Notes

• Error in last lecture slides: simplified level set reinitialization equation is

$$\phi_t + sign(\phi) (|\nabla \phi| - 1) = 0$$

- Decide on your final project
 - Talk to me about it preferably
 - However, I will not be around this afternoon, so email or waiting until tomorrow is fine

Particle-Level Set

- Last time advocated marker particles (MAC) method for rough surfaces
- But if we want surface tension (which is strongest for rough flows!) or smooth water surfaces, we need a better technique
- · Hybrid method: particle-level set
 - [Fedkiw and Foster], [Enright et al.]
 - Level set gives great smooth surface excellent for getting mean curvature
 - Particles correct for level set mass (non-)conservation

Level set advancement

- Put marker particles with values of φ attached in a band near the surface
 - We're also storing $\boldsymbol{\phi}$ on the grid, so we don't need particles deep in the water
 - For better results, also put particles with φ>0 ("air" particles) on the other side
- After doing a step on the grid and moving φ, also move particles with (extrapolated) velocity field
- Then correct the grid φ with the particle φ
- Then adjust the particle φ from the grid φ

Level set correction

- · Look for escaped particles
 - Any particle on the wrong side (sign differs) by more than the particle radius $|\phi|$
- Rebuild φ<0 and φ>0 values from escaped particles (taking min/max's)
- Merge rebuilt φ<0 and φ>0 by taking minimum-magnitude values
- Reinitialize new grid $\boldsymbol{\varphi}$
- Correct again
- Adjust particle φ values within limits (never flip sign)

Artificial Compressibility

- Let's make a quick detour...
- So far we've seen projection methods for enforcing divergence-free constraint
 - Means solving Poisson equation for pressure
 - Big, sparse linear system it's slow, it's the bottleneck
 - Particularly on parallel architectures global communication
 - Needs a weird staggered grid, or more complicated problems and fixes
- An alternative: artificial compressibility

Revisiting incompressibility

- Real fluids are not incompressible
- We just make the idealization of incompressibility
 - Water, air are very close unless material velocity comparable to sound speed (transonic or faster)
 - · Simplifies math a lot
 - Means we can ignore sound waves in numerical methods terrible time step limit
- · But we could go the other way
 - Replace real compressible physics with fake ones that still have sound speed much faster than material velocity

Equation of state

- Turn hard constraint ∇•u=0 into soft constraint
 - Allow the fluid to compress a little, but add restoring force to get it back
- Real compressible flow does this, but with all sorts of complications from thermodynamics
- · We'll fake it, simplify compressible flow
 - We don't care about compressibility effects and ideally won't even see them at all
- Artificial equation of state: $p=c^2\rho$
- [Chorin '67]

New equations

- Need to include density again (continuity eq. = conservation of mass) $\rho_t + \nabla \cdot (\rho u) = 0$ $\rho_t + u \cdot \nabla \rho = -\rho \nabla \cdot u$
- And momentum equation

$$u_t + u \cdot \nabla u + \frac{1}{\rho} \nabla p = g + \frac{1}{\rho} \nabla \cdot \mu \Big(\nabla u + \nabla u^T \Big)$$

• And the new equation of state $p = c^2 \rho$

What is c?

- [derive sound speed = c]
- We want to make sure that the maximum material speed (u) is much less than c
 - E.g. choose c at least 10 lul_{max}
- Note that time step limit (for explicit methods) will have Δt<Δx/c
 - Hope is that 10+ times the number of steps is worth it for no pressure solve, easier programming, etc.

Where to now?

- With (simplified) compressible flow, it's all about advection
- Lagrangian particles handle advection brilliantly
 - Motivation for semi-Lagrangian method
- · Let's look at using real particles
- We're moving in a spectrum from fully Eulerian (finite differences) to mixed Eulerian/Lagrangian, eventually to fully Lagrangian

PIC

- Let's dig up some CFD history (for compressible flow)
- PIC = Particle-in-Cell [Harlow'64]
- Opposite of semi-Lagrangian advection:
 - Keep particles in the grid
 - At each step, interpolate grid values onto particles
 - Then move particles (advection)
 - Transfer back to the grid (weighted averages)
- Problem way too much diffusion but it did allow unthinkably complex physics early on

FLIP

- Fluid-Implicit Particle [Brackbill & Ruppel '85]
- Fixed PIC by making particles first class
 - Their values for u, $\rho,$ etc. are not overwritten by grid interpolation
- Each step transfer from particles to grid
- Do the non-advection grid stuff ($\nabla p, g, ...$)
 - Easy to handle non-advection stuff on a grid
- Update particle values by grid increments
 - Including positions use grid velocity
- Eventually morphed into MPM (Material Point Method) [Sulsky et al '94]

SPH

- Smoothed Particle Hydrodynamics
- Get rid of the mesh altogether figure out how to do ∇p etc. with just the particles
- Before we get there, let's hack around a bit...

Particle Systems Redux

- Long ago mentioned particle systems are incredibly flexible when you allow forces to depend on other particles
- One example: fix springs between particles -> simple elasticity model
- We can similarly rig up a simple fluid model
 - Each particle is a blurry chunk of fluid may overlap
 - Instead of a fixed mesh, particles just interact with nearby particles

Particle fluids

- Basic qualitative behaviour of fluids: resist density changes
 - When particles get too close, add repulsion forces between them
 - When they get just a little too far, add attraction forces
 - When far, no force at all
- If we want viscosity too, add (essentially) velocity damping between nearby particles
 - A little tricky to conserve angular momentum as well...

Getting specific

- Each particle has a mass m, and a (blurry) radius h
- Force potential (for pressure)
 - [draw it]
 - $E_{ij}=g(|x_i-x_j|/h)$
 - $F_i = \sum_j \nabla_i E_{ij}$
- · Boundaries: can treat the same way
 - · If we have signed distance, plug it in
 - If not, just nail particles to the boundaries that the fluid particles can interact with

Mesh-free?

- Mathematically, SPH and particle-only methods are independent of meshes
- Practically, need an acceleration structure to speed up finding neighbouring particles (to figure out forces)
- Most popular structure (for non-adaptive codes, i.e. where h=constant for all particles) is...

a mesh (background grid)

SPH

- SPH can be interpreted as a particular way of choosing forces, so that you converge to solving Navier-Stokes
- [Lucy'77], [Gingold & Monaghan '77], [Monaghan...], [Morris, Fox, Zhu '97], ...
- Similar to FEM, we go to a finite dimensional space of functions
 - Basis functions now based on particles instead of grid elements
 - Can take derivatives etc. by differentiating the real function from the finite-dimensional space

Kernel

- Need to define particle's influence in surrounding space (how we'll build the basis functions)
- Choose a kernel function W
 - Smoothed approximation to $\boldsymbol{\delta}$
 - W(x)=W(lxl) radially symmetric
 - Integral is 1
 - W=0 far enough away when IxI>2.5h for example
- Examples:
 - Truncated Gaussian
 - Splines (cubic, quartic, quintic, ...)

Cubic kernel

• Use
$$W(x) = \frac{1}{h^3} f\left(\frac{|x|}{h}\right)$$
 where

$$f(s) = \frac{1}{\pi} \begin{cases} 1 - \frac{3}{2}s^2 + \frac{3}{4}s^3, & 0 \le s \le 1\\ \frac{1}{4}(2 - s)^3, & 1 \le s \le 2\\ 0, & 2 \le s \end{cases}$$

 Note: not good for viscosity (2nd derivatives involved - not very smooth)

Estimating quantities

- Say we want to estimate some flow variable q at a point in space x
- We'll take a mass and kernel weighted average
- Raw version: $Q(x) = \sum_{j} m_{j} q_{j} W(x x_{j})$
 - But this doesn't work, since sum of weights is nowhere close to 1
 - Could normalize by dividing by $\sum_{j} m_{j} W_{j}$ but that involves complicates derivatives...
 - Instead use estimate for normalization at each particle separately (some mass-weighted measure of overlap)

Smoothed Particle Estimate

- Take the "raw" mass estimate to get density: $\langle \rho(x) \rangle = \sum_{j} m_{j} W (x - x_{j})$
 - [check dimensions]
- Evaluate this at particles, use that to approximately normalize:

$$\langle q(x) \rangle = \sum_{j} q_{j} \frac{m_{j} W(x - x_{j})}{\rho_{j}}$$

Incompressible Free Surfaces

- Actually, I lied
 - That is, regular SPH uses the previous formulation
 - For doing incompressible flow with free surface, we have a problem
 - Density drop smoothly to 0 around surface
 - This would generate huge pressure gradient, compresses surface layer
- So instead, track density for each particle as a primary variable (as well as mass!)
 - Update it with continuity equation
 - Mass stays constant however probably equal for all particles, along with radius

Continuity equation

· Recall the equation is

 $\rho_t + u \cdot \nabla \rho = -\rho \nabla \cdot u$

- We'll handle advection by moving particles around
- So we need to figure out right-hand side
- Divergence of velocity for one particle is $\nabla \cdot v = \nabla \cdot \left(v_j W \left(x - x_j \right) \right) = v_j \cdot \nabla W_j$
- Multiply by density, get SPH estimate:

$$\langle \rho \nabla \cdot v \rangle_i = \sum_j m_j v_j \cdot \nabla_i W_{ij}$$

Momentum equation

- Without viscosity: $u_t + u \cdot \nabla u = -\frac{1}{\rho} \nabla p + g$
- · Handle advection by moving particles
- Acceleration due to gravity is trivial
- Left with pressure gradient
- Naïve approach just take SPH estimate as before

$\frac{dv_i}{dt} = \left\langle -\frac{1}{\rho} \nabla p \right\rangle = -\sum_j m_j \frac{p_j}{\rho_j^2} \nabla_i W_{ij}$

Conservation of momentum

- Remember momentum equation really came out of F=ma (but we divided by density to get acceleration)
- Previous slide momentum is not conserved
 - Forces between two particles is not equal and opposite
- · We need to symmetrize this somehow

$$\frac{dv_i}{dt} = -\sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2}\right) \nabla_i W_{ij}$$

• [check symmetry - also note angular momentum]

SPH advection

- Simple approach: just move each particle according to its velocity
- More sophisticated: use some kind of SPH estimate of v
 - keep nearby particles moving together, like PIC and FLIP
- XSPH

$$\frac{dx_i}{dt} = v_i + \sum_j \frac{m_j \left(v_j - v_i\right)}{\frac{1}{2} \left(\rho_i + \rho_j\right)} W_{ij}$$

Equation of state

- Some debate maybe need a somewhat different equation of state if free-surface involved
- E.g. [Monaghan'94]

$$p = B\left(\left(\frac{\rho}{\rho_0}\right)^7 - 1\right)$$

- For small variations, looks like gradient is the same [linearize]
 - But SPH doesn't estimate -1 exactly, so you do get different results...

Incompressible SPH

- Can actually do a pressure solve instead of using artificial compressibility
- But if we do exact projection get the same kinds of instability as collocated grids
 - And no alternative like staggered grids available
- Instead use approximate pressure solve
- [Cummins & Rudman '99]