
Notes

• Error in last lecture slides: simplified level set

reinitialization equation is

• Decide on your final project

• Talk to me about it preferably

• However, I will not be around this afternoon, so
email or waiting until tomorrow is fine

!

"t + sign(") #" $1() = 0

Particle-Level Set

• Last time - advocated marker particles (MAC)
method for rough surfaces

• But if we want surface tension (which is
strongest for rough flows!) or smooth water
surfaces, we need a better technique

• Hybrid method: particle-level set
• [Fedkiw and Foster], [Enright et al.]

• Level set gives great smooth surface - excellent
for getting mean curvature

• Particles correct for level set mass
(non-)conservation

Level set advancement

• Put marker particles with values of ! attached
in a band near the surface
• We’re also storing ! on the grid, so we don’t need

particles deep in the water

• For better results, also put particles with !>0 (“air”
particles) on the other side

• After doing a step on the grid and moving !,
also move particles with (extrapolated)
velocity field

• Then correct the grid ! with the particle !

• Then adjust the particle ! from the grid !

Level set correction

• Look for escaped particles
• Any particle on the wrong side (sign differs) by

more than the particle radius |!|

• Rebuild !<0 and !>0 values from escaped
particles (taking min/max’s)

• Merge rebuilt !<0 and !>0 by taking
minimum-magnitude values

• Reinitialize new grid !

• Correct again

• Adjust particle ! values within limits
(never flip sign)

Artificial Compressibility

• Let’s make a quick detour…

• So far we’ve seen projection methods for
enforcing divergence-free constraint
• Means solving Poisson equation for pressure

• Big, sparse linear system - it’s slow, it’s the
bottleneck

• Particularly on parallel architectures - global
communication

• Needs a weird staggered grid, or more
complicated problems and fixes

• An alternative: artificial compressibility

Revisiting incompressibility

• Real fluids are not incompressible

• We just make the idealization of
incompressibility
• Water, air are very close unless material velocity

comparable to sound speed (transonic or faster)

• Simplifies math a lot

• Means we can ignore sound waves in numerical
methods - terrible time step limit

• But we could go the other way
• Replace real compressible physics with fake ones

that still have sound speed much faster than
material velocity

Equation of state

• Turn hard constraint "•u=0 into soft
constraint
• Allow the fluid to compress a little, but add

restoring force to get it back

• Real compressible flow does this, but with all
sorts of complications from thermodynamics

• We’ll fake it, simplify compressible flow
• We don’t care about compressibility effects and

ideally won’t even see them at all

• Artificial equation of state: p=c2#

• [Chorin ‘67]

New equations

• Need to include density again
(continuity eq. = conservation of mass)

• And momentum equation

• And the new equation of state
!

"
t
+# $ "u() = 0

"
t
+ u $ #" = %"# $ u

!

ut + u " #u+ 1

$
#p = g + 1

$
"µ #u+#uT()

!

p = c
2"

What is c?

• [derive sound speed = c]

• We want to make sure that the maximum

material speed (u) is much less than c

• E.g. choose c at least 10 |u|max

• Note that time step limit (for explicit methods)

will have !t<!x/c

• Hope is that 10+ times the number of steps is
worth it for no pressure solve, easier programming,

etc.

Where to now?

• With (simplified) compressible flow, it’s all
about advection

• Lagrangian particles handle advection
brilliantly
• Motivation for semi-Lagrangian method

• Let’s look at using real particles

• We’re moving in a spectrum from fully
Eulerian (finite differences) to mixed
Eulerian/Lagrangian, eventually to fully
Lagrangian

PIC

• Let’s dig up some CFD history (for
compressible flow)

• PIC = Particle-in-Cell [Harlow’64]

• Opposite of semi-Lagrangian advection:
• Keep particles in the grid

• At each step, interpolate grid values onto particles

• Then move particles (advection)

• Transfer back to the grid (weighted averages)

• Problem - way too much diffusion - but it did
allow unthinkably complex physics early on

FLIP

• Fluid-Implicit Particle [Brackbill & Ruppel ‘85]

• Fixed PIC by making particles first class
• Their values for u, #, etc. are not overwritten by

grid interpolation

• Each step transfer from particles to grid

• Do the non-advection grid stuff ("p, g, …)

• Easy to handle non-advection stuff on a grid

• Update particle values by grid increments
• Including positions - use grid velocity

• Eventually morphed into MPM (Material Point
Method) [Sulsky et al ‘94]

SPH

• Smoothed Particle Hydrodynamics

• Get rid of the mesh altogether - figure
out how to do "p etc. with just the

particles

• Before we get there, let’s hack around a
bit…

Particle Systems Redux

• Long ago mentioned particle systems are
incredibly flexible when you allow forces to
depend on other particles

• One example: fix springs between particles ->
simple elasticity model

• We can similarly rig up a simple fluid model
• Each particle is a blurry chunk of fluid - may

overlap

• Instead of a fixed mesh, particles just interact with
nearby particles

Particle fluids

• Basic qualitative behaviour of fluids: resist
density changes
• When particles get too close, add repulsion forces

between them

• When they get just a little too far, add attraction
forces

• When far, no force at all

• If we want viscosity too, add (essentially)
velocity damping between nearby particles
• A little tricky to conserve angular momentum as

well…

Getting specific

• Each particle has a mass m, and a (blurry)
radius h

• Force potential (for pressure)
• [draw it]

• Eij=g(|xi-xj|/h)

• Fi="j"iEij

• Boundaries: can treat the same way
• If we have signed distance, plug it in

• If not, just nail particles to the boundaries that the
fluid particles can interact with

Mesh-free?

• Mathematically, SPH and particle-only

methods are independent of meshes

• Practically, need an acceleration structure to

speed up finding neighbouring particles (to

figure out forces)

• Most popular structure (for non-adaptive

codes, i.e. where h=constant for all particles)

is…

 a mesh (background grid)

SPH

• SPH can be interpreted as a particular way of
choosing forces, so that you converge to
solving Navier-Stokes

• [Lucy’77], [Gingold & Monaghan ‘77],
[Monaghan…], [Morris, Fox, Zhu ‘97], …

• Similar to FEM, we go to a finite dimensional
space of functions
• Basis functions now based on particles instead of

grid elements

• Can take derivatives etc. by differentiating the real
function from the finite-dimensional space

Kernel

• Need to define particle’s influence in
surrounding space (how we’ll build the basis
functions)

• Choose a kernel function W
• Smoothed approximation to $

• W(x)=W(|x|) - radially symmetric

• Integral is 1

• W=0 far enough away - when |x|>2.5h for example

• Examples:
• Truncated Gaussian

• Splines (cubic, quartic, quintic, …)

Cubic kernel

• Use where

• Note: not good for viscosity (2nd
derivatives involved - not very smooth)

!

f (s) =
1

"

1# 3

2
s
2 + 3

4
s
3
,

1

4
2 # s()

3
,

0,

0 $ s $1

1$ s $ 2

2 $ s

%

&
'

(
' !

W (x) =
1

h
3
f
x

h

"

$

%

&
'

Estimating quantities

• Say we want to estimate some flow variable q
at a point in space x

• We’ll take a mass and kernel weighted
average

• Raw version:
• But this doesn’t work, since sum of weights is

nowhere close to 1

• Could normalize by dividing by but that
involves complicates derivatives…

• Instead use estimate for normalization at each
particle separately (some mass-weighted measure
of overlap)

!

Q(x) = m jq jW x " x j()
j

#

!

m jW j
j

"

Smoothed Particle Estimate

• Take the “raw” mass estimate to get
density:

• [check dimensions]

• Evaluate this at particles, use that to
approximately normalize:
!

"(x) = m jW x # x j()
j

$

!

q(x) = q j

m jW x " x j()
j

j
$

Incompressible Free Surfaces

• Actually, I lied
• That is, regular SPH uses the previous formulation

• For doing incompressible flow with free surface,
we have a problem

• Density drop smoothly to 0 around surface

• This would generate huge pressure gradient,
compresses surface layer

• So instead, track density for each particle as
a primary variable (as well as mass!)
• Update it with continuity equation

• Mass stays constant however - probably equal for
all particles, along with radius

Continuity equation

• Recall the equation is

• We’ll handle advection by moving particles

around

• So we need to figure out right-hand side

• Divergence of velocity for one particle is

• Multiply by density, get SPH estimate:

!

"
t
+ u # $" = %"$ # u

!

" # v =" # v jW x $ x j()() = v j # "W j

!

"# $ v
i
= m jv j $ # iWij

j
%

Momentum equation

• Without viscosity:

• Handle advection by moving particles

• Acceleration due to gravity is trivial

• Left with pressure gradient

• Naïve approach - just take SPH
estimate as before

!

ut + u " #u = $ 1

%
#p+ g

!

dvi

dt
= "

1

#
$p = " m j

p j

j

2
$ iWij

j
%

Conservation of momentum

• Remember momentum equation really came
out of F=ma (but we divided by density to get
acceleration)

• Previous slide - momentum is not conserved
• Forces between two particles is not equal and

opposite

• We need to symmetrize this somehow

• [check symmetry - also note angular momentum]

!

dvi

dt
= " m j

pi

#i
2

+
p j

j

2

$

%
& &

'

(
)) * iWij

j
+

SPH advection

• Simple approach: just move each
particle according to its velocity

• More sophisticated: use some kind of
SPH estimate of v

• keep nearby particles moving together, like

PIC and FLIP

• XSPH

!

dxi

dt
= vi +

m j v j " vi()
1

2
#i + # j()

Wij
j

$

Equation of state

• Some debate - maybe need a somewhat
different equation of state if free-surface
involved

• E.g. [Monaghan’94]

• For small variations, looks like gradient is the
same [linearize]
• But SPH doesn’t estimate -1 exactly, so you do

get different results…
!

p = B
"

"
0

$
%

&

'
(

7

)1

$

%
%

&

'

(
(

Incompressible SPH

• Can actually do a pressure solve instead of

using artificial compressibility

• But if we do exact projection get the same

kinds of instability as collocated grids

• And no alternative like staggered grids available

• Instead use approximate pressure solve

• [Cummins & Rudman ‘99]

