
Addenda to last class

• K. Sims, “Particle animation…”,
SIGGRAPH’90
• Ignore the parallel computing stuff

• There was an inconsistency in assignment #1
(y-axis vs. z-axis)
• Updated PDF on the web

• Vertical is now z-axis, horizontal is x-y plane

• Welcome to a continual problem of axis labeling…
(we’re not even looking at right-handed vs. left-
handed)

Time Stepping

• Sometimes can pick constant !t
• One frame, or 1/8th of a frame, or …

• Often need to allow for variable !t
• Changing stability limit due to changing Jacobian

• Difficulty in Newton converging

• …

• But need to land at the exact frame time
• So clamp !t so you can’t overshoot the frame

• Some algorithms behave oddly if time step
changes dramatically…
• Be careful that last time step isn’t much smaller

Time Stepping Algorithm

• Set done = false

• While not done
• Find good !t

• If t+!t " tframe

• Set !t = tframe-t

• Set done = true

• Else if t+1.5!t " tframe

• Set !t = 0.5(tframe-t)

• …process time step…

• Set t = t+!t

• Write out frame data, continue to next frame

Another Word of Caution

• Even for linear problems, stability analysis still
not bulletproof

• Assumes constant time step

• If time step varies, even under official stability limit,

can actually go unstable!

• See J. P. Wright, “Numerical instability due to

varying time steps…”, JCP 1998

• Safety margin really is a good idea!

1st order vs. 2nd order

• If particle state is just position (and colour,
size, …) then 1st order motion

• No inertia

• Good for very light particles that stay suspended in

air: smoke, dust, …

• Good for some special cases (hacks)

• But most often, want inertia

• State includes velocity, specify acceleration

• Can then do parabolic arcs due to gravity, etc.

Second Order Particle Motion

• This puts us in the realm of standard

Newtonian physics

• F=ma

• Alternatively put:

• dx/dt=v

• dv/dt=F(x,v,t)/m (i.e. a(x,v,t))

What’s New?

• If x=(x,v) this is just a special form of
dx/dt=v(x,t)

• But since we know the special structure, can
we take advantage of it?
(i.e. better time integration algorithms)
• More stability for less cost?

• Handle position and velocity differently to better
control error?

Linear Analysis

• Approximate acceleration:

• Split up analysis into different cases

• Begin with first term dominating:

constant acceleration

• e.g. gravity is most important

!

a x,v() " a0 +
#a

#x
x +

#a

#v
v

Constant Acceleration

• Solution is

• No problem to get v(t) right:
just need 1st order accuracy

• But x(t) demands 2nd order accuracy

• So we can look at mixed methods:
• 1st order in v

• 2nd order in x

!

v(t) = v
0

+ a
0
t

x(t) = x
0

+ v
0
t + 1

2
a
0
t
2

Linear Acceleration

• Dependence on x and v dominates:
 a(x,v)=-Kx-Dv

• Do the analysis from last class:

• Eigenvalues of this matrix?

!

d

dt

x

v

"

$
%

&
' =

0 I

(K (D

"

$

%

&
'
x

v

"

$
%

&
'

More Approximations…

• Typically K and D are symmetric semi-definite
(there are good reasons)
• What does this mean about their eigenvalues?

• Often, D is a linear combination of K and I
(“Rayleigh damping”), or at least close to it
• Then K and D have the same eigenvectors

(but different eigenvalues)

• Then the eigenvectors of the Jacobian are of the
form (u, !u)T

• [work out what ! is in terms of "K and "D]

Simplification

• ! is the eigenvalue of the Jacobian, and

• Same as eigenvalues of

• Can replace K and D (matrices) with
corresponding eigenvalues (scalars)
• Just have to analyze 2x2 system

!

" = # 1

2
$
D

± 1

2
$
D()

2

$
K

!

0 1

"#
K

"#
D

$

%
&

'

(
)

Two Regimes

• Still messy! Simplify further

• If D dominates (e.g. air drag, damping)

• Exponential decay and constant

• If K dominates (e.g. spring force)

!

" # $%
D
, 0{ }

!

" # ±i $
K

Three Test Equations

• Constant acceleration (e.g. gravity)
• a(x,v,t)=g

• Want exact (2nd order accurate) position

• Position dependence (e.g. spring force)
• a(x,v,t)=-Kx

• Want stability but low damping

• Look at imaginary axis

• Velocity dependence (e.g. damping)
• a(x,v,t)=-Dv

• Want stability, smooth decay

• Look at negative real axis

Explicit methods from before

• Forward Euler
• Constant acceleration: bad (1st order)

• Position dependence: very bad (unstable)

• Velocity dependence: ok (conditionally
monotone/stable)

• RK3 and RK4
• Constant acceleration: great (high order)

• Position dependence: ok (conditionally stable, but
damps out oscillation)

• Velocity dependence: ok (conditionally
monotone/stable)

Implicit methods from before

• Backward Euler

• Constant acceleration: bad (1st order)

• Position dependence: ok (stable, but damps)

• Velocity dependence: good (monotone, 1st order)

• Trapezoidal Rule

• Constant acceleration: great (2nd order)

• Position dependence: great (stable, no damping)

• Velocity dependence: good (stable but only

conditionally monotone --- though maybe fixable)

New methods!

• This is again a big subject

• Again look at explicit methods, implicit

methods

• Also can treat position and velocity

dependence differently:

mixed implicit-explicit methods

Symplectic Euler

• Like Forward Euler, but updated velocity used
for position

• Some people flip the steps (= relabel vn)

• (Symplectic means certain qualities are
preserved in discretization; useful in science,
not necessarily in graphics)

• [work out test cases]

!

v
n+1 = v

n
+ "ta x

n
,v

n()
x
n+1 = x

n
+ "tv

n+1

Symplectic Euler performance

• Constant acceleration: bad

• Velocity right, position off by O(!t)

• Position dependence: good

• Stability limit

• No damping!

• Velocity dependence: ok

• Monotone limit

• Stability limit

!

"t <
2

K

!

"t <1 D

!

"t < 2 D

Tweaking Symplectic Euler

• [sketch algorithms]

• Stagger the velocity to improve x

• Start off with

• Then proceed with

• Finish off with

!

v 1
2

= v
0

+ 1

2
"ta x

0
,v
0()

!

v
n+ 12

= v
n" 12

+ 1

2
(t
n+1 " tn"1)a xn,vn" 12()

x
n+1 = x

n
+ #tv

n+ 12

!

v
N

= v
N" 12

+ 1

2
#ta x

N
,v

N" 12()

Staggered Symplectic Euler

• Constant acceleration: great!
• Position is exact now

• Other cases not effected
• Was that magic? Main part of algorithm

unchanged (apart from relabeling) yet now it’s
more accurate!

• Only downside to staggering
• At intermediate times, position and velocity not

known together

• May need to think a bit more about collisions and
other interactions with outside algorithms…

A common explicit method

• May see this one pop up:

• Constant acceleration: great

• Velocity dependence: ok
• Conditionally stable/monotone

• Position dependence: BAD
• Unconditionally unstable!

!

v
n+1 = v

n
+ "ta x

n
,v

n()
x
n+1 = x

n
+ "t 1

2
v
n

+ 1

2
v
n+1() = x

n
+ "tv

n
+ 1

2
"t

2
a
n

An Implicit Compromise

• Backward Euler is nice due to unconditional
monotonicity

• Although only 1st order accurate, it has the right

characteristics for damping

• Trapezoidal Rule is great for everything
except damping with large time steps

• 2nd order accurate, doesn’t damp pure

oscillation/rotation

• How can we combine the two?

Implicit Compromise

• Use Backward Euler for velocity dependence,
Trapezoidal Rule for the rest:

• Constant acceleration: great (2nd order)

• Position dependence: great (2nd order, no
damping)

• Velocity dependence: good (unconditionally
monotone, but only 1st order accurate)

!

x
n+1 = x

n
+ "t 1

2
v
n

+ 1

2
v
n+1()

v
n+1 = v

n
+ "ta 1

2
x
n

+ 1

2
x
n+1,vn+1,tn+ 12()

Time scales

• [work out]

• For position dependence, characteristic time
interval is

• For velocity dependence, characteristic time
interval is

• Note: matches symplectic Euler stability limits

!

"t =O
1

K

$
%

&

'
(

!

"t =O
1

D

$
%

&

'
(

Mixed Implicit/Explicit

• For some problems, that square root can
mean velocity limit much stricter

• Or, we know we want to properly resolve the
position-based oscillations, but don’t care
about damping

• Go explicit on position, implicit on velocity

• Also cuts the number of equations to solve in half

• Often, a(x,v) is linear in v, though nonlinear in x;

this way we avoid Newton iteration

Newmark Methods

• A general class of methods

• Includes Trapezoidal Rule for example
(#=1/4, $=1/2)

• The other major member of the family is
Central Differencing (#=0, $=1/2)

• This is mixed Implicit/Explicit

!

x
n+1 = x

n
+ "tv

n
+ 1

2
"t 2 1# 2$()an + 2$a

n+1[]
v
n+1 = v

n
+ "t 1# %()an + %a

n+1[]

Central Differencing

• Rewrite it with intermediate velocity:

• Looks like a hybrid of:

• Midpoint (for position), and

• Trapezoidal Rule (for velocity - split into
Forward and Backward Euler half steps)

!

v
n+ 12

= v
n

+ 1

2
"ta x

n
,v

n()
x
n+1 = x

n
+ "tv

n+ 12

v
n+1 = v

n+ 12
+ 1

2
"ta x

n+1,vn+1()

Central: Performance

• Constant acceleration: great
• 2nd order accurate

• Position dependence: good
• Conditionally stable, no damping

• Velocity dependence: good
• Stable, but only conditionally monotone

• Can we change the Trapezoidal Rule to
Backward Euler and get unconditional
monotonicity?

Staggered Implicit/Explicit

• Like the staggered Symplectic Euler, but use
B.E. in velocity instead of F.E.:

• Constant acceleration: great

• Position dependence: good (conditionally
stable, no damping)

• Velocity dependence: good (unconditionally
monotone, but 1st order)

!

v
n+ 12

= v
n" 12

+ 1

2
(t
n+1 " tn"1)a xn,vn+ 12()

x
n+1 = x

n
+ #tv

n+ 12

Time Integration Summary

• Depends a lot on the problem
• What’s important: gravity, position, velocity?

• Explicit methods from last class are bad

• Symplectic Euler is a great fully explicit
method (particularly with staggering)
• Switch to implicit velocity step for more stability

• Implicit Compromise method
• Fully stable, nice behaviour

• Central Differencing and Trapezoidal Rule
• More accurate velocity, but may have monotonicity

issues for strong damping…

Example Forces

• Gravity: Fgravity=mg (a=g)

• If you want to do orbits

• Note x0 could be a fixed point (e.g. the Sun)
or another particle
• But make sure to add the opposite and equal force

to the other particle if so!
!

Fgravity = "GmM
0

x " x
0

x " x
0

3

Spring Forces

• Springs: Fspring=-K(x-x0)

• x0 is the attachment point of the spring

• Could be a fixed point in the scene

• …or somewhere on a character’s body

• …or the mouse cursor

• …or another particle (but please add equal
and oppposite force!)

Spring Damping

• Simple damping: Fdamp=-D(v-v0)

• But this damps rotation too!

• Better spring damping:

 Fdamp=-D(v-v0)•u u

• Here u is (x-x0)/|x-x0|, the spring direction

• [work out 1d case]

• Critical damping

!

D = 2 mK

Nonzero Rest Length Spring

• Need to measure the “strain”:

the fraction the spring has stretched

from its rest length L

!

Fspring = "K
x " x

0

L
"1

$
%

&

'
(
x " x

0

x " x
0

Drag Forces

• Air drag: Fdrag=-Dv
• If there’s a wind blowing with velocity vw then

Fdrag=-D(v-vw)

• D should be proportional to cross-section
exposed to wind
• Think sheets of paper, leaves…

• Depends in a difficult way on shape too

• How do you come up with a good wind
velocity?

Wind

• Later in the course: actually directly

simulate the wind

• For now: fake it

• Random “turbulence”

• Superposition of basic flow elements

• Constant wind, vortices, …

• Key ingredient is incompressibility

Incompressibility

• Air is basically incompressible

• Acoustic waves are so small as to be
ignored usually

• Large shock waves only around supersonic
objects

• The volume of air going into a region of

space equals the volume leaving it

• [derive divergence condition]

