Notes

ppmtompeg: making animations
Please read D. Baraff, “Linear time
dynamics...”, SIGGRAPH’96

Also see Witkin and Baraff course notes
on physics-based modeling

Homework 1 - | will try to get it back
today.

Three major approaches

“Soft” constraint forces

* Like repulsions

Add unknown constraint forces
(lagrange multipliers)

* Closely related: projection methods
Solve in terms of reduced number of

degrees of freedom
(generalized coordinates)

Constrained Dynamics

We thought of rigid bodies as a multitude of
particles, with constraints that interparticle
distances remained constant

How do we apply more general constraints to
dynamics?

» Bead on a wire

* Articulated rigid bodies

* Gears

» Character interaction

Before constraints

We have a (long) vector x of positions (maybe
also orientations)

We have a (long) vector v of velocities
(maybe also angular velocities)

A matrix M with masses down the diagonal
(maybe also inertia tensors)

A (long) vector F of forces (maybe also

torques)
v=M"'F

X=Vv

Equality constraints

Generally, want motion to satisfy C(x,v)=0
* C is a vector of constraints

Want motion to be natural F=ma, except that

constraints are also satisfied

* We don’t want to have to model exactly why they
are satisfied in reality...

We will need to add forces to the simulation

that cause it to satisfy (approximately)

C(x,v)=0

Soft Constraints

First assume C=C(x)

* No velocity dependence

We won'’t exactly satisfy constraint, but will

add some force to not stray too far

 Just like repulsion forces for contact/collision

First try:

« define a potential energy minimized when C(x)=0

« C(x) might already fit the bill, if not use E =1KC"C
[example: nailed point]

Inequalities

* Not going to cover inequality constraints
C(x,v)=0
» Gets into heavy-duty optimization: have to figure
out which constraints are “active” etc.
» Can be NP-hard
* These can be used for contact modeling,
friction, joint limits, ...
» But we can approximate by
« apply corrective impulse when inequality violated,

« iterate to check on other constraints,
« and other tricks to handle complex stuff

Potential force

We’ll use the gradient of the potential as

a force: T T
Fo _(%) _ _K(ﬁ) C
ox ox

[example: nailed point]

This is just a generalized spring pulling
the system back to constraint

But what do undamped springs do?

Rayleigh Damping Issues

» Need to add damping force that doesn’t * NeedtopickKandD |
damp valid motion of the system » Don't want oscillation - critical damping
)] If Kand D are very large, could be expensive
» Rayleigh damping: (especially if C is nonlinear)
« Damping force proportional to the negative » If Kand D are too small, constraint will be grossly

violated

» Big issue: the more the applied forces try to
violate constraint, the more it is violated...

rate of change of C(x)
* No damping valid motions that don’t change C(x)

 Damping force parallel to elastic force « Ideally want K and D to be a function of the
* This is exactly what we want to damp applied forces
T T
F, = —D(E) C= —D(ﬁ) a©,
ox ox) ox
Pseudo-time Stepping Issues
* Alternative: simulate all the applied force « Still can be slow

dynamics for a time step

* Then simulate soft constraints in pseudo-time
* No other forces at work, just the constraints
¢ “Real” time is not advanced hd COUId be |mproved W|th |mpI|C|t t|me
« Keep going until at equilibrium steps
» Non-conflicting constraints will be satisfied
¢ Balance found between conflicting constraints

» Doesn't really matter how big K and D are (adjust * This will come up again---
the pseudo-time steps accordingly)

* Particularly if there are lots of adjoining
constraints

» Get to equilibrium as fast as possible...

Constraint forces

Idea: constraints will be satisfied
because I:total=Fapplied"'Fconstraint

Have to decide on form for F_, qiaint
[example: y=0]

We have too much freedom...
Need to specify the problem better

What is A?

Say C(x)=0 at start, want it to remain 0
Take derivative: ¢ -2, _
a

Take another to get to accelerations

C() &C Ev—£v+£v 0
av ox ox

Plug in F=ma, set equal to O

s £(M"(Fa +F,))=0
ox ox

Virtual work

Assume for now C=C(x)

Require that all the (real) work done in the
system is by the applied forces

» The constraint forces do no work

Work is F *Ax

» So pick the constraint forces to be perpendicular
to all valid velocities

» The valid velocities are along isocontours of C(x)
« Perpendicular to them is the gradient: ¢C"
So we take ! o
o) 2
ox

Finding constraint forces

* Rearranging gives:

&C 1F =_£M1Fa_£
&x 0x ox
* Plug in the form we chose for constraint force:
£ -1 &C A= —£M F, - ﬁv
ox dx 0x 0x

¢ Note: SPD matrix!

Modified equations of motion

So can write down (exact) differential
equations of motion with constraint force

Could run our standard solvers on it

Problem: drift

* We make numerical errors, both in the regular
dynamics and the constraints!

We'll just add “stabilization”: additional soft
constraint forces to keep us from going too far
* Don’t worry about K and D in this context!

* Don’t include them in formula for A

Energy norm

The “right” norm to choose is the same
as the one used to measure kinetic
energy: MZ =Ly My

So look for constraint forces that
minimize energy-norm of acceleration:

. T . T -1
minia Ma=minsF, M 'F,

Generalizing constraints

* How do we handle C(x,v)?

* Principle of virtual work, isocontours of C, etc.
gets a little difficult to interpret!

* Instead look for constraint forces that cause
us to satisfy constraints AND are the
“smallest” of all such possible forces

* If we were to apply “larger” constraint forces, they
must be doing something beyond satisfying the
constraint - messing with the real dynamics

* The key question: how to define “smallest”

The constraint

» Take time derivative of C(x,v)=0 once to get
accelerations — forces
aCc . JC .
—x+—v=0
ox ov
X v CmF =0
ox ov

* Rearranging, splitting F into appl/constr:
© M'F, = _C M'F, -—v
ov ov 0xX

J notation

Both from C(x)=0 and two time derivatives,
and C(x,v)=0 and one time derivative, get
constraint force equation:

JM™'F, =-JM"'F, -c

(J is for Jacobian)

Before we used F =JTA

This gives SPD system for A: JM-'JTA\=b
General family of solutions is F =JTA+Ms
where Js=0

Discrete projection method

It’s a little ugly to have to add even more stuff
for dealing with drift - and still isn’t exactly on
constraint

Instead go to discrete view

(treat numerical errors as applied forces to0)
After a time step (or a few), calculate
constraint impulse to get us back

» Similar to what we did with collision and contact

Can still have soft or regular constraint forces
for better accuracy...

Which solution?

* So take the energy-norm of the general

solution:
LFIM7F, = 4(J A+ Ms) M7 (JT A+ Ms)
NIM T A+Ls" MM~ Ms+ X' JM ™' Ms
NIM'J A+1s"Ms+0

L
2
L
2
L
2

» Clearly we should take s=0, so indeed,
F.=JTA

The algorithm

» Time integration takes us over At from (x,, v,
to (Xn+1*’ Vit X)

 We want to add an impulse
V1= Vn+1* + M
Xpe1= Xnpq " + At M-
such that new x and v satisfy constraint:
C(Xn+1’ Vn41)=0

* In general C is nonlinear: difficult to solve

« But if we're not too far from constraint, can
linearize and still be accurate

The constraint impulse Projection

sk

*

aC

. s oC ; -)
0= Cly0¥0t) = C(Xvin)+ o) Axs =2 Av . We're solving JMJTA=-C
: : * nl « Same matrix again - particularly in limit
* Plug in changes in x and v: o
JC JC * In case where C is linear, we actually
A—M"i+—M"i=-C : A~ :
Py Py ns are projecting out part of motion that
‘ viol h nstrain
(At£+£)M‘li=—C:+l olates t ecp sjta t o
ox » Foreshadowing: incompressibility
» As before, minimize energy norm of Av:
; r J=At oC + oC
i=J A where o a
Nonlinear C Solving SPD systems
» We can accept we won’t exactly get back to » Before in implicit methods, systems to solve
constraint were small
 But notice we don't drift too padly: every time step Particles didn’t interact, so just 3x3...
we do try to get back the entire way « Now: constraints may interact, may have a
* Or we can iterate, just like Newton large system to solve
« Keep applying corrective impulses until close « Butit’s SPD

enough to satisfying constraint « If constraints have a special form, may be

* This is very much like running soft constraint able to invert matrix very efficiently (cf Baraff)

forces in pseudo-time with implicit steps, . , . . :
except now we know exactly the best E\Lg rlgﬁjarglce(r:iléi(ggnjugate Gradient method is

parameters

Conjugate Gradient CG algorithm

r=b-Ax
p=rTr, check if already solved

» For solving Ax=b with A an SPD matrix

e Actually, A an SPD operator: CG doesn’t care if
it’s a simple matrix or not, as long as you can

[p:r

calculate Ap for any vector p
« This is useful when J is sparse, M is sparse, but * Loop:

JM-'JT isn’t nearly as sparse, * g=Ap

or we don’t explicitly know J (just the sum over * a= p/(pTq)

different constraints) Y= _

o * X+=0p, r-=aq
* Basic idea: * Prew='Tr, check for convergence
« Start with initial guess * B= Prew /P
* Measure residual o p=r+ pp
¢ Add correction to minimize error, repeat e o=
P=Pnew
Next class

e The classical approach to (some)
constraints:

» Parameterize the constrained system so
you can’t even describe invalid states

* Drift is impossible

