Notes

- Added a 2D cross-section viewer for assignment 6
 - Not great, but an alternative if the full 3d viewer isn't working for you
- Warning about the formulas in Fedkiw, Stam, and Jensen maybe not right
 - Rederive the limited Catmull-Rom formulas or check around on the web...
- Please read Foster & Metaxas, "Realistic animation of liquids", 1996
- Thursday: decide your final project!

Water

- This week: extend our 3D flow solver to full 3D water
- We need to add two things:
 - · Keep track of where the water is
 - Figure out the right boundary conditions for water surface

Free surface

- As before with waves, we'll ignore what the air is doing
 - Our model of air is pressure=0
- Comparison:
 - ρ_{water} =1000kg/m³, ρ_{air} =1.3kg/m³ (approximate, at sea level)
 - Air moves out of the way of water pretty fast!
 - Momentum of air isn't a big deal, pressure variation small
 - Of course, the wind does makes the waves $\operatorname{go}\ldots$
- Instead of 2 phase flow (water+air), we're doing free surface flow (water+vacuum)

Boundary conditions

- All that's new is the free surface boundary (water-"air")
- We know p=0 outside the water
 - So use this BC for the pressure solve
- What about velocity?
 - For figuring out divergence etc.
- · Let's think about real water-air interface

Real velocity

- The molecules of water at the interface basically move at the same speed as the molecules of air at the interface
 - Normal to the interface: if moving at different speeds, either compress together or leave a gaping hole...
 - Mathematically this translates to $\partial u/\partial n=0$
 - In tangential direction, things are a little more complicated applied traction due to viscous stress...
 - Simplify by saying no viscosity, which means tangential components of u not coupled across the boundary

Velocity boundary condition

- If we don't have air, just a free surface, then just extrapolate u
 - u outside = u at closest point inside water
 - Then $\partial u/\partial n=0$, and we get reasonable values for tangential components
- So for example, when we compute divergence near free surface, don't include differences across the interface
 - [draw it]

Tracking the interface

- We know the normal component of u is continuous across interface (so it's well defined on the interface)
- The water and air molecules just on either side then have the same normal velocity
- So interface moves in the normal direction at that speed
- Can the interface move in the tangential direction?
 - No that doesn't make sense...
 - Ignore the tangential component of velocity

Numerical methods

- Two approaches:
 - "tracking": Lagrangian view point, actually tag material and follow it around
 - "capturing": Eulerian view point, just keep track of whether each grid point is water or not
- Lots of different algorithms...

Parameterized tracking

- Example: see [Foster & Metaxas '96]
- 1st try: use a heightfield again
 - But if heightfield geometry is reasonable, probably 2D physics simplification is fine too
- So then generalize to a parameterized surface
 - E.g. a mesh, or a spline surface, ...
 - Delineates the water surface just what we need for rendering
 - Each vertex of the mesh should move at the speed of the water (extrapolated if needed)

Adaptivity

- Want to start with, e.g., one mesh vertex per surface voxel
- But as water sloshes around, sampling will change
 - Some regions over-resolved could get numerical noise in mesh
 - Some regions under-resolved bad bad bad
- Need to resample delete points, add points, maybe even move points
 - In 1D/2D pretty easy
 - In 2D/3D pretty hard (but do-able: 533A)

Topology changes

- When a wave crashes down, or a drop hits, or a drop separates, or...
 - Topology changes
 - Old parameterization does not apply
- Need to detect collisions, reparameterize (mesh surgery)
 - 1D/2D: painful, but do-able
 - 2D/3D: you don't want to go there
- Bottom-line: parameterized surfaces are not a good idea for interface tracking

Phase-field

- Mathematically could define characteristic function $\chi(x)$
 - 1 for water, 0 for air
- Discretize this on a grid $\theta_{ijk},$ advect it around in the velocity field like any other scalar
 - Called a phase field (tells us which phase) $\theta_t + u \cdot \nabla \theta = 0$
- Two immediate problems:
 - Stair-step problem (smooth water surface is now voxelized)
 - Initial discontinuity gets blurred out we lose 0/1 values

Fixing phase fields

- Smearing things out is actually good!
 - Around interface go smoothly from 0 to 1
 - Pick 1/2 to be the threshhold for what is water, what is not
 - Render smooth implicit surface
- How much smearing?
 - Say 2-3 grid cells...
- Problems:
 - · Over time, smearing spreads and gets distorted
 - Mass is not conserved discretely

Level sets

- · Naturally leads to level set method
- Now use signed distance on a grid, with $\varphi{=}0$ marking the interface
- We know exactly how much "smearing": we want $l\nabla \varphi l{=}1$
- · Interface is always sharply defined
- Move it around as before:

 $\phi_t + u \cdot \nabla \phi = 0$

- But problems remain:
 - Over time, signed distance gets distorted
 - Mass isn't guaranteed to be conserved

Interface velocity

- Remember the interface only cares about normal component of velocity
- It also only cares about velocity at the interface
 - But Eulerian schemes move entire field using velocity everywhere...
- Significantly improve level set method by changing velocity field
 - Just keep normal component of velocity from closest point on interface

$$u_{LS}(x) = u(x - \phi \nabla \phi) \cdot \hat{n} \, \hat{n}$$

Distortion

- This delays, but doesn't stop, the problem of signed distance getting distorted
 - If it's distorted too much, get very unreliable normals and closest point estimates...
- But remember: we only care about interface
- Thus we need to reinitialize $\boldsymbol{\varphi}$ to be signed distance

Reinitialization

- Idea: we have a distorted ϕ , $|\nabla \phi| \neq 1$
- Want to return to I∇φl=1 without disturbing the location of the interface
- If we're not too far from I∇φl=1, makes sense to use an iterative method
 - We can even think of each iteration as a pseudotime step
 - · Information should flow outward from interface
 - Advection in direction sign(φ)n and with rate of change sign(φ):

$$\phi_t + \left(sign(\phi)\frac{\nabla\phi}{|\nabla\phi|}\right) \cdot \nabla\phi = sign(\phi)$$

Reinitialization cont'd

- Simplifying this we get: $\phi_t + (sign(\phi) - 1) |\nabla \phi| = 0$
- This is another Hamilton-Jacobi equation...
 - If we want I∇φI=1 to very high order accuracy, can use high-order HJ methods

Discretization

- When we discretize (e.g. with semi-Lagrangian) we'll end up interpolating with values on either side of interface
- Limit the possibility for weird stuff to happen, like $\boldsymbol{\varphi}$ changing sign
- So instead of sign(φ), use S(φ₀)
 - Can never flip sign
 - Sign function smeared out to be smooth:

$$S(\phi_{0}) = \frac{\phi_{0}}{\sqrt{\phi_{0}^{2} + |\nabla\phi_{0}|^{2} (\Delta x)^{2}}}$$

Aside: initialization

- This works well if we're already close to signed distance
- What if we start from scratch at t=0?
 - For very simple geometry, may construct $\boldsymbol{\varphi}$ analytically
 - More generally, need to numerically approximate
- One solution if we can at least get inside/outside on the grid, can run reinitialization equation from there (1st order accurate)

Fast methods

- Problem with reinitialization from scratch to get full field, need to take O(n) steps, each costs O(n³)
- · Can speed up with local level set method
 - Only care about signed distance near interface, so only compute those O(n²) values in O(1) steps
 - Gives optimal O(n²) complexity (but the constant might be big!)
- If we really want full grid, but fast:
 - Fast Marching Method O(n³log n)
 - Fast Sweeping Method O(n³)
 - But not very accurate

Pure level set algorithm

- Advect ϕ
- Every so often (20 time steps?) reinitialize φ for a few (5?) pseudo-time steps

Velocity extrapolation

- We can exploit level set to extrapolate velocity field outside water
 - Not a big deal for pressure solve can directly handle extrapolation there
 - But a big deal for advection with semi-Lagrangian method might be skipping over, say, 5 grid cells
 - So might want velocity 5 grid cells outside of water
- Simply take the velocity at an exterior grid point to be interpolated velocity at closest point on interface

Mass conservation

- Problem: it doesn't work
- Visual artifacts water droplets vanish in midair
- · Mass is not guaranteed to be conserved
- · Reinitialization makes it even worse
- [example]
- · In the limit, works ok, but not on coarse grids
 - Even if we use 5th order accurate HJ-WENO...

Volume-of-fluid (VOF)

- Another Eulerian approach: directly enforce conservation of mass
 - Account for every last drop of water
- At each grid cell, keep track of how much water is in it (as a fraction of the cell): 0=empty, 1=full
 - Like phase-field, only physical meaning for intermediate values
- Treat advection as a conservation law make sure water is conserved

VOF problems

- Discontinuous interface (which should be handled by p=0, extrapolated u) is smeared out and made erroneously continuous
- Hard to figure out what to do with accumulation of partially-filled cells
- Hard to reconstruct nice interface, e.g. for rendering
 - [draw it]

Back to particles!

- Harlow and Welch, 1965: MAC method
 - Marker-and-Cell
- Instead of moving surface particles around, move water particles ("marker particles")
- Forget about a mesh
 - Only need to know where water is and isn't (worry about rendering later - e.g. blobby implicit surface wrapped around particles)
- Any grid cell with marker particles in it is water, rest are not

MAC

- Seed particles in grid cells where there is water (e.g. 8 to a grid cell in 3D)
- Mark grid cells as water/air according to whether or not they have particles
- Solve for new velocity/pressure
- Move particles in velocity field
 - Need CFL limit for accuracy

Issues

- Mass conservation?
 - Not exact, but close if velocity field is divergencefree
 - Can never lose water in mid-air
- Smearing, distortion? Doesn't apply
- The only downside is noisy surface
 - Discrete particles don't do a good job at representing smooth water
 - But great for rough foamy splashing!

Surface tension

- Critical for small-scale water
- We model it by adding to pressure boundary condition p=0 at free surface:

$$p_{fs} = \sigma \kappa$$

- + σ is surface tension parameter, κ is mean curvature
- Recall $\boldsymbol{\kappa}$ is based on second derivatives of surface
- If we have a noisy surface from blobbywrapped marker particles, curvature estimate is extremely noisy - useless