Notes on Last Lecture

• Approximate interior normal may be quite wrong [corner example]
• Lots of potential ways to fix this if it happens
 • Fall back on collision detection (normal at collision point on surface should work)
 • If the object normal doesn’t work, use opposite of particle velocity instead (maybe too inelastic)
 • Use a repulsion impulse (and friction) to get out:
 \[\Delta v_N = \left(-\frac{v}{\mu}\right)n \] (dangerous: adds energy!)
• Unfortunately, to be robust enough, usually need to throw in a bunch of hacks…

Notes

• Round-off error is also a problem
• In algorithms described before, can get into infinite loops if not careful: \(v_N^{\text{before}} + \Delta v_N \neq v_N^{\text{after}} \)
 • If collision resolution doesn’t seem to ever converge—could just be round-off
 • Simple fix: stop after a fixed number of iterations, keep the old particle position
 • Not so easy with moving objects - really need to update position
 • So use very weak repulsions to push objects just slightly clear of objects

Moving triangles

• Life is a little more complicated
• Assume corners of the triangles move in linear trajectories too
 • Note this is NOT rigid in general…
• At time \(s \), corner is at \(x_j + sv_j \)
 • (assume \(s \) starts at 0 at start of time step)
• Normal is also changing in time
 • So for plane intersection, need to substitute for \(n \) the cross-product formula
 • Thankfully, don’t need to normalize, since that doesn’t change the plane

Moving triangles equation

• A cubic in \(s \) to solve:
\[
\left[(1-s)p + sq - x_i\right] \cdot \left[(x_j(s) - x_i(s)) \times (x_k(s) - x_i(s))\right] = 0
\]
• Only interested in real solutions between 0 and \(\Delta t \)
• Solve iteratively
 • Derivative=quadratic can be solved to tell us if any extrema in interval
 • Values at endpoints and at any extrema in interval tell us the intervals that roots could be in
 • Solve for those roots with secant/bisection search
Acceleration

- Too slow to check every single triangle if mesh is large
- Need acceleration
- Also critical if we have lots of distinct objects (even if implicit)
- Lots of papers written on acceleration structures
 - Prune out unnecessary tests

Bounding Volume Hierarchy

- Surround each triangle (or small group of triangles) with a simple bounding volume
 - E.g. axis-aligned box, sphere, oriented box...
- Surround group of bounding volumes with a parent bounding volume, and so on up
- End up with a tree
- To check a segment against scene, check if it could overlap root of tree
 - If not, we're done
 - If so, recurse on children

Grid Acceleration

- Or, put down a virtual grid in space
 - Each grid cell has a list of which triangles overlap
- To test a segment, only look at triangles in the grid cells the segment crosses
- Can use hash table for memory efficiency
 - Hash on cell indices (i,j,k)
- Note trade-off:
 - The finer the grid, the fewer extraneous triangles
 - But: more grid cells to check, more memory used, and more expensive to build grid
 - Tune for your application!

Rigid Bodies

- Very well studied
- I’ll introduce them from a particle perspective
 - Easy to get lost in abstract notions
 - Particles are fundamental
- Discretize an object into small point masses
 - \(x_i, v_i, m_i \)
- Assume object doesn’t change shape (doesn’t deform)
 - What does that mean for the motion of the particles? How do we describe it, solve for it?
World Space vs. Object Space

- World space: where the particles actually are now
 - This is where we will look at x, v, and almost every other quantity
- Object space: imaginary “reference” place for the particles
 - Label the object space position \(p_i \)
 - Does not change as the object moves - things we compute in object space stay constant
 - We can define it arbitrarily

Mapping

- The map from \(p_i \) to \(x_i(t) \) cannot change the shape
 - The distance between any two particles never changes
 - Thus map has to be \(x_i(t) = R(t)p_i + X(t) \)
 - \(R(t) \) is an orthogonal 3x3 matrix: \(RRT^T = \delta \)
 - The orientation (rotation) of the object
 - \(X(t) \) is a vector
 - The “location” of the object

Rigid Motion

- Differentiate map w.r.t. time (using dot notation):
 \[v_i = \dot{R}p_i + V \]
- Invert map for \(p_i \):
 \[p_i = R^T(x_i - X) \]
- Thus:
 \[v_i = \dot{R}R^T(x_i - X) + V \]
- 1st term: rotation, 2nd term: translation
 - Let’s simplify the rotation

Skew-Symmetry

- Differentiate \(RR^T = \delta \) w.r.t. time:
 \[\dot{RR}^T + R\dot{R}^T = 0 \quad \Rightarrow \quad \dot{RR}^T = -(\dot{RR}^T)^T \]
- Skew-symmetric! Thus can write as:
 \[\dot{RR}^T = \begin{pmatrix} 0 & -\omega_2 & \omega_1 \\ \omega_2 & 0 & -\omega_0 \\ -\omega_1 & \omega_0 & 0 \end{pmatrix} \]
- Call this matrix \(\omega^* \) (built from a vector \(\omega \))
 \[\dot{RR}^T = \omega^* \quad \Rightarrow \quad \dot{R} = \omega^* R \]
The cross-product matrix

- Note that:
 \[\omega^x = \begin{pmatrix} 0 & -\omega_2 & \omega_1 \\ \omega_2 & 0 & -\omega_0 \\ -\omega_1 & \omega_0 & 0 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \omega_1x_2 - \omega_2x_1 \\ \omega_2x_0 - \omega_0x_2 \\ \omega_0x_1 - \omega_1x_0 \end{pmatrix} = \omega \times x \]

- So we have:
 \[v_i = \omega \times (x_i - X) + V \]

- \(\omega \) is the angular velocity of the object

Angular velocity

- Recall:
 - \(|\omega| \) is the speed of rotation (radians per second)
 - \(\omega \) points along the axis of rotation (which in this case passes through the point \(X \))
 - Convince yourself this makes sense with the properties of the cross-product

Force

- Take another time derivative to get acceleration:
 \[a_i = \dot{v}_i = \ddot{R}p_i + A \]

- Use \(F = ma \), sum up net force on system:
 \[\sum_i F_i = \sum_i m_i a_i = \sum_i m_i (\ddot{R}p_i + A) = \ddot{R} \sum_i m_i p_i + A \sum_i m_i \]

- Let the total mass be \(M = \sum_i m_i \)

- How to simplify the other term?

Centre of Mass

- Let’s pick a new object space position:
 \[p_i^{\text{new}} = p_i - \frac{\sum_j m_j p_j}{M} \]

 - The mass-weighted average of the positions is the centre of mass
 - We translated the centre of mass (in object space) to the point \(0 \)

 - Now: \[\sum_i m_i p_i = 0 \]
Force equation

- So now, assuming we’ve set up object space right (centre of mass at 0), $F=MA$
- If there are no external forces, have $F=0$
 - Internal forces must balance out, opposite and equal
 - Thus $A=0$, thus $V=$constant
- If there are external forces, can integrate position of object just like a regular particle!

What about R?

- How does orientation change?
- Think about internal forces keeping the particles in the rigid configuration
 - Conceptual model: very stiff spring between every pair of particles, maintaining the rest length
- So $F_i = \sum_j f_{ij}$ where f_{ij} is force on i due to j
- Of course $f_{ij}+f_{ji}=0$
- Also: f_{ij} is in the direction of x_i-x_j

Net Torque

- Play around: $\left((x_j-X)-(x_j-X)\right) \times f_{ij} = 0$

 \[
 (x_i-X) \times f_{ij} = (x_j-X) \times f_{ji} = -(x_j-X) \times f_{ji}
 \]

- Sum both sides (look for net force)

 \[
 \sum_{i,j} (x_i-X) \times f_{ij} = \sum_{i,j} (x_j-X) \times f_{ji}
 \]

 \[
 \sum_i (x_i-X) \times F_i = -\sum_j (x_j-X) \times F_j = 0
 \]

- The expression we just computed=0 is the net torque on the object

Torque

- The torque of a force applied to a point is $\tau_i = (x_i-X) \times F_i$
- The net torque due to internal forces is 0
- [geometry of torque: at CM, with opposite equal force elsewhere]
- Torque obviously has something to do with rotation
- How do we get formula for change in angular velocity?
Angular Momentum

- Use \(F = ma \) in definition of torque:
 \[
 \tau_i = (x_i - X) \times m_i a_i
 = \frac{d}{dt} \left[m_i (x_i - X) \times v_i \right]
 \]
- force=rate of change of linear momentum, torque=rate of change of angular momentum
- The total angular momentum of the object is
 \[
 L = \sum_i m_i (x_i - X) \times v_i
 = \sum_i m_i (x_i - X) \times (v_i - V)
 \]

Inertia Tensor

- \(I(t) \) is the inertia tensor
- Kind of like “angular mass”
- Linear momentum is \(mv \)
- Angular momentum is \(L = I(t) \omega \)
- Or we can go the other way: \(\omega = I(t)^{-1}L \)

Getting to \(\omega \)

- Recall \(v_i - V = \omega \times (x_i - X) \)
- Plug this into angular momentum:
 \[
 L = \sum_i m_i (x_i - X) \times (\omega \times (x_i - X))
 = -\sum_i m_i (x_i - X) \times ((x_i - X) \times \omega)
 = -\sum_i m_i (x_i - X)^\ast (x_i - X)^\ast \omega
 = \left(\sum_i m_i (x_i - X)^\ast (x_i - X)^\ast \right) \omega
 = (I(t)) \omega
 \]

Equations of Motion

\[
\frac{d}{dt} V = \frac{F}{M} \quad \frac{d}{dt} L = T
\]
\[
\frac{d}{dt} X = V \quad \omega = I(t)^{-1} L
\]
\[
\frac{d}{dt} R = \omega \times R
\]

In the absence of external forces \(F=0, T=0 \)
Reminder

• Before going on:
• Remember that this all boils down to particles
 • Mass, position, velocity, (linear) momentum, force are fundamental
 • Inertia tensor, orientation, angular velocity, angular momentum, torque are just abstractions
• Don’t get too puzzled about interpretation of torque for example: it’s just a mathematical convenience

Inertia Tensor Simplified

• Reduce expense of calculating $I(t)$:
 $$I(t) = \sum_i m_i (x_i - X)^T (x_i - X)$$
 $$= \sum_i m_i \left[(x_i - X)^T (x_i - X) \delta - (x_i - X)(x_i - X)^T \right]$$
 • Now use $x_i - X = Rp_i$ and use $R^T R = \delta$
 $$I(t) = \sum_i m_i \left[p_i^T R^T Rp_i \delta - Rp_i p_i^T R^T \right]$$
 $$= R \left(\sum_i m_i \left[p_i^T p_i \delta - p_i p_i^T \right] \right)^T R^T$$

Inertia Tensor Simplified 2

• So just compute inertia tensor once, for object space configuration
 • Then $I(t) = RI_{body}R^T$
 • And $I(t) = R(I_{body})^{-1}R^T$
 • So precompute inverse too
 • In fact, since I is symmetric, know we have an orthogonal eigenbasis Q
 • Rotate object-space orientation by Q
 • Then I_{body} is just diagonal!

Degenerate Inertia Tensors

• I is just sum of symmetric positive semi-definite matrices
 • Each one has null space: vectors parallel to $x_i - X$
 • If all the points line up (object is a rod) then sum I has the same null space
 • Singular: cannot be inverted
 • We don’t care though, since we can’t track rotation around that axis anyways
 • So diagonalize I, and only invert nonzero elements
• Similarly for a single point…
Taking the limit

• Letting our decomposition of the object into point masses go to infinity:
 • Instead of sum over particles, integral over object volume
 • Instead of particle mass, density at that point in space
 \[\sum m_i \rho_0(x_i) \rightarrow \iiint \rho(x) \rho_0(x) dx \]
• No big deal

Computing Inertia Tensors

• Do the integrals: \[I_{\text{body}} = \iiint p(p^T p \delta - pp^T) dp \]
• Lots of fun!
• You may want to look them up instead
 • E.g. Eric Weisstein’s World of Science on the web
• Align axis perpendicular to planes of symmetry (of \(\rho \) in object space
 • Guarantees some off-diagonal zeros
• Example: sphere, uniform density, radius \(R \)
 \[
 \begin{pmatrix}
 \frac{2}{5} MR^2 & 0 & 0 \\
 0 & \frac{2}{5} MR^2 & 0 \\
 0 & 0 & \frac{2}{5} MR^2
 \end{pmatrix}
 \]

Approximating Inertia Tensors

• For complicated geometry, don’t really need exact answer
• Instead use numerical quadrature
 • If we can afford to spend a lot of time precomputing, life is simple
 • Simplest approach: Monte-Carlo
 • Obviously stratified sampling etc. helps

Combining Objects

• What if object is union of two simpler objects?
• Integrals are additive
 • But be careful about adding \(I_1(t) + I_2(t) \):
 • World-space formulas \((x-X)\) use the \(X \) for the object: \(X_1 \) and \(X_2 \) may be different
 • Simplified \(I_{\text{body}} \) formula based on having centre of mass at origin
 • Let’s work it out from the integral of \(I(t) \)
• Combined mass: \(M = M_1 + M_2 \)
• Centre of mass of combined object:
 \[
 X = \frac{\int_{\Omega_1 \cup \Omega_2} \rho x \\
 \int_{\Omega_1 \cup \Omega_2} \rho}
 = \frac{M_1 X_1 + M_2 X_2}{M}
 \]
Combined Inertia Tensor

\[I(t) = \int_{\Omega_1 \cup \Omega_2} \rho(x-X)^T (x-X)^T \]
\[= \int_{\Omega_1} \rho(x-X + X_1 - X)^T (x-X + X_1 - X)^T + \int_{\Omega_2} \rho(x-X)^T (x-X)^T \]
\[= \int_{\Omega_1} \rho(x-X_1)^T (x-X_1)^* + \int_{\Omega_1} \rho(x-X)^T (x-X)^* \]
\[+ \int_{\Omega_2} \rho(x-X_1)^T (x-X_1)^* + \int_{\Omega_2} \rho(x-X)^T (x-X)^* \]
\[= I_1(t) + (X_1 - X)^T \underbrace{\int_{\Omega_1} \rho(x-X_1)^*}_0 + \int_{\Omega_1} \rho(x-X)^T (X_1 - X)^* \]
\[+ M_1(X_1 - X)^T (X_1 - X)^* + \int_{\Omega_2} \]
\[= I_1(t) + M_1(X_1 - X)^T (X_1 - X)^* + I_2(t) + M_2(X_2 - X)^T (X_2 - X)^* \]

Numerical Method

- For advancing V and X, can use any of the second order schemes we discussed before
 - Often only gravity and small amount of wind drag
- For advancing angular stuff:
 - Constraint on R makes life a little more interesting

Advancing angular stuff

- Symplectic Euler-like algorithm simplest choice: \(L_{n+1} = L_n + \Delta tT \)
 \(\omega_{n+1} = I(t_n)^{-1} L_{n+1} \)
 \(R_{n+1} = R_n + \Delta t \omega_{n+1}^* R_n \)
- Note: updated R isn't quite orthogonal
- Need to correct (otherwise objects inflate)
- Simplest choice: Gram-Schmidt
 - But introduces axis-bias, and expensive
- Could also compute rotation matrix for \(\Delta t \omega \)
 - Even more expensive, still have some drift

Stability? Accuracy?

- Note R cannot blow up (we keep making it orthogonal)
- But if \(T=T(R, \omega) \) there is potential for L and \(\omega \) to blow up
 - Rarely the case (usually \(T=0 \), apart from isolated collision impulses)
 - If it is the case, can go implicit
- May want to restrict \(\Delta t=O(\omega^{-1}) \) to properly sample rotations
Improving on R

- Expensive (and maybe biased) to keep R orthogonal
 - 9 numbers for 3 parameters
 - Use a less redundant representation
- Quaternions work better!
 - Still cheap and easy to deal with (unlike Euler angles, for example)
 - Only 4 numbers - still need to normalize
 - But can do it without axis bias
 - and for much cheaper

Review quaternions

- Instead of R, use \(q=(s,x,y,z) \) with \(|q|=1 \)
 - Can think of \(q=s+xi+yj+zk \)
 - \(i^2=j^2=k^2=1, ij=-ji=k, jk=-kj=i, ki=-ik=j \)
 - Don’t commute! \(q_1q_2\neq q_2q_1 \)
- Represents “half” a rotation:
 - \(q=\cos(\theta/2) \)
 - \(lx,y,zl^2=\sin^2(\theta/2) \)
 - Axis of rotation is \((x,y,z) \)
- Conjugate (inverse for unit norm) is

\[
\bar{q} = (s,-x,-y,-z)
\]

Rotating with quaternions

- Instead of \(Rp \), calculate \(q(0,p)\bar{q} \)
- Composing a rotation of \(\Delta t\omega \) to advance a time step:
 \[
 q_{n+1} = \left(\sqrt{1 - \left(\Delta t \frac{\omega}{2} \right)^2}, \Delta t \frac{\omega}{2} \right) q_n
 \]
- For small \(\Delta t\omega \) approximate:
 \[
 q_{n+1} = \left(1, \Delta t \frac{\omega}{2} \right) q_n = q_n + \Delta t \frac{\omega}{2} q_n
 \]
- From this get the differential equation:
 \[
 \dot{q} = \frac{1}{2} \omega q
 \]

Converting q to R

- Clearly superior to use quaternions for storing and updating orientation
- But, slightly faster to transform points with rotation matrix
- If you need to transform a lot of points (collision detection….) may want to convert q into R
- Basic idea: columns of R are rotated axes \(R(1,0,0)^T, R(0,1,0)^T \), and \(R(0,0,1)^T \)
- Do the rotation with q instead.
 - Can simplify and optimize for the zeros - look it up