 \[\rho_f V_f (V_f - D) + p_f \]
- Hot gaseous product momentum per unit area "leaving" the interface is
 \[\rho_h V_h (V_h - D) + p_h \]
- Equating the two gives
 \[\rho_f V_f (V_f - D) + p_f = \rho_h V_h (V_h - D) + p_h \]

Simplifying

- Make the equation look nicer by taking conservation of mass:
 \[\rho_f (V_f - D) = \rho_h (V_h - D) \]
 multiplying both sides by -D:
 \[\rho_f (-D)(V_f - D) = \rho_h (-D)(V_h - D) \]
 and adding to previous slide’s equation:
 \[\rho_f (V_f - D)^2 + p_f = \rho_h (V_h - D)^2 + p_h \]

Pressure jump

- This gives us jump in pressure from one side of the interface to the other.
- By adding/subtracting the jump, we can get a reasonable continuous extension of pressure from one side to the other.
 - For taking the gradient of \(p \) to make the flow incompressible after advection.
- Note when we solve the Poisson equation density is NOT constant, and we have to incorporate jump in \(p \) (known) just like we use it in the pressure gradient.

Temperature

- We don’t want to get into complex (!) chemistry of combustion.
- Instead just specify a time curve for the temperature:
 - Temperature known at flame front \((T_{ignition}) \)
 - Temperature of a chunk of hot gaseous product rises at a given rate to \(T_{max} \) after it’s created.
 - Then cools due to radiation.
Temperature cont’d

• For small flames (e.g. candles) can model initial temperature rise by tracking time since reaction: $Y_t + u \cdot \nabla Y = 1$ and making T a function of Y
• For large flames ignore rise, just start flame at T_{max} (since transition region is very thin, close to blue core)
• Radiative cooling afterwards:

$$T_t + u \cdot \nabla T = -c_T \left(\frac{T - T_{air}}{T_{max} - T_{air}} \right)^4$$

Smoke concentration

• Can do the same as for temperature: initially make it a function of time Y since reaction (rising from zero)
 • And ignore this regime for large flames
 • Then just advect without change, like before
• Note: both temperature and smoke concentration play back into velocity equation (buoyancy force)

Note on fuel

• We assumed fuel mix is magically being injected into scene
 • Just fine for e.g. gas burners
 • Reasonable for slow-burning stuff (like thick wood)
• What about fast-burning material?
 • Can specify another reaction speed S_{fuel} for how fast solid/liquid fuel turned into flammable gas (dependent on temperature)
 • Track level set of solid/liquid fuel just like we did the blue core