Course Details

http://www.cs.ubc.ca/~rbridson/
courses/533b-winter-2004

Animation Physics
Course schedule

CPSC 533B * Assignments
* Resources (papers to read!)
 Final Project information
Instructor Evaluation
 Robert Bridson * 6 assignments (85%)
. . AOE- » #1is a warm-up (10%) - given out today
CICSR 189: usually 9:30 i'?.SO . #9-#6 are each 15%

* Drop by, or make an appointment « Mostly programming, with a little analysis (writing)

* 822-1993 (or just 21993) » Also a final project (15%)

* email rbridson@cs.ubc.ca » Extend one of assignments #2-#6

e Or: do what you want, but talk to me about it

* Present in final class - informal talk, show movies
» Late: without a good reason, 20% off per day

 For final project starts after final class

» For assignments starts morning after due



Why?

Animating natural phenomena:
passive (secondary) motion

Film/TV: passive motion difficult with
traditional techniques

¢ When you control every detail of the motion, it’s
hard to make it look like it’s not being controlled!

Games: difficult to handle everything
convincingly with prescripted motion

Instead: directly simulate the underlying
physics to get realistic motion

Particle Systems

Read:

Reeves, “Particle Systems...”, SIGGRAPH’83

Some phenomena is most naturally
described as many small particles

* Rain, snow, dust, sparks, gravel, ...
Others are difficult to get a handle on
* Fire, water, grass, ...

Topics

Particle Systems

» most common simulated special effect
Rigid Bodies

Deformable Bodies

* e.g. cloth and flesh

Fluids

* smoke and water

Particle Basics

Each particle has a position

» Maybe orientation, age, colour, velocity,
temperature, radius, ...

 Call the state x

Seeded randomly somewhere at start

* Maybe some created each frame

Move (evolve state x) each frame according
to some formula

Eventually die when some condition met



Example Rendering

Sparks from a campfire * We won'’t talk much about rendering in
Every frame (1/24 s) add 2-3 particles this course, but most important for

« Position randomly in fire particles

* Initialize temperature randomly « The real strength of the idea of particle
Move in specified turbulent smoke flow systems: how to render

¢ Also decrease temperature

Render as a glowing dot (blackbody radiation
from temperature)

Kill when too cold to glow visibly

» Could just be coloured dots

* Or could be shards of glass, or animated
sprites (e.qg. fire), or deforming blobs of
water, or blades of grass, or birds in flight,

or...
Motion (1st order) Forward Euler
For each particle, have a simple 15t e Simplest method:
order differential equation: X, =X + Atv(xn’tn)
ax v(x,1)
d « Can show it’s first order accurate:
» Error accumulated by a fixed time is O(At)

in time from x(t=0) to
X(frame1), x(frame2), x(frame3), ...

e Do we care?



Aside on Error Forward Euler Stability

General idea - want error to be small  Big problem with Forward Euler:
+ Obvious approach: make At small it’s not very stable

¢ But then need more time steps - expensive o Example: dx/dt — X(O) ~1

Also note - O(1) error made in modeling Real soluti —t thiv d t
[ ]
» Even if numerical error was 0, still wrong! eal solution e - smoothly decays 10

¢ In science, need to validate against experiments Z€ro, always positive
« In graphics, the experiment is showing it to an * Run Forward Euler with At=11

audience.:dloes it look real'.;1 | « x=1, -10, 100, -1000, 10000, ...
So numerical error can be huge, as long as e Instead of 1, 1.7*105, 2.8*10-10, ...

your solution has the right qualitative look

Linear Analysis The Test Equation
Approximate &V o e Geta ro_u_gh, hazy, heuristic picture of
v(x,1) zv(x*,t*) + - (x—x)+ - (t—1") the stability of a method
X

* Note that eigenvalue A can be complex

» But, assume that for real physics
* Things don’t blow up without bound

Ignore all but the middle term (the one that
could cause blow-up)

dx/dt = Ax » Thus real part of eigenvalue A is <0
Look at x parallel to eigenvector of A: * Be\tN?)r'?'t- nonlinear effects can cause
the “test equation” dx/dt = Ax Instability



More Linear Analysis Stability Region

» Forward Euler on test equation is e Can plot all the values of AAt on the
X, =X, +AtAx, complex plane where F.E. is stable:

» Solving gives
x, = (1+ AAr)" x,

» So for stability, need

1+ A <1

Real Eigenvalue Imaginary Eigenvalue

» Say eigenvalue is real (and negative)

» Corresponds to a damping motion, smoothly
coming to a halt

If eigenvalue is pure imaginary...
 Oscillatory or rotational motion

 Then need: As 2 » Cannot make At small enough
< JES—
A  Forward Euler unconditionally unstable
i |
. Is this bad? for these kinds of problems!

Need to look at other methods

* If eigenvalue is big, could mean small time steps

¢ But, maybe we really need to capture that
timescale anyways, so no big deal



Runge-Kutta Methods Midpoint RK2

» Also “explicit”  Second order: error is O(At?) when smooth
* next x is an explicit function of previous * Larger stability region:

» But evaluate v at a few locations to get
a better estimate of next x

» E.g. midpoint method (one of RK2)

1
Xppy =X, + 1Amv(x,.1,)

X, =X, + Atv(xn%,tn%) « But still not stable on imaginary axis: no point
Modified Euler Modified Euler (2)
* (Not an official name)  Stability region for a=2/3

» Lose second-order accuracy, get stability on
imaginary axis:

X,,q =X, +aAtv(x,,1,)

n
n+a’tn+a)

X, =X, + Atv(x

» Parameter a between 0.5 and 1 gives trade- » Great! But twice the cost of Forward Euler
off between imaginary axis and real axis » Can you get more stability per v-evaluation?



Higher Order Runge-Kutta TVD-RK3

* RK3 useful because it can be written as
a combination of Forward Euler steps
and averaging: can guarantee stuff!

')En+1 = xn + Atv(xn’tn)

* RK3 and up naturally include part of the
imaginary axis

p Rl(fly-w,ﬂ,’;;ﬁ/*z« ,‘
1 "//’/RKs '%n+2 = jzn+l + Atv(inﬂ’tnﬂ)
jzn+% = %xn + %'xn+2
N xn+% = xn+% + Atv(xn+%’tn+%)
Xy = %xn + %X.rw%
RK4 Time Step Control
» Often most bang for the buck » Hack: try until it looks like it works
(x01,)  Stability based:
Vi =t  Figure out a bound on eigenvalues of
v, = v(xn + %Atvl,tn%) Jacobian
y, = V(Xn + %Afvz,f,,%) « Scale back by a fudge factor (e.g. 0.9, 0.5)
vy =v(x, +Atvt, ) » Adaptive error based:
 Usually not worth the trouble in graphics



Implicit Methods

» Often don’t want to be restricted by
stability (“stiffness”)

 Implicit methods can be unconditionally

stable

» Key ingredient:
* Next x is an implicit function of previous
* Need to solve a system of equations

Aside: Solving Systems

e Ifvislinear in x, just a system of linear
equations
* If very small, use determinant formula
 If small, use LAPACK
* If large, life gets more interesting...
o If v is mildly nonlinear, can approximate with
linear equations (“semi-implicit”)
xn+l = 'xn + Atv('xrwl)

~ X, + At(v(xn) + M) (X, — X, ))
ox

Backward Euler

The simplest implicit method:

'xn+1 = xn + AZ.V('X"n+l’tn+l)
First order accurate
Test equation shows stable when [1- AA|>1

This includes everything except a circle in the
positive real-part half-plane

It’s stable even when the physics is unstable!

This is the biggest problem: damps out
motion unrealistically

Newton’s Method

For more strongly nonlinear v, need to iterate:
« Start with guess x,, for x,,,4 (for example)

* Linearize around current guess, solve linear
system for next guess

* Repeat, until close enough to solved
Note: Newton’s method is great when it
works, but it might not work

« [f it doesn’t, need to reduce time step size to make
equations easier to solve, and try again



Newton’s Method: B.E.

Start with x°=x, (guess for x,,, 1)
For k=1, 2, ... find xk+'=xk+Ax by solving

k
A =x, + At(v(x") + »x)
ox

(xk+l _ xk)

k
= (I— AI%X))AX =x, + Atv(x*) - x*
X

Stop when right-hand side is small enough,
set X, 1=XX

Monotonicity

Test equation with real, negative A

* True solution is x(t)=x,eM, which smoothly decays
to zero, doesn’t change sign (monotone)

Forward Euler at stability limit:

* X=Xy, “Xg, Xg, “Xgy -

Not smooth, oscillating sign: garbage!

So monotonicity limit stricter than stability
RK3 has the same problem

» But the even order RK are fine for linear problems

¢ TVD-RKS designed so that it’s fine when F.E. is,
even for nonlinear problems!

Trapezoidal Rule

Can improve by going to second order:

xn+1 = 'xn + At(%v('xn’tn) + %v(xn+1’tn+l))

This is actually just a half step of F.E.,
followed by a half step of B.E.

e F.E. is under-stable, B.E. is over-stable, the
combination is just right

Stability region is the left half of the plane:
exactly the same as the physics!

Really good for pure rotation
(doesn’t amplify or damp)

Monotonicity and
Implicit Methods

Backward Euler is unconditionally
monotone

* No problems with oscillation, just too much
damping

» Trapezoidal Rule suffers though,

because of that half-step of F.E.

» Beware: could get ugly oscillation instead
of smooth damping



Summary 1

Particle Systems: useful for lots of stuff
Need to move particles in velocity field

Forward Euler

» Simple, first choice unless problem has
oscillation/rotation

Runge-Kutta if happy to obey stability limit

« If time step fixed elsewhere, modified Euler may
be cheapest method

* RK4 general purpose workhorse

¢ TVD-RKS for more robustness with nonlinearity
(more on this later in the course!)

Summary 2

* If stability limit is a problem, look at
implicit methods

* e.g. need to guarantee a frame-rate, or
explicit time steps are way too small

* Trapezoidal Rule
* If monotonicity isn’t a problem
» Backward Euler
» Almost always works, but may over-damp!



