
Notes

• ppmtompeg: making animations

• Please read D. Baraff, “Linear time

dynamics…”, SIGGRAPH’96

• Also see Witkin and Baraff course notes

on physics-based modeling

• Homework 1 - I will try to get it back

today.

Constrained Dynamics

• We thought of rigid bodies as a multitude of
particles, with constraints that interparticle
distances remained constant

• How do we apply more general constraints to
dynamics?

• Bead on a wire

• Articulated rigid bodies

• Gears

• Character interaction

Three major approaches

• “Soft” constraint forces
• Like repulsions

• Add unknown constraint forces
(lagrange multipliers)
• Closely related: projection methods

• Solve in terms of reduced number of
degrees of freedom
(generalized coordinates)

Before constraints

• We have a (long) vector x of positions (maybe
also orientations)

• We have a (long) vector v of velocities
(maybe also angular velocities)

• A matrix M with masses down the diagonal
(maybe also inertia tensors)

• A (long) vector F of forces (maybe also
torques)

!

˙ v = M
"1

F

˙ x = v

Equality constraints

• Generally, want motion to satisfy C(x,v)=0

• C is a vector of constraints

• Want motion to be natural F=ma, except that
constraints are also satisfied

• We don’t want to have to model exactly why they

are satisfied in reality…

• We will need to add forces to the simulation
that cause it to satisfy (approximately)
C(x,v)=0

Inequalities

• Not going to cover inequality constraints
C(x,v)!0
• Gets into heavy-duty optimization: have to figure

out which constraints are “active” etc.

• Can be NP-hard

• These can be used for contact modeling,
friction, joint limits, …
• But we can approximate by

• apply corrective impulse when inequality violated,

• iterate to check on other constraints,

• and other tricks to handle complex stuff

Soft Constraints

• First assume C=C(x)
• No velocity dependence

• We won’t exactly satisfy constraint, but will
add some force to not stray too far
• Just like repulsion forces for contact/collision

• First try:
• define a potential energy minimized when C(x)=0

• C(x) might already fit the bill, if not use

• [example: nailed point]

!

E = 1

2
KC

T
C

Potential force

• We’ll use the gradient of the potential as

a force:

• [example: nailed point]

• This is just a generalized spring pulling

the system back to constraint

• But what do undamped springs do?

!

F = "
#E

#x

$

%
&

'

(
)

T

= "K
#C

#x

$

%
&

'

(
)

T

C

Rayleigh Damping

• Need to add damping force that doesn’t

damp valid motion of the system

• Rayleigh damping:

• Damping force proportional to the negative
rate of change of C(x)

• No damping valid motions that don’t change C(x)

• Damping force parallel to elastic force

• This is exactly what we want to damp

!

F
d

= "D
#C

#x

$

%
&

'

(
)

T

˙ C = "D
#C

#x

$

%
&

'

(
)

T

#C

#x
v

Issues

• Need to pick K and D
• Don’t want oscillation - critical damping

• If K and D are very large, could be expensive
(especially if C is nonlinear)

• If K and D are too small, constraint will be grossly
violated

• Big issue: the more the applied forces try to
violate constraint, the more it is violated…
• Ideally want K and D to be a function of the

applied forces

Pseudo-time Stepping

• Alternative: simulate all the applied force
dynamics for a time step

• Then simulate soft constraints in pseudo-time
• No other forces at work, just the constraints

• “Real” time is not advanced

• Keep going until at equilibrium

• Non-conflicting constraints will be satisfied

• Balance found between conflicting constraints

• Doesn’t really matter how big K and D are (adjust
the pseudo-time steps accordingly)

Issues

• Still can be slow

• Particularly if there are lots of adjoining
constraints

• Could be improved with implicit time

steps

• Get to equilibrium as fast as possible…

• This will come up again…

Constraint forces

• Idea: constraints will be satisfied

because Ftotal=Fapplied+Fconstraint

• Have to decide on form for Fconstraint

• [example: y=0]

• We have too much freedom…

• Need to specify the problem better

Virtual work

• Assume for now C=C(x)

• Require that all the (real) work done in the
system is by the applied forces
• The constraint forces do no work

• Work is Fc•"x
• So pick the constraint forces to be perpendicular

to all valid velocities

• The valid velocities are along isocontours of C(x)

• Perpendicular to them is the gradient:

• So we take

!

"C

"x

T

!

F
c

=
"C

"x

$
%

&

'
(

T

)

What is !?

• Say C(x)=0 at start, want it to remain 0

• Take derivative:

• Take another to get to accelerations

• Plug in F=ma, set equal to 0

!

˙ C (x) =
"C

"x
˙ x =

"C

"x
v = 0

!

˙ ̇ C (x) =
" ˙ C

"x
˙ x +

" ˙ C

"v
˙ v =

" ˙ C

"x
v +

"C

"x
˙ v = 0

!

" ˙ C

"x
v +

"C

"x
M

#1
F

a
+ F

c()() = 0

Finding constraint forces

• Rearranging gives:

• Plug in the form we chose for constraint force:

• Note: SPD matrix!

!

"C

"x
M

#1
F

c
= #

"C

"x
M

#1
F

a
#
" ˙ C

"x
v

!

"C

"x
M

#1 "C

"x

T$

%
&

'

(
) * = #

"C

"x
M

#1
F

a
#
" ˙ C

"x
v

Modified equations of motion

• So can write down (exact) differential
equations of motion with constraint force

• Could run our standard solvers on it

• Problem: drift
• We make numerical errors, both in the regular

dynamics and the constraints!

• We’ll just add “stabilization”: additional soft
constraint forces to keep us from going too far
• Don’t worry about K and D in this context!

• Don’t include them in formula for !

Generalizing constraints

• How do we handle C(x,v)?

• Principle of virtual work, isocontours of C, etc.
gets a little difficult to interpret!

• Instead look for constraint forces that cause
us to satisfy constraints AND are the
“smallest” of all such possible forces
• If we were to apply “larger” constraint forces, they

must be doing something beyond satisfying the
constraint - messing with the real dynamics

• The key question: how to define “smallest”

Energy norm

• The “right” norm to choose is the same

as the one used to measure kinetic

energy:

• So look for constraint forces that

minimize energy-norm of acceleration:

!

v
E

2

= 1

2
v
T
Mv

!

min
1

2
a
T
Ma =min 1

2
F
c

T
M

"1
F
c

The constraint

• Take time derivative of C(x,v)=0 once to get
accelerations " forces

• Rearranging, splitting F into appl/constr:

!

"C

"x
˙ x +

"C

"v
˙ v = 0

"C

"x
v +

"C

"v
M

#1
F = 0

!

"C

"v
M

#1
F
c

= #
"C

"v
M

#1
F
a
#
"C

"x
v

J notation

• Both from C(x)=0 and two time derivatives,
and C(x,v)=0 and one time derivative, get
constraint force equation:

(J is for Jacobian)

• Before we used Fc=JT!

• This gives SPD system for !: JM-1JT !=b

• General family of solutions is Fc=JT!+Ms
where Js=0

!

JM
"1
F
c

= "JM
"1
F
a
" c

Which solution?

• So take the energy-norm of the general

solution:

• Clearly we should take s=0, so indeed,
Fc=JT!

!

1

2
F
c

T
M

"1
F
c

= 1

2
J
T# + Ms()

T

M
"1
J
T# + Ms()

= 1

2
#T JM"1

J
T# + 1

2
s
T
MM

"1
Ms+ #T JM"1

Ms

= 1

2
#T JM"1

J
T# + 1

2
s
T
Ms+ 0

Discrete projection method

• It’s a little ugly to have to add even more stuff
for dealing with drift - and still isn’t exactly on
constraint

• Instead go to discrete view
(treat numerical errors as applied forces too)

• After a time step (or a few), calculate
constraint impulse to get us back
• Similar to what we did with collision and contact

• Can still have soft or regular constraint forces
for better accuracy…

The algorithm

• Time integration takes us over "t from (xn, vn)
to (xn+1

#, vn+1
#)

• We want to add an impulse
vn+1= vn+1

+ M-1i
xn+1= xn+1

+ "t M-1i
such that new x and v satisfy constraint:
C(xn+1, vn+1)=0

• In general C is nonlinear: difficult to solve
• But if we’re not too far from constraint, can

linearize and still be accurate

The constraint impulse

• Plug in changes in x and v:

• As before, minimize energy norm of "v:

 where

!

0 = C x
n+1,vn+1() " C x

n+1

#
,v

n+1

#() +
$C

$x
n+1

#

%x +
$C

$v
n+1

#

%v

!

"t
#C

#x
M

$1
i +

#C

#v
M

$1
i = $C

n+1

%

"t
#C

#x
+
#C

#v

&

'
(

)

*
+ M

$1
i = $C

n+1

%

!

i = J
T"

!

J = "t
#C

#x
+
#C

#v

Projection

• We’re solving JM-1JT!=-C

• Same matrix again - particularly in limit

• In case where C is linear, we actually

are projecting out part of motion that

violates the constraint

• Foreshadowing: incompressibility

Nonlinear C

• We can accept we won’t exactly get back to
constraint
• But notice we don’t drift too badly: every time step

we do try to get back the entire way

• Or we can iterate, just like Newton
• Keep applying corrective impulses until close

enough to satisfying constraint

• This is very much like running soft constraint
forces in pseudo-time with implicit steps,
except now we know exactly the best
parameters

Solving SPD systems

• Before in implicit methods, systems to solve
were small
• Particles didn’t interact, so just 3x3…

• Now: constraints may interact, may have a
large system to solve
• But it’s SPD

• If constraints have a special form, may be
able to invert matrix very efficiently (cf Baraff)

• But in general, Conjugate Gradient method is
the natural choice

Conjugate Gradient

• For solving Ax=b with A an SPD matrix
• Actually, A an SPD operator: CG doesn’t care if

it’s a simple matrix or not, as long as you can
calculate Ap for any vector p

• This is useful when J is sparse, M-1 is sparse, but
JM-1JT isn’t nearly as sparse,
or we don’t explicitly know J (just the sum over
different constraints)

• Basic idea:
• Start with initial guess

• Measure residual

• Add correction to minimize error, repeat

CG algorithm

• r=b-Ax

• $=rTr, check if already solved

• p=r

• Loop:
• q=Ap

• %= $/(pTq)

• x+= %p, r-= %q

• $new=rTr, check for convergence

• &= $new /$

• p=r+ &p

• $=$new

Next class

• The classical approach to (some)

constraints:

• Parameterize the constrained system so
you can’t even describe invalid states

• Drift is impossible

