
Continuum Mechanics

• We’ll stick with the Lagrangian viewpoint for
now

• Let’s look at a deformable object
• World space: points x in the object as we see it

• Object space (or rest pose): points p in some
reference configuration of the object

• (Technically we might not have a rest pose, but
usually we do, and it is the simplest
parametrization)

• So we identify each point x of the continuum
with the label p, where x=X(p)

Conservation of mass

• Look at a control volume

• Mass of control volume is

• Usually we discretize into particles (with fixed
mass) and don’t need to worry about this
• But if you adaptively change the discretization,

may need to use this
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Conservation of Momentum

• In other words F=ma

• Control volume again

• Split F into
• fbody (e.g. gravity, magnetic forces, …)

force per unit volume

• and traction t (on boundary between two chunks of
continuum: contact)
force per unit area (like pressure)
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Cauchy’s Fundamental Postulate

• Traction t is a function of position x and
normal n
• Ignores rest of boundary (curvature, etc.)

• Theorem
• If t is smooth (be careful at boundaries of object,

e.g. cracks) then t is linear in n:
t=!(x)n

• ! is the Cauchy stress tensor (a matrix)

• It also is force per unit area

• Diagonal: normal stress components

• Off-diagonal: shear stress components



Cauchy Stress

• From conservation of angular momentum can
derive that Cauchy stress tensor ! is
symmetric: ! = !T

• Thus there are only 6 degrees of freedom (in
3D)
• In 2D, only 3 degrees of freedom

• What is !?

• That’s the job of constitutive modeling

• Depends on the material
(e.g. water vs. steel vs. silly putty)

Divergence Theorem

• Try to get rid of integrals

• First make them all volume integrals
with divergence theorem:

• Next let control volume shrink to zero:
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Constitutive Modeling

• This can get very complicated for complicated
materials

• Let’s start with simple elastic materials

• We’ll even leave damping out

• Then stress ! only depends on deformation
gradient A= "X/"p

• No memory of past deformations

• Always will want to return to original shape (when
A is just a rotation matrix)

• Note we don’t care about translation at all (X)

Strain

• A isn’t so handy to deal with, though it
somehow encodes exactly how
stretched/compressed we are
• It also encodes how rotated we are, which we

don’t care about

• We want to process A somehow to remove
the rotation part

• [difference in lengths]

• ATA-I is exactly zero when A is a rigid body
rotation

• Define Green strain
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Why the half??

• [Look at 1D, small deformation]

• A=1+#

• ATA-I = A2-1 = 2#+#2 ! 2#

• Therefore G ! #, which is what we expect

• Note that for large deformation, Green strain
grows quadratically
- maybe not what you expect!

• Whole cottage industry: defining strain
differently

Cauchy strain tensor

• Look at “small displacement”
• Not only is the shape only slightly deformed, but it

only slightly rotates
(e.g. if one end is fixed in place)

• Then displacement x-p has gradient D=A-I

• Then

• And for small displacement, first term
negligible

• Cauchy strain

• Symmetric part of deformation gradient
• Rotation is skew-symmetric part
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Linear elasticity

• Very nice thing about Cauchy strain: it’s
linear in deformation

• No quadratic dependence

• Easy and fast to deal with

• Natural thing is to make a linear
relationship with Cauchy stress !

• Then the full equation is linear!

Young’s modulus

• Obvious first thing to do: if you pull on
material, resists like a spring:
!=E#

• E is the Young’s modulus

• Let’s check that in 1D (where we know what
should happen with springs)

• Almost:
(close enough)
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Poisson Ratio

• Real materials are essentially incompressible
(for large deformation - neglecting foams and
other weird composites…)

• For small deformation, materials are usually
somewhat incompressible

• Imagine stretching block in one direction
• Measure the contraction in the perpendicular

directions

• Ratio is %, Poisson’s ratio

• [draw experiment;                ]
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What is Poisson’s ratio?

• Has to be between -1 and 0.5

• 0.5 is exactly incompressible

• [derive]

• Negative is weird, but possible [origami]

• Rubber: close to 0.5

• Steel: more like 0.33

• Metals: usually 0.25-0.35

• [cute: cork is almost 0]

Putting it together

• Can invert this to get normal stress, but
what about shear stress?
• [draw sheared block]

• When the dust settles,
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Inverting…

• For convenience, relabel these expressions

• $ and µ are called

the Lamé
coefficients

• [incompressibility]

! 

" = E
1

1+ #
I +

#

1+ #( ) 1$ 2#( )
1%1

& 

' 
( 

) 

* 
+ ,

! 

" =
E#

1+ #( ) 1$ 2#( )

µ =
E

2 1+ #( )

% ij = "&kk'ij + 2µ&ij



Linear elasticity

• Putting it together and assuming
constant coefficients, simplifies to

• A PDE!

• We’ll talk about solving it later! 
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Rayleigh damping

• We’ll need to look at strain rate

• How fast object is deforming

• We want a damping force that resists

change in deformation

• Just the time derivative of strain

• For Rayleigh damping of linear elasticity
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Problems

• Linear elasticity is very nice for small

deformation

• Linear form means lots of tricks allowed for speed-

up, simpler to code, …

• But it’s useless for large deformation, or even

zero deformation but large rotation

• (without hacks)

• [draw tangent to circle]

• Thus we need to go back to Green strain

(Almost) Linear Elasticity

• Use the same constitutive model as before,

but with Green strain tensor

• This is the simplest general-purpose elasticity

model

• Note this is different from “Green elasticity”

• Slightly better foundation: write down a potential

energy (a scalar function of strain) and take the
gradient to get stress



2D Elasticity

• Let’s simplify life before starting numerical
methods

• The world isn’t 2D of course, but want to track
only deformation in the plane

• Have to model why
• Plane stress: very thin material, !3•=0

[explain, derive #3• and new law, note change in
incompressibility singularity]

• Plane strain: very thick material, #3•=0
[explain, derive !3•]

Finite Volume Method

• Simplest approach: finite volumes
• We picked arbitrary control volumes before

• Now pick fractions of triangles from a triangle
mesh
• Split each triangle into 3 parts, one for each corner

• E.g. Voronoi regions

• Be consistent with mass!

• Assume A is constant in each triangle (piecewise
linear deformation)

• [work out]

• Note that exact choice of control volumes not
critical - constant times normal integrates to zero


