Addenda to last class

» K. Sims, “Particle animation...”,
SIGGRAPH’90
* Ignore the parallel computing stuff

* There was an inconsistency in assignment #1
(y-axis vs. z-axis)
« Updated PDF on the web
¢ Vertical is now z-axis, horizontal is x-y plane

* Welcome to a continual problem of axis labeling...

(we’re not even looking at right-handed vs. left-
handed)

Time Stepping Algorithm

» Set done = false
¢ While not done
» Find good At

If t+At =t
+ Set At=t, -t
* Set done = true

Else if t+1.5At = t; 6
* Set At = 0.5(t;4me-t)

e ...process time step...

e Sett=1t+At

* Write out frame data, continue to next frame

Time Stepping

Sometimes can pick constant At

* One frame, or 1/8th of a frame, or ...

Often need to allow for variable At

» Changing stability limit due to changing Jacobian
« Difficulty in Newton converging

But need to land at the exact frame time

» So clamp At so you can’t overshoot the frame
Some algorithms behave oddly if time step
changes dramatically...

» Be careful that last time step isn’t much smaller

Another Word of Caution

* Even for linear problems, stability analysis still
not bulletproof
» Assumes constant time step

* If time step varies, even under official stability limit,
can actually go unstable!

» See J. P. Wright, “Numerical instability due to
varying time steps...”, JCP 1998

» Safety margin really is a good idea!



1st order vs. 2nd order

« If particle state is just position (and colour,
size, ...) then 1st order motion
* No inertia

» Good for very light particles that stay suspended in
air: smoke, dust, ...

» Good for some special cases (hacks)

* But most often, want inertia
« State includes velocity, specify acceleration
» Can then do parabolic arcs due to gravity, etc.

What’s New?

* If x=(x,v) this is just a special form of
dx/dt=v(x,t)
e But since we know the special structure, can
we take advantage of it?
(i.e. better time integration algorithms)
¢ More stability for less cost?

» Handle position and velocity differently to better
control error?

Second Order Particle Motion

* This puts us in the realm of standard
Newtonian physics
e F=ma
 Alternatively put:
e dx/dt=v
o dv/dt=F(x,v,t)/)m (i.e. a(x,v,t))

Linear Analysis

* Approximate acceleration:
oa oa
a(x,v) =~dy+—X+—V
0x ov

e Split up analysis into different cases

» Begin with first term dominating:
constant acceleration
* e.g. gravity is most important



Constant Acceleration Linear Acceleration

Solutionis  V(#) = v, + ayt * Dependence on x and v dominates:
x() = xy + vt + Layt’ a(x,v)=-Kx-Dv
* Do the analysis from last class:

No problem to get v(t) right:
just need 1st order accuracy

But x(t) demands 2nd order accuracy i X _ 0 I (x
So we can look at mixed methods: dr\v -K =-DM\v
e 1storderinv
¢ 2nd order in x

» Eigenvalues of this matrix?

More Approximations... Simplification
e Typically K and D are symmetric semi-definite * o is the eigenvalue of the Jacobian, and
(there are good reasons) . \/ { 2
« What does this mean about their eigenvalues? a = _E)LD + (5 )\’D) B )\’K
 Often, D is a linear combination of K and | « Same as eigenvalues of [ 1
(“Rayleigh damping”), or at least close to it
* Then Kand D have the same eigenvectors _)\’K _)\‘D
(but different eigenvalues) » Can replace K and D (matrices) with
» Then the eigenvectors of the Jacobian are of the corresponding eigenvalues (scalars)

form (u, au)’

» Just have to analyze 2x2 system
 [work out what a is in terms of A and Ap] Y y



Two Regimes Three Test Equations

o Still messy! Simplify further » Constant acceleration (e.g. gravity)
: . . e a(x,v,t)=g
 |If D dominates (e.g. air drag, damping) « Want exact (2nd order accurate) position
o ~ {_)L 0} « Position dependence (e.g. spring force)
b> e a(x,v,t)=-Kx
» Exponential decay and constant * Want stability but low damping

. . . * Look at imaginary axis
It K dominates (e.g. spring force)  Velocity dependence (e.g. damping)

o = iiq/)\.K e a(x,v,t)=-Dv

» Want stability, smooth decay
» Look at negative real axis

Explicit methods from before Implicit methods from before
» Forward Euler » Backward Euler
+ Constant acceleration: bad (1st order) « Constant acceleration: bad (1st order)
* POSiti?” dependence: very bad. (.unstable) « Position dependence: ok (stable, but damps)
* Velocity dependence: ok (conditionally » Velocity dependence: good (monotone, 1st order)
monotone/stable) :
« RK3 and RK4 L TrapeZOIdal Rule
« Constant acceleration: great (high order) * Con_s.tant acceleration: great (2nd order) _
« Position dependence: ok (conditionally stable, but « Position dependence: great (stable, no damping)
damps out oscillation) « Velocity dependence: good (stable but only
» Velocity dependence: ok (conditionally conditionally monotone --- though maybe fixable)

monotone/stable)



New methods!

» This is again a big subject
» Again look at explicit methods, implicit
methods

» Also can treat position and velocity
dependence differently:
mixed implicit-explicit methods

Symplectic Euler performance

» Constant acceleration: bad
» Velocity right, position off by O(At)
» Position dependence: good

« Stability limit 2

VK

* No damping!

» Velocity dependence: ok
» Monotone limit Ar<1/D
 Stability limit Ar<2/D

Symplectic Euler

Like Forward Euler, but updated velocity used
for position

V.=V, +Ata(x,,v,)

X, =X +Atv,

n+l

Some people flip the steps (= relabel v,)

(Symplectic means certain qualities are
preserved in discretization; useful in science,
not necessarily in graphics)

[work out test cases]

Tweaking Symplectic Euler

[sketch algorithms]
Stagger the velocity to improve x
Start off with v,, =v, + 3Ata(x,,v,)

Then proceed with
Ve, =Vaiy + 30— tn_l)a(xn,vn_%)
X

n+l

Finish off with

=x,+Atv, .,

Vy =Vy_yt %Ata(xN,vN_%)



Staggered Symplectic Euler A common explicit method

» Constant acceleration: great! * May see this one pop up:
» Position is exact now

V.=V, +Ata(x,,v,)
e Other cases not effected

1 1 1 2
« Was that magic? Main part of algorithm Xy =%, +A1(3v, +3v,.,) = x, + Ay, + 1Ara,
unchanged (apart from relabeling) yet now it's
more accurate! » Constant acceleration: great
* Only downside to staggering « Velocity dependence: ok
» At intermediate times, position and velocity not « Conditionally stable/monotone

known together

¢ May need to think a bit more about collisions and
other interactions with outside algorithms...

» Position dependence: BAD
* Unconditionally unstable!

An Implicit Compromise Implicit Compromise
e Backward Euler is nice due to unconditional » Use Backward Euler for velocity dependence,
monotonicity Trapezoidal Rule for the rest:
* Although only 1st order accurate, it has the right X,=X,+ At(%vn + %v“])

characteristics for damping
» Trapezoidal Rule is great for everything
except damping with large time steps

¢ 2nd order accurate, doesn’t damp pure
oscillation/rotation

* How can we combine the two?

— 1 1
Vn+1 - Vn + Ata(Z 'xn + 2xn+1’vn+l’tn+%)

» Constant acceleration: great (2nd order)

» Position dependence: great (2nd order, no
damping)

» Velocity dependence: good (unconditionally
monotone, but only 1st order accurate)



Time scales Mixed Implicit/Explicit

[work out] » For some problems, that square root can

For position dependence, characteristic time mean velocity limit much stricter

interval is Af= O B « Or, we know we want to properly resolve the
VK position-based oscillations, but don’t care

about damping

For velocity dependence, characteristic time - e ,
» Go explicit on position, implicit on velocity

interval is 1
At = 0(_) * Also cuts the number of equations to solve in half
» Often, a(x,v) is linear in v, though nonlinear in x;
Note: matches symplectic Euler stability limits this way we avoid Newton iteration
Newmark Methods Central Differencing
A general class of methods  Rewrite it with intermediate velocity:
X, =X, +Atv, + %Atz[(l -2pB)a, + 2[3an+1] v,y =V, +LAta(x,.v,)
Vas = Vo +At[(1_)/)an +}/an+l] X =X, +Atvn+%
Includes Trapezoidal Rule for example Vsl =Vaey + 3Ata(x, ,.v,.,.)
(B=1/4, y=1/2) « Looks like a hybrid of:

The other major member of the family is
Central Differencing (p=0, y=1/2)

» This is mixed Implicit/Explicit

» Midpoint (for position), and
» Trapezoidal Rule (for velocity - split into
Forward and Backward Euler half steps)



Central: Performance

Constant acceleration: great

* 2nd order accurate

Position dependence: good

» Conditionally stable, no damping

Velocity dependence: good

 Stable, but only conditionally monotone
Can we change the Trapezoidal Rule to

Backward Euler and get unconditional
monotonicity ?

Time Integration Summary

Depends a lot on the problem

* What'’s important: gravity, position, velocity?
Explicit methods from last class are bad
Symplectic Euler is a great fully explicit
method (particularly with staggering)

» Switch to implicit velocity step for more stability
Implicit Compromise method

¢ Fully stable, nice behaviour

Central Differencing and Trapezoidal Rule

¢ More accurate velocity, but may have monotonicity

issues for strong damping...

Staggered Implicit/Explicit

Like the staggered Symplectic Euler, but use
B.E. in velocity instead of F.E.:

Vo =Vt (., - tn_l)a(xn,v“yz)

KXol =X, + Al‘vn+%

Constant acceleration: great

Position dependence: good (conditionally
stable, no damping)

Velocity dependence: good (unconditionally
monotone, but 1st order)

Example Forces

Gravity: I:gravity=mg (a=9)
If you want to do orbits

F =-GmM,

gravity

X=X,
3
ox = x|
Note x, could be a fixed point (e.g. the Sun)

or another particle

« But make sure to add the opposite and equal force
to the other particle if so!



Spring Forces Spring Damping

* Springs: Fying=-K(X-Xo) * Simple damping: F,,,=-D(v-V,)
* X, is the attachment point of the spring  But this damps rotation too!
» Could be a fixed point in the scene  Better spring damping:
* ...or somewhere on a character’s body Fgamp="D(V-Vp)-u U
e ...or the mouse cursor * Here u is (x-Xy)/Ix-X,l, the spring direction
* ...or another particle (but please add equal « [work out 1d case]

and oppposite force!)

o Critical damping D =2+/mK

Nonzero Rest Length Spring Drag Forces

 Need to measure the “strain”: Air drag: Fy,q=-Dv
the fraction the spring has stretched * If there’s a wind blowing with velocity v,, then

. Fdrag='D(V'Vw)
from its rest length L D should be proportional to cross-section

exposed to wind
e Think sheets of paper, leaves...
Depends in a difficult way on shape too

How do you come up with a good wind
velocity?

P ‘x—xo‘_ X=X,

spring L

1

ox = x|



Wind Incompressibility

 Later in the course: actually directly * Air is basically incompressible
simulate the wind « Acoustic waves are so small as to be
« For now: fake it ignored usually
« Random “turbulence”  Large shock waves only around supersonic
- : objects
 Superposition of basic flow elements _ o _
« Constant wind, vortices, ... » The volume of air going into a region of
« Key ingredient is incompressibility space equals the volume leaving it

* [derive divergence condition]



