Animation Physics
CPSC 533B

Course Details
- Course schedule
- Assignments
- Resources (papers to read!)
- Final Project information

Instructor
- Robert Bridson
 - CICSR 189: usually 9:30-5:30
 - Drop by, or make an appointment
 - 822-1993 (or just 21993)
 - email rbridson@cs.ubc.ca

Evaluation
- 6 assignments (85%)
 - #1 is a warm-up (10%) - given out today
 - #2-#6 are each 15%
 - Mostly programming, with a little analysis (writing)
- Also a final project (15%)
 - Extend one of assignments #2-#6
 - Or: do what you want, but talk to me about it
 - Present in final class - informal talk, show movies
- Late: without a good reason, 20% off per day
 - For final project starts after final class
 - For assignments starts morning after due
Why?

- Animating natural phenomena: passive (secondary) motion
- Film/TV: passive motion difficult with traditional techniques
 - When you control every detail of the motion, it's hard to make it look like it's not being controlled!
- Games: difficult to handle everything convincingly with prescribed motion
- Instead: directly simulate the underlying physics to get realistic motion

Topics

- Particle Systems
 - most common simulated special effect
- Rigid Bodies
- Deformable Bodies
 - e.g. cloth and flesh
- Fluids
 - smoke and water

Particle Systems

- Read:
 Reeves, “Particle Systems…”, SIGGRAPH’83
- Some phenomena is most naturally described as many small particles
 - Rain, snow, dust, sparks, gravel, …
- Others are difficult to get a handle on
 - Fire, water, grass, …

Particle Basics

- Each particle has a position
 - Maybe orientation, age, colour, velocity, temperature, radius, …
 - Call the state x
- Seeded randomly somewhere at start
 - Maybe some created each frame
- Move (evolve state x) each frame according to some formula
- Eventually die when some condition met
Example

• Sparks from a campfire
• Every frame (1/24 s) add 2-3 particles
 • Position randomly in fire
 • Initialize temperature randomly
• Move in specified turbulent smoke flow
 • Also decrease temperature
• Render as a glowing dot (blackbody radiation from temperature)
• Kill when too cold to glow visibly

Rendering

• We won’t talk much about rendering in this course, but most important for particles
• The real strength of the idea of particle systems: how to render
 • Could just be coloured dots
 • Or could be shards of glass, or animated sprites (e.g. fire), or deforming blobs of water, or blades of grass, or birds in flight, or …

Motion (1st order)

• For each particle, have a simple 1st order differential equation:
 \[
 \frac{dx}{dt} = v(x, t)
 \]
• Need to solve this numerically forward in time from \(x(t=0)\) to \(x(\text{frame1}), x(\text{frame2}), x(\text{frame3}), \ldots\)

Forward Euler

• Simplest method:
 \[
 x_{n+1} = x_n + \Delta t v(x_n, t_n)
 \]
• Can show it’s first order accurate:
 • Error accumulated by a fixed time is \(O(\Delta t)\)
 • Thus it converges to the right answer
 • Do we care?
Aside on Error

- General idea - want error to be small
 - Obvious approach: make Δt small
 - But then need more time steps - expensive
- Also note - $O(1)$ error made in modeling
 - Even if numerical error was 0, still wrong!
 - In science, need to validate against experiments
 - In graphics, the experiment is showing it to an audience: does it look real?
- So numerical error can be huge, as long as your solution has the right qualitative look

Forward Euler Stability

- Big problem with Forward Euler: it’s not very stable
- Example: $dx/dt = -x$, $x(0) = 1$
- Real solution e^{-t} smoothly decays to zero, always positive
- Run Forward Euler with $\Delta t=11$
 - $x=1, -10, 100, -1000, 10000, …$
 - Instead of 1, $1.7*10^{-5}, 2.8*10^{-10}, …$

Linear Analysis

- Approximate
 $$v(x,t) \approx v(x^*,t^*) + \frac{\partial v}{\partial x} \cdot (x - x^*) + \frac{\partial v}{\partial t} \cdot (t - t^*)$$
- Ignore all but the middle term (the one that could cause blow-up)
 $$dx/dt = Ax$$
- Look at x parallel to eigenvector of A: the “test equation” $dx/dt = \lambda x$

The Test Equation

- Get a rough, hazy, heuristic picture of the stability of a method
- Note that eigenvalue λ can be complex
- But, assume that for real physics
 - Things don’t blow up without bound
 - Thus real part of eigenvalue λ is ≤ 0
- Beware - nonlinear effects can cause instability
More Linear Analysis

• Forward Euler on test equation is
 \[x_{n+1} = x_n + \Delta t \lambda x_n \]
• Solving gives
 \[x_n = (1 + \lambda \Delta t)^n x_0 \]
• So for stability, need
 \[|1 + \lambda \Delta t| < 1 \]

Stability Region

• Can plot all the values of \(\lambda \Delta t \) on the complex plane where F.E. is stable:

Real Eigenvalue

• Say eigenvalue is real (and negative)
 • Corresponds to a damping motion, smoothly coming to a halt
• Then need:
 \[\Delta t < \frac{2}{|\lambda|} \]
• Is this bad?
 • If eigenvalue is big, could mean small time steps
 • But, maybe we really need to capture that timescale anyways, so no big deal

Imaginary Eigenvalue

• If eigenvalue is pure imaginary…
 • Oscillatory or rotational motion
• Cannot make \(\Delta t \) small enough
• Forward Euler unconditionally unstable for these kinds of problems!
• Need to look at other methods
Runge-Kutta Methods

• Also “explicit”
 • next \(x \) is an explicit function of previous
• But evaluate \(v \) at a few locations to get a better estimate of next \(x \)
• E.g. midpoint method (one of RK2)
 \[
 x_{n+\frac{1}{2}} = x_n + \frac{1}{2} \Delta t v(x_n, t_n)
 \]
 \[
 x_{n+1} = x_n + \Delta t v(x_{n+\frac{1}{2}}, t_{n+\frac{1}{2}})
 \]

Midpoint RK2

• Second order: error is \(O(\Delta t^2) \) when smooth
• Larger stability region:
 • But still not stable on imaginary axis: no point

Modified Euler

• (Not an official name)
• Lose second-order accuracy, get stability on imaginary axis:
 \[
 x_{n+\alpha} = x_n + \alpha \Delta t v(x_n, t_n)
 \]
 \[
 x_{n+1} = x_n + \Delta t v(x_{n+\alpha}, t_n+\alpha)
 \]
• Parameter \(\alpha \) between 0.5 and 1 gives trade-off between imaginary axis and real axis

Modified Euler (2)

• Stability region for \(\alpha=2/3 \)
 • Great! But twice the cost of Forward Euler
 • Can you get more stability per \(v \)-evaluation?
Higher Order Runge-Kutta

- RK3 and up naturally include part of the imaginary axis

TVD-RK3

- RK3 useful because it can be written as a combination of Forward Euler steps and averaging: can guarantee stuff!
 \[
 \tilde{x}_{n+1} = x_n + \Delta t v(x_n, t_n)
 \]
 \[
 \tilde{x}_{n+2} = \tilde{x}_{n+1} + \Delta t v(\tilde{x}_{n+1}, t_{n+1})
 \]
 \[
 \tilde{x}_{n+\frac{3}{2}} = \frac{3}{4} x_n + \frac{1}{4} \tilde{x}_{n+2}
 \]
 \[
 \tilde{x}_{n+\frac{3}{2}} = \tilde{x}_{n+\frac{3}{2}} + \Delta t v(\tilde{x}_{n+\frac{3}{2}}, t_{n+\frac{3}{2}})
 \]
 \[
 x_{n+1} = \frac{1}{3} x_n + \frac{2}{3} \tilde{x}_{n+\frac{3}{2}}
 \]

RK4

- Often most bang for the buck

\[
\begin{align*}
v_1 &= v(x_n, t_n) \\
v_2 &= v(x_n + \frac{1}{2} \Delta t v_1, t_{n+\frac{1}{2}}) \\
v_3 &= v(x_n + \frac{1}{2} \Delta t v_2, t_{n+\frac{1}{2}}) \\
v_4 &= v(x_n + \Delta t v_3, t_{n+1}) \\
x_{n+1} &= x_n + \Delta t \left(\frac{1}{6} v_1 + \frac{2}{6} v_2 + \frac{2}{6} v_3 + \frac{1}{6} v_4 \right)
\end{align*}
\]

Time Step Control

- Hack: try until it looks like it works
- Stability based:
 - Figure out a bound on eigenvalues of Jacobian
 - Scale back by a fudge factor (e.g. 0.9, 0.5)
- Adaptive error based:
 - Usually not worth the trouble in graphics
Implicit Methods

- Often don’t want to be restricted by stability (“stiffness”)
- Implicit methods can be unconditionally stable
- Key ingredient:
 - Next x is an implicit function of previous
 - Need to solve a system of equations

Backward Euler

- The simplest implicit method:
 \[x_{n+1} = x_n + \Delta t v(x_{n+1}, t_{n+1}) \]
- First order accurate
- Test equation shows stable when \(|1 - \lambda \Delta t| > 1\)
- This includes everything except a circle in the positive real-part half-plane
- It’s stable even when the physics is unstable!
- This is the biggest problem: damps out motion unrealistically

Aside: Solving Systems

- If v is linear in x, just a system of linear equations
 - If very small, use determinant formula
 - If small, use LAPACK
 - If large, life gets more interesting…
- If v is mildly nonlinear, can approximate with linear equations (“semi-implicit”)
 \[x_{n+1} = x_n + \Delta t v(x_{n+1}) \]
 \[\approx x_n + \Delta t \left(v(x_n) + \frac{\partial v(x_n)}{\partial x} (x_{n+1} - x_n) \right) \]

Newton’s Method

- For more strongly nonlinear v, need to iterate:
 - Start with guess \(x_n\) for \(x_{n+1}\) (for example)
 - Linearize around current guess, solve linear system for next guess
 - Repeat, until close enough to solved
- Note: Newton’s method is great when it works, but it might not work
 - If it doesn’t, need to reduce time step size to make equations easier to solve, and try again
Newton’s Method: B.E.

- Start with $x^0 = x_n$ (guess for x_{n+1})
- For $k = 1, 2, \ldots$ find $x^{k+1} = x^k + \Delta x$ by solving
 $$x^{k+1} = x_n + \Delta t \left(v(x^k) + \frac{\partial v(x^k)}{\partial x} (x^{k+1} - x^k) \right)$$
 $$\Rightarrow \left(I - \Delta t \frac{\partial v(x^k)}{\partial x} \right) \Delta x = x_n + \Delta t v(x^k) - x^k$$
- Stop when right-hand side is small enough, set $x_{n+1} = x^k$

Trapezoidal Rule

- Can improve by going to second order:
 $$x_{n+1} = x_n + \Delta t \left(\frac{1}{2} v(x_n, t_n) + \frac{1}{2} v(x_{n+1}, t_{n+1}) \right)$$
- This is actually just a half step of F.E., followed by a half step of B.E.
 - F.E. is under-stable, B.E. is over-stable, the combination is **just right**
 - Stability region is the left half of the plane: **exactly** the same as the physics!
 - Really good for pure rotation (doesn’t amplify or damp)

Monotonicity

- Test equation with real, negative λ
 - True solution is $x(t) = x_0 e^{\lambda t}$, which smoothly decays to zero, doesn’t change sign (**monotone**)
- Forward Euler at stability limit:
 - $x = x_0, -x_0, x_0, -x_0, \ldots$
 - Not smooth, oscillating sign: garbage!
- So monotonicity limit stricter than stability
- RK3 has the same problem
 - But the even order RK are fine for linear problems
 - TVD-RK3 designed so that it’s fine when F.E. is, even for nonlinear problems!

Monotonicity and Implicit Methods

- Backward Euler is unconditionally monotone
 - No problems with oscillation, just too much damping
- Trapezoidal Rule suffers though, because of that half-step of F.E.
 - Beware: could get ugly oscillation instead of smooth damping
Summary 1

- Particle Systems: useful for lots of stuff
- Need to move particles in velocity field
- Forward Euler
 - Simple, first choice unless problem has oscillation/rotation
- Runge-Kutta if happy to obey stability limit
 - If time step fixed elsewhere, modified Euler may be cheapest method
 - RK4 general purpose workhorse
 - TVD-RK3 for more robustness with nonlinearity (more on this later in the course!)

Summary 2

- If stability limit is a problem, look at implicit methods
 - e.g. need to guarantee a frame-rate, or explicit time steps are way too small
- Trapezoidal Rule
 - If monotonicity isn’t a problem
- Backward Euler
 - Almost always works, but may over-damp!