Notes

• ppmtompeg: making animations
• Please read D. Baraff, “Linear time dynamics…”, SIGGRAPH’96
• Also see Witkin and Baraff course notes on physics-based modeling
• Homework 1 - I will try to get it back today.

Constrained Dynamics

• We thought of rigid bodies as a multitude of particles, with constraints that interparticle distances remained constant
• How do we apply more general constraints to dynamics?
 • Bead on a wire
 • Articulated rigid bodies
 • Gears
 • Character interaction

Three major approaches

• “Soft” constraint forces
 • Like repulsions
• Add unknown constraint forces (lagrange multipliers)
 • Closely related: projection methods
• Solve in terms of reduced number of degrees of freedom (generalized coordinates)

Before constraints

• We have a (long) vector \(x \) of positions (maybe also orientations)
• We have a (long) vector \(v \) of velocities (maybe also angular velocities)
• A matrix \(M \) with masses down the diagonal (maybe also inertia tensors)
• A (long) vector \(F \) of forces (maybe also torques)

\[
\dot{v} = M^{-1}F \\
\dot{x} = v
\]
Equality constraints

- Generally, want motion to satisfy $C(x,v)=0$
 - C is a vector of constraints
- Want motion to be natural $F=ma$, except that constraints are also satisfied
 - We don’t want to have to model exactly why they are satisfied in reality…
- We will need to add forces to the simulation that cause it to satisfy (approximately) $C(x,v)=0$

Inequalities

- Not going to cover inequality constraints $C(x,v) \geq 0$
 - Gets into heavy-duty optimization: have to figure out which constraints are “active” etc.
 - Can be NP-hard
- These can be used for contact modeling, friction, joint limits, …
 - But we can approximate by
 - apply corrective impulse when inequality violated,
 - iterate to check on other constraints,
 - and other tricks to handle complex stuff

Soft Constraints

- First assume $C=C(x)$
 - No velocity dependence
- We won’t exactly satisfy constraint, but will add some force to not stray too far
 - Just like repulsion forces for contact/collision
- First try:
 - define a potential energy minimized when $C(x)=0$
 - $C(x)$ might already fit the bill, if not use $E = \frac{1}{2}KC^TC$
 - [example: nailed point]

Potential force

- We’ll use the gradient of the potential as a force:
 $$F = -\left(\frac{\partial E}{\partial x} \right)^T = -K \left(\frac{\partial C}{\partial x} \right)^T C$$
 - [example: nailed point]
- This is just a generalized spring pulling the system back to constraint
- But what do undamped springs do?
Rayleigh Damping

- Need to add damping force that doesn’t damp valid motion of the system
- Rayleigh damping:
 - Damping force proportional to the negative rate of change of $C(x)$
 - No damping valid motions that don’t change $C(x)$
 - Damping force parallel to elastic force
 - This is exactly what we want to damp

\[
F_d = -D \left(\frac{\partial C}{\partial x} \right)^T \dot{C} = -D \left(\frac{\partial C}{\partial x} \right)^T \frac{\partial C}{\partial x} v
\]

Issues

- Need to pick K and D
 - Don’t want oscillation - critical damping
 - If K and D are very large, could be expensive (especially if C is nonlinear)
 - If K and D are too small, constraint will be grossly violated
- Big issue: the more the applied forces try to violate constraint, the more it is violated…
 - Ideally want K and D to be a function of the applied forces

Pseudo-time Stepping

- Alternative: simulate all the applied force dynamics for a time step
- Then simulate soft constraints in pseudo-time
 - No other forces at work, just the constraints
 - “Real” time is not advanced
 - Keep going until at equilibrium
 - Non-conflicting constraints will be satisfied
 - Balance found between conflicting constraints
 - Doesn’t really matter how big K and D are (adjust the pseudo-time steps accordingly)

Issues

- Still can be slow
 - Particularly if there are lots of adjoining constraints
- Could be improved with implicit time steps
 - Get to equilibrium as fast as possible…
 - This will come up again…
Constraint forces

- Idea: constraints will be satisfied because $F_{\text{total}} = F_{\text{applied}} + F_{\text{constraint}}$
- Have to decide on form for $F_{\text{constraint}}$
- [example: $y=0$]
- We have too much freedom…
- Need to specify the problem better

Virtual work

- Assume for now $C=C(x)$
- Require that all the (real) work done in the system is by the applied forces
 - The constraint forces do no work
- Work is $F_c \cdot \Delta x$
 - So pick the constraint forces to be perpendicular to all valid velocities
 - The valid velocities are along isocontours of $C(x)$
 - Perpendicular to them is the gradient: $
\frac{\partial C}{\partial x}$
- So we take
 $$F_c = \left(\frac{\partial C}{\partial x} \right)^T \lambda$$

What is λ?

- Say $C(x)=0$ at start, want it to remain 0
- Take derivative:
 $$\dot{C}(x) = \frac{\partial C}{\partial x} \dot{x} + \frac{\partial C}{\partial v} \dot{v} = 0$$
- Take another to get to accelerations
 $$\dot{C}(x) = \frac{\partial \dot{C}}{\partial x} \dot{x} + \frac{\partial \dot{C}}{\partial v} \dot{v} = \frac{\partial C}{\partial x} \ddot{x} + \frac{\partial C}{\partial v} \ddot{v} = 0$$
- Plug in $F=ma$, set equal to 0
 $$\frac{\partial \dot{C}}{\partial x} \ddot{x} + \frac{\partial C}{\partial x} \left(M^{-1}(F_a + F_i) \right) = 0$$

Finding constraint forces

- Rearranging gives:
 $$\frac{\partial C}{\partial x} M^{-1} F_c = - \frac{\partial C}{\partial x} M^{-1} F_a - \frac{\partial \dot{C}}{\partial x} \dot{v}$$
- Plug in the form we chose for constraint force:
 $$\left(\frac{\partial C}{\partial x} M^{-1} \frac{\partial C}{\partial x} \right) \lambda = - \frac{\partial C}{\partial x} M^{-1} F_a - \frac{\partial \dot{C}}{\partial x} \dot{v}$$
- Note: SPD matrix!
Modified equations of motion

- So can write down (exact) differential equations of motion with constraint force
- Could run our standard solvers on it
- Problem: drift
 - We make numerical errors, both in the regular dynamics and the constraints!
- We’ll just add “stabilization”: additional soft constraint forces to keep us from going too far
 - Don’t worry about K and D in this context!
 - Don’t include them in formula for λ.

Generalizing constraints

- How do we handle $C(x,v)$?
- Principle of virtual work, isocontours of C, etc. gets a little difficult to interpret!
- Instead look for constraint forces that cause us to satisfy constraints AND are the “smallest” of all such possible forces
 - If we were to apply “larger” constraint forces, they must be doing something beyond satisfying the constraint - messing with the real dynamics
- The key question: how to define “smallest”

Energy norm

- The “right” norm to choose is the same as the one used to measure kinetic energy: $|v|_E^2 = \frac{1}{2} v^T M v$
- So look for constraint forces that minimize energy-norm of acceleration:
 $$\min \frac{1}{2} a^T M a = \min \frac{1}{2} F_c^T M^{-1} F_c$$

The constraint

- Take time derivative of $C(x,v)=0$ once to get accelerations \rightarrow forces
 $$\frac{\partial C}{\partial x} \dot{x} + \frac{\partial C}{\partial v} \dot{v} = 0$$
 $$\frac{\partial C}{\partial x} v + \frac{\partial C}{\partial v} M^{-1} F = 0$$
- Rearranging, splitting F into appl/constr:
 $$\frac{\partial C}{\partial v} M^{-1} F_c = -\frac{\partial C}{\partial v} M^{-1} F_a - \frac{\partial C}{\partial x} v$$
J notation

• Both from $C(x)=0$ and two time derivatives, and $C(x,v)=0$ and one time derivative, get constraint force equation:

$$JM^{-1}F_c = -JM^{-1}F_d - c$$

(J is for Jacobian)
• Before we used $F_c = J^T \lambda$.
• This gives SPD system for λ: $JM^{-1}J^T \lambda = b$
• General family of solutions is $F_c = J^T \lambda + Ms$ where $Js = 0$

Discrete projection method

• It’s a little ugly to have to add even more stuff for dealing with drift - and still isn’t exactly on constraint
• Instead go to discrete view (treat numerical errors as applied forces too)
• After a time step (or a few), calculate constraint impulse to get us back
 • Similar to what we did with collision and contact
• Can still have soft or regular constraint forces for better accuracy…

Which solution?

• So take the energy-norm of the general solution:

$$\frac{1}{2} F_c^T M^{-1} F_c = \frac{1}{2} (J^T \lambda + Ms)^T M^{-1} (J^T \lambda + Ms)$$

$$= \frac{1}{2} \lambda^T JM^{-1}J^T \lambda + \frac{1}{2} s^T MM^{-1}Ms + \lambda^T JM^{-1}Ms$$

$$= \frac{1}{2} \lambda^T JM^{-1}J^T \lambda + \frac{1}{2} s^T Ms + 0$$

• Clearly we should take $s = 0$, so indeed, $F_c = J^T \lambda$.

The algorithm

• Time integration takes us over Δt from (x_n, v_n) to (x_{n+1}, v_{n+1})
• We want to add an impulse

$$v_{n+1} = v_{n+1}^* + M^{-1}i$$
$$x_{n+1} = x_{n+1}^* + \Delta t M^{-1}i$$

such that new x and v satisfy constraint: $C(x_{n+1}, v_{n+1}) = 0$
• In general C is nonlinear: difficult to solve
 • But if we’re not too far from constraint, can linearize and still be accurate
The constraint impulse

\[0 = C(x_{n+1}, v_{n+1}) = C(x^*, v^*) + \frac{\partial C}{\partial x} \Delta x + \frac{\partial C}{\partial v} \Delta v \]

- Plug in changes in x and v:

\[\Delta t \frac{\partial C}{\partial x} M^{-1} i + \frac{\partial C}{\partial v} M^{-1} i = -C_n^* \]

\[\left(\Delta t \frac{\partial C}{\partial x} + \frac{\partial C}{\partial v} \right) M^{-1} i = -C_n^* \]

- As before, minimize energy norm of \(\Delta v \):

\[i = J^T \lambda \quad \text{where} \quad J = \Delta t \frac{\partial C}{\partial x} + \frac{\partial C}{\partial v} \]

Projection

- We’re solving \(JM^{-1} J^T \lambda = -C \)
 - Same matrix again - particularly in limit
 - In case where C is linear, we actually are projecting out part of motion that violates the constraint
 - Foreshadowing: incompressibility

Nonlinear C

- We can accept we won’t exactly get back to constraint
 - But notice we don’t drift too badly: every time step we do try to get back the entire way
- Or we can iterate, just like Newton
 - Keep applying corrective impulses until close enough to satisfying constraint
- This is very much like running soft constraint forces in pseudo-time with implicit steps, except now we know exactly the best parameters

Solving SPD systems

- Before in implicit methods, systems to solve were small
 - Particles didn’t interact, so just 3x3…
- Now: constraints may interact, may have a large system to solve
 - But it’s SPD
- If constraints have a special form, may be able to invert matrix very efficiently (cf Baraff)
- But in general, Conjugate Gradient method is the natural choice
Conjugate Gradient

• For solving $Ax=b$ with A an SPD matrix
 • Actually, A an SPD operator: CG doesn’t care if it’s a simple matrix or not, as long as you can calculate Ap for any vector p
 • This is useful when J is sparse, M^{-1} is sparse, but $JM^{-1}J^T$ isn’t nearly as sparse, or we don’t explicitly know J (just the sum over different constraints)

• Basic idea:
 • Start with initial guess
 • Measure residual
 • Add correction to minimize error, repeat

CG algorithm

• $r=b-Ax$
• $\rho=r^T r$, check if already solved
• $p=r$
• Loop:
 • $q=Ap$
 • $\alpha=\rho/(p^T q)$
 • $x+=\alpha p$, $r-=\alpha q$
 • $\rho_{new}=r^T r$, check for convergence
 • $\beta=\rho_{new}/\rho$
 • $p=r+\beta p$
 • $\rho=\rho_{new}$

Next class

• The classical approach to (some) constraints:
 • Parameterize the constrained system so you can’t even describe invalid states
 • Drift is impossible