
Notes

• Please read

• Kass and Miller, “Rapid, Stable Fluid
Dynamics for Computer Graphics”,
SIGGRAPH’90

Shallow water

• Simplified linear analysis before had
dispersion relation

• For shallow water, kH is small (that is, wave
lengths are comparable to depth)

• Approximate tanh(x)=x for small x:

• Now wave speed is independent of wave
number, but dependent on depth
• Waves slow down as they approach the beach
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What does this mean?

• We see the effect of the bottom

• Submerged objects (H decreased) show up
as places where surface waves pile up on
each other

• Waves pile up on each other (eventually
should break) at the beach

• Waves refract to be parallel to the beach

• We can’t use Fourier analysis

PDE’s

• Saving grace: wave speed independent of k
means we can solve as a 2D PDE

• We’ll derive these “shallow water equations”
• When we linearize, we’ll get same wave speed

• Going to PDE’s also let’s us handle non-
square domains, changing boundaries
• The beach, puddles, …

• Objects sticking out of the water (piers, walls, …)
with the right reflections, diffraction, …

• Dropping objects in the water



Kinematic assumptions

• We’ll assume as before water surface is a
height field y=h(x,z,t)

• Water bottom is y=-H(x,z,t)

• On top of this, assume velocity field doesn’t
vary much in the y direction
• u=u(x,z,t), w=w(x,z,t)

• Can’t assume v is independent of y, but assume
least variation possible: linear in y

• For “shallow” water (or any other nearly 2D
flow) this is a good approximation
• “shallow” meaning whenever this is a good

approximation - little variation in y !

Conservation of mass

• Integrate over a column of water with cross-
section A and height h+H
• Total mass is !(h+H)A

• Mass flux around cross-section is
!(h+H)(u,w)

• Write down the conservation law

• In differential form (assuming constant
density):

• Note: switched to 2D so u=(u,w) and "=(!/!x, !/!z)
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Pressure

• Look at y-component of momentum equation:

• Assume small velocity variation - so dominant
terms are pressure gradient and gravity:

• Boundary condition at water surface is p=0
again, so can solve for p:
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Momentum Equation

• So now look at x and z components of

momentum equation, plugging in our

formula for pressure (in 2D again)

• In conservation law form (just rewriting):
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The Shallow Water Equations

• Typically assume viscosity=0, write as a
system of conservation laws

• Lots of work done on conservation laws such
as this

• Without viscosity, “shocks” may develop
• Discontinuities in solution (need to go to weak

integral form of equations)

• Corresponds to breaking waves - getting steeper
and steeper until heightfield assumption breaks
down
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Breaking things down

• Rewrite equations to highlight advection

• Recognize the material derivative
• So water height gets carried around by flow, and

increases if velocity is converging

• Water velocity gets carried around by flow, water
accelerates down slope of water according to
gravity

• Suggests a numerical approach (“splitting” or
“fractional steps”)
• move stuff around on the grid first, then change it
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Linearization

• Again assume not too much velocity variation
(i.e. waves move, but water basically doesn’t)
• No currents, just small waves

• Alternatively: inertia not important compared to
gravity

• Or: numerical method treats the advection
separately (see next week!)

• Then drop the nonlinear advection terms

• Also assume H doesn’t vary in time
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Wave equation

• Only really care about heightfield for
rendering

• Differentiate height equation in time

• Plug in u equation

• Finally, neglect nonlinear (quadratically
small) terms on right to get! 
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Deja vu

• This is the linear wave equation, with
constant wave speed c2=gH

• Which is exactly what we derived from the
dispersion relation before (after linearizing the
equations in a different way)

• But now we have it in a PDE that we have
some confidence in
• Can handle varying H, irregular domains…

• Caveat: to handle H going to 0 or negative,
we’ll in fact use
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Anti-water

• In linearizing, lost conservation properties

• Now possible for a large wave out in deeper
water to come into where its shallower and…

• Stay large, with h<-H
• I.e. the water level beneath the sea floor

• Obviously a bad thing

• Simple solution: ignore it

• Slightly better: clamp h to be at least -H
• And directly enforce global conservation of mass

in each connected region of water - if mass
changes, scale h+H by just the right amount

Initial + boundary conditions

• We can specify initial h and ht

• Since it’s a second order equation

• We can specify h at “open” boundaries
• Water is free to flow in and out

• Specify !h/!n=0 at “closed” boundaries
• Water does not pass through boundary

• Equivalent to reflection symmetry

• Waves reflect off these boundaries

• Note: dry beaches etc. don’t have to be
treated as boundaries -- instead just have
h=-H initially

Example conditions

• Start with quiet water h=0, beach on
one side of domain

• On far side, specify h by 1D Fourier
synthesis (e.g. see last lecture)

• On lateral sides, specify !h/!n=0
(reflect solution)

• Keep beach side dry h=-H

• Start integrating



Space Discretization

• In space, let’s use finite-differences on a
regular grid

• Need to discretize "2h=hxx+hzz

• Standard 5-point approximation good:

• At boundaries where h is specified, plug in
those values instead of grid unknowns

• At boundaries where normal derivative is
specifed, use finite difference too
• Example hi+1j-hij=0  which gives hi+1j=hij
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Time discretization

• We’re doing the “method of lines” - discretize
PDE in space to get a bunch of ODE’s

• It’s (roughly) of the form htt=-Ah where A is a
symmetric positive-semidefinite matrix

• Actually A depends on h as well as H

• Can go back to original set of methods

• A few other choices available

Central explicit

• Use same second-order accurate discretization
of second derivative in space as in time:

• Instead of keeping velocity around, keep an
older value of h
• Equivalent to central method of before

• Can derive stability limit
• Same as CFL limit: numerical speed > wave speed
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Implicit methods

• Need to solve system involving A
• Will need to use an iterative method

• Or call an efficient sparse direct solver

• Not so efficient

• Alternative: ADI (alternating direction implicit)
• Split time discretiztion into an implicit step with

d/dx part, then another implicit step with d/dz

• Each implicit solve only uses one part of A,
logically a tridiagonal matrix: can solve really
easily in linear time

• But, can cause weird grid artifacts if dt too big

• Note: “lagging” - use old value of h to get A



Surface tension

• Let’s go back to nonlinear shallow water
equations for a moment

• If we include surface tension, then there’s an
extra normal traction (i.e. pressure) on
surface
• Proportional to the mean curvature

• The more curved the surface, the more it wants to
get flat again

• Actually arises out of different molecular
attractions between water-water, water-air, air-air

• We can model this by changing pressure BC
to p=#$ from p=0 at surface y=h

Mean curvature

• If surface is fairly flat, can approximate

• [show in 1D]

• Laplacian is rotationally invariant, so rotate
to line up directions of maximum curvature

• Plugging this pressure into momentum

gives
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Simplifying

• Doing same linearization as before, but
now in 1D (forget z) get

• Should look familiar - it’s the bending
equation from long ago

• Capillary (surface tension) waves
important at small length scales
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Other shallow water eq’s

• General idea of ignoring variation
(except linear pressure) in one
dimension applicable elsewhere

• Especially geophysical flows: the
weather

• Need to account for the fact that Earth
is rotating, not an inertial frame
• Add Coriolis pseudo-forces


