Notes Aside: noise

« Assignment 1: e You know there should be some detail in
there, but you don’t know what detail
¢ So use random numbers

» The physics comes in to guide the random

» Check on the web site for a software
particle renderer (w/o OpenGL, with
antialiasing and alpha-blending)

. distribution
* Please read Stam & Fiume, “Turbulent « Things get interesting when you look at “noise”
wind fields...”, SIGGRAPH’93 fields
e n(x,y,z,t)

* White noise - no correlation (and no smoothness) -
isn’t so useful

* Need to introduce correlation/smoothness

Perlin Noise Combining noise
* (sort of) standard in graphics » While Perlin noise is very useful (fast to
» See web-page for references evaluate!), how do you control it?
e In a nutshell: « Can use f(n(x,y,z)), but that still doesn’t
« Randomly decide on (unit) gradient of n at grid introduce different length scales

points: Vn, ;, =Gy (With|G,|=1)

» Enforce n=0 at grid points
* Interpolate with (sort of) spline

Result is smooth with irregular variations on
the scale of the grid spacing but no larger

» Graphics notion of “turbulence”:

» Add dilated noise: iaif(”(/’)ix))

e Use =2, o,

i s

Spectral perspective

Smooth noise function is (approximately)

band-limited:

 Close to no frequencies below grid scale,

» Fast decay of higher frequencies
(smoother=faster)

Adding dilated noise makes sense if we want

to shape spectrum better

Why not just directly go for spectrum?

* Many physical models give you a spectrum
anyways

Collision and Contact

We can integrate particles forward in time,
have some ideas for velocity or force fields
But what do we do when a particle hits an
object?

No simple answer - depends on problem as
always

General breakdown:

« Interference vs. collision detection

¢ What sort of collision response: (in)elastic, friction

* Robustness: do we allow patrticles to actually be
inside an object?

Spectral noise

n(x,y,z) = EAW.’,(cos(ix + jy+kz+ Gi’j,k)
i,j.k
e Specify amplitude as function of frequency
(wave number)
* Randomize phase shifts
e Can randomize amplitude a little too
» Use Fast Fourier Transform to get a (periodic)
grid of noise

» Then interpolate from the grid

 Avoid periodicity by adding 2+ different size
grids (not integer multiples!)

Interference vs. Collision

* Interference (=penetration)

» Simply detect if particle has ended up inside object,
push it out if so

* Works fine if VAt <iw [w=0bject width]

* Otherwise could miss interaction, or push
dramatically the wrong way

e The ground, thick objects and slow particles
» Collision
« Check if particle trajectory intersects object

» Can be more complicated, especially if object is
moving too...

» For now, let’s stick with the ground (y=0)

Repulsion Forces

» Simplest idea (conceptually)

» Add a force repelling particles from objects when
they get close (or when they penetrate)

* Then just integrate: business as usual

* Related to penalty method:
instead of directly enforcing constraint (particles
stay outside of objects), add forces to encourage
constraint

* For the ground:
* Frepusion=-Ky when y<0 [think about gravity!]
o ...or -K(y-yo)-Dv when y<y, [still not robust]
o ...or K(1/y-1/y,)-Dv when y<y,

Collision and Contact

» Collision is when a particle hits an
object

* Instantaneous change of velocity
(discontinuous)

» Contact is when particle stays on object

surface for positive time
* Velocity is continuous
» Force is only discontinuous at start

Repulsion forces

« Difficult to tune:
» Too large extent: visible artifact

» Too small extent: particles jump straight through,
not robust (or time step restriction)

» Too strong: stiff time step restriction, or have to go
with implicit method - but Newton will not converge
if we guess past a singular repulsion force

¢ Too weak: won't stop particles

e Rule-of-thumb: don’t use them unless they
really are part of physics
» Magnetic field, aerodynamic effects, ...

Frictionless Collision Response

¢ At point of contact, find normal n
e For ground, n=(0,1,0)
¢ Decompose velocity into
* normal component vy=(ven)n and
 tangential component vi=v-vy
* Normal response: VNf’ = —gv[}zfﬁ”e’ cE [0,1]
» ¢=0is fully inelastic
* ¢=1is elastic
» Tangential response
« Frictionless: v;’,f'” = vﬁef””"

* Then reassemble velocity v=vy+Vv;

Contact Friction Collision Friction

» Some normal force is keeping vy=0 * Impulse assumption:

e Coulomb’s law (“dry” friction) . _Collision tgkes place over a very small time

« If sliding, then kinetic friction: interval (with very large forces)
vy » Assume forces don’t vary significantly over that
Fiction = —Mk\meaz [l interval---then can replace forces in friction laws

21 o
* If static (v;=0) then stay static as long as W't_h |.mpu!ses _ _ o
» This is a little controversial, and for articulated rigid
‘F riction| = M\ Fsorman bodies can be demonstrably false
* “Wet” friction = damping * But nevertheless...
* Normal impulse is just mAvy=m(1+¢)vy
Ffricti(m =-D Fnormal Vr ° Tangen’[ial impulse is mAVT
Wet Collision Friction Dry Collision Friction
» So replacing force with impulse: » Coulomb friction: assume ug = w,
mAv, = -DlmAv,|v, * (though in general, uy=)
. r 7 before
+ Divide through by m, use v =v;%" + A, + Sliding: mAv, = ~plmAv,| T
before
v;fter — Vﬁefore _ D|AVN v?efore ‘VT

Static:

= (1 - D|A"N|)"?efm ‘mAvT‘ = u‘mAvN‘

Clearly could have monotonicity/stability issue

Fix by capping at v;=0, or better

approximation for time interval
.g. after _ —D‘AVN‘ before

€9 vy =e¢ v,

Divide through by m to find change in
tangential velocity

Simplifying... Dry Collision Friction Formula

e Use v/ =y + Av, e Combine into a max
o Static caseis v/ =0 = Av, =} « First case is static where v; drops to zero if
when ‘vﬁeﬁ’”‘ < UAv,| inequality is obeyed
 Sliding case is « Second case is sliding, where v; reduced
hefore in magnitude (but doesn’t change signed
v;ﬁer — V?é’fore _ M‘AVN‘ iefom direCtiOn)
g v,
" v
« Common quantities! v& = max| 0,1 - HAYy pefore
before
b7
Where are we? “Exact” Collisions
¢ So we now have a S|mp||f|ed physics * For very sim_ple sy_stems (linear or maybe
model for parabolic trajectories, polygonal objects)
o o o » Find exact collision time (solve equations)
. antpnless, dry friction, and wet friction « Advance particle to collision time
collision + Apply formula to change velocity
e Some idea of what contact is (usually dry friction, unless there is lubricant)
, . » Keep advancing particle until end of frame or next
* S0 now let’s start on numerical methods collision
to simulate this « Can extend to more general cases with
conservative ETA’s, or root-finding
techniques

» expensive! [think springs]

Fixed collision time stepping

e Even “exact” collisions are just first order
accurate in general
* [hit or miss example]

» So instead fix At,,sion @nd don’t worry about
exact collision times
* Could be one frame, or 1/8th of a frame, or ...

* Instead just need to know did a collision
happen durmg AtcoIIision
* If so, process it with formulas

Numerical Implementation 1

» Get candidate x(t+At)

» Check to see if x(t+At) is inside object
(interference)

e If so
¢ Get normal n at t+At

» Get new velocity v from collision response

formulas and average v
* Replay x(t+At)=x(t)+Atv

Relationship with regular time

integration

Forgetting collisions, advance from x(t) to
X(t+AtcoIIision)

e Could use just one time step, or subdivide into lots
of small time steps

We approximate velocity (for collision
processing) as constant over time step:

b o x(t+Ar) - x(1)
At

If no collisions, forget this average v, and
keep going with underlying integration

Robustness?

If a particle penetrates an object at end of
candidate time step, we fix that

But new position (after collision processing)
could penetrate another object!

Maybe this is fine-let it go until next time step
But then collision formulas are on shaky
ground... [show example in concavity]

¢ Switch to repulsion impulse if x(t) and x(t+At) both
penetrate

» Find Avy proportional to final penetration depth,
apply friction as usual

Making it more robust

e QOther alternative:

After collision, check if new x(t+At) also penetrates

If so, assume a 2nd collision happened during the
time step: process that one

Check again, repeat until no penetration

To avoid infinite loop make sure you lose kinetic
energy (don’t take perfectly elastic bounces, at
least not after first time through)

Let’s write that down:

Micro-Collisions

» These are “micro-collision” algorithms

» Contact is modeled as a sequence of small
collisions

We’re replacing a continuous contact force with a
sequence of collision impulses

* Is this a good idea?

[block on incline example]

* More philosophical question: how can contact
possibly begin without fully inelastic collision?

Numerical Implementation 2

Get candidate x(t+At)

While x(t+At) is inside object (interference)
* Get normal n at t+At

» Get new velocity v from collision response
formulas and average v

* Replay x(t+At)=x(t) + At v

Now can guarantee that if we start outside
objects, we end up outside objects

Improving Micro-Collisions

Really need to treat contact and
collision differently, even if we use the
same friction formulas

|dea:

* Collision occurs at start of time step

» Contact occurs during whole duration of
time step

Numerical Implementation 3 Why does this work?

» Start at x(t) with velocity v(t), get candidate * If object resting on plane y=0, v(t)=0, though
position x(t+At) gravity will pull it down by t+At
o Check if x(t+At) penetrates object In the new algorithm, elastic bounce works
* If so, process elastic collision using v(t) from with pre-gravity velocity v(t)=0
start of step, not average velocity « So no bounce
* Replay from x(t) with modified v(t) » Then contact, which is inelastic, simply adds
+ Could add AtAv to x(t+At) instead of re-integrating just enough Av to get back to v(t+At)=0
* Repeat check a few (e.g. 3) times if you want « Then x(t+At)=0 too
* While x(t+At) penetrates object « NOTE: if =0 anyways, no point in doing
* Process inelastic contact (¢=0) using average v special first step - this algorithm is equivalent

 Replay x(t+At)=x(t)+At v to the previous one

