
Notes

• Please read O’Brien, Bargteil and
Hodgins, “Graphical modeling and
animation of ductile fracture”,
SIGGRAPH’02

Plasticity

• Recall we split the current strain into

• an elastic part (will vanish when applied forces
removed and system comes to rest)

• and a plastic part (permanent)

• Stress is computed just from elastic strain

(and its rate of change)

• We need rules for when plastic strain

changes, and how fast

• In multiple dimensions this isn’t trivial

Yield criteria

• Lots of complicated stuff happens when
materials yield
• Metals: dislocations moving around

• Polymers: molecules sliding against each other

• Etc.

• Difficult to characterize exactly when plasticity
(yielding) starts
• Work hardening etc. mean it changes all the time

too

• Approximations needed
• Big two: Tresca and Von Mises

Yielding

• First note that shear stress is the
important quantity

• Materials (almost) never can permanently

change their volume

• Plasticity should ignore volume-changing

stress

• So make sure that if we add kI to ! it

doesn’t change yield condition



Tresca yield criterion

• This is the simplest description:
• Change basis to diagonalize !

• Look at normal stresses (i.e. the eigenvalues of !)

• No yield if !max-!min ! !Y

• Tends to be conservative (rarely predicts
yielding when it shouldn’t happen)

• But, not so accurate for some stress states
• Doesn’t depend on middle normal stress at all

• Big problem (mathematically): not smooth

Von Mises yield criterion

• If the stress has been diagonalized:

• More generally:

• This is the same thing as the Frobenius norm

of the deviatoric part of stress

• i.e. after subtracting off volume-changing part:

! 

1

2
"
1
#"

2( )
2

+ "
2
#"

3( )
2

+ "
3
#"

1( )
2

$"
Y

! 

3

2
"

F

2

# 1

3
Tr "( )

2

$"
Y

! 

3

2
" # 1

3
Tr "( )I

F
$"

Y

Linear elasticity shortcut

• For linear (and isotropic) elasticity, apart
from the volume-changing part which
we cancel off, stress is just a scalar
multiple of strain

• (ignoring damping)

• So can evaluate von Mises with elastic
strain tensor too (and an appropriately
scaled yield strain)

Perfect plastic flow

• Once yield condition says so, need to start
changing plastic strain

• The magnitude of the change of plastic strain
should be such that we stay on the yield
surface
• I.e. maintain f(!)=0

(where f(!)!0 is, say, the von Mises condition)

• The direction that plastic strain changes isn’t
as straightforward

• “Associative” plasticity:
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Algorithm

• After a time step, check von Mises criterion:
   is                                              ?

• If so, need to update plastic strain:

• with " chosen so that f(!new)=0
(easy for linear elasticity)
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Work hardening

• May well not need it for graphics

• But just in case, the simplest model:
• Change yield stress to !Y0+K# where #=0 initially

(K is the “isotropic hardening modulus”)

• Change yield von Mises yield condition to

• where $ is the centre of the yield surface, initially 0
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Creep

• Instead of instantaneously changing plastic
strain in response to changing stress, let it
change in time

• Elastic strain then decays exponentially
• To zero: Maxwell fluid

• To some fixed lower limit: more general

• If creep is a large effect, fixed mesh
Lagrangian methods are bad

• If creep is small, maybe not necessary to
include in animation

Viscoelasticity

• Some materials don’t really have an elastic regime

• As soon as you apply force, creep deformation begins

• Over long time, behave like a fluid

• No shear forces resisted

• Over short time, behave like a solid

• Bounce elastically

• Called “viscoelastic”

• Confused sometimes with regular elastic materials with damping

(a.k.a. viscosity)

• Everyday examples:

• Cornstarch/water

• Silly putty



Fracture

• If no plasticity before fracture occurs, called
“brittle” (otherwise, “ductile”)

• Much of engineering literature concerned with
crack propagation
• Once a fracture has started, how fast does it

propagate, how much energy or force is needed to
continue it, …

• For graphics just concerned with when
fracture occurs, and how to implement it
• Elastoplastic modeling handles the rest

Stress on elements

• Easiest approach: loop over elements looking

at stress

• Compare max eigenvalue of stress to tensile

fracture threshhold
(usually assume no fracture in compression)

• Associated eigenvector should be normal to new
fracture surface

• But how do we put in that fracture surface?

Fracturing elements

• There isn’t an obvious place in the element to
choose the plane to go

• Generally will want it to meet up with cracks
in neighbouring elements…

• Do not want to arbitrarily split element (can
get slivers)

• Instead:
• Pick element face whose normal is closest to

eigenvector

• Mark that face as separated

• Check corners of face to see if separated,
duplicate if so (splitting up mass appropriately)

Separating faces

• Related to engineering “cohesive surface
elements” (where crack path is known)

• Check for separated nodes based on graph
connectedness:
• Form graph where each vertex is an incident

element, edges correspond to non-separated
faces

• If the graph has more than component, node must
be split, one copy for each component

• Split the mass up according to volumes/densities
of incident tets



Fracture surface

• Problem: looks terrible if underlying mesh is

regular

• Not so great even if mesh is irregular but coarse

• Can be alleviated in rendering by changing

fracture surface to a fractally-roughened

higher detail surface

• See Smith, Witkin, Baraff “Fast and controllable

simulation of the shattering of brittle objects”,
Eurographics’01

Node-based fracture

• Need a fracture criterion evaluated at nodes
instead of elements

• But stress doesn’t “live” there

• Simple approach:
•  use an average of stresses on surrounding

elements, perform test as before

• More complex: form “separation tensor”
• See O’Brien and Hodgins for details

• Basic idea: split stress in each element into tensile
and compressive parts (use signs of eigenvalues)

• Get tensile and compressive forces on nodes

• Form separation tensor from these

Introducing fracture surface

• Eigenvector gives normal to new fracture
surface

• Also want fracture surface to pass through
node: so begin by duplicating the node

• This will split up the neighbouring elements -
need to remesh (and eliminate T-junctions)

• Need to be careful to avoid slivers: if fracture
plane passes very close by another node,
snap it to the node and avoid the sliver

• Redistribute mass of the original node to the
two copies

Rigid shortcut

• For brittle fracture, generally don’t see
(or care about) deformation

• So animate pieces as rigid bodies, but

when collisions occur, evaluate internal

stress to see about fractures

• See Müller, et al., “Real-time simulation of

deformation and fracture of stiff materials”,

2001



Collisions

• Note that when fracture occurs, bits of
material are exactly touching

• Can cause difficulties for “robust”
algorithms (that assume and maintain
separation between objects)

• Generally need to either artificially
separate at fracture, or allow for small
interpenetration

Other material effects

• Heat: any material property could be made
temperature dependent
• Need to solve auxiliary heat equation to let heat

diffuse through material:

• Unless k is very small, best to do this with implicit
methods (Backward Euler typically)

• Use FVM (or equivalent linear FEM)

• Conductivity k can be just a constant number (get
Laplacian) or could be a SPD tensor…

• [yield stress]

• [thermal stress]
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