Continuum Mechanics Conservation of mass

We'll stick with the Lagrangian viewpoint for * Look at a control volume

now » Mass of control volume is

Let’s look at a deformable object X

« World space: points x in the object as we see it [ pxdx = | P(X(P))det(a—)dp = [ o(p)Jdp = [ py(p)p
 Obiject space (or rest pose): points p in some Qw S P o S

referen.c © Conf'gur.a tion of the object » Usually we discretize into particles (with fixed
¢ (Technically we might not have a rest pose, but

) , mass) and don’t need to worry about this
usually we do, and it is the simplest _ _ i L
parametrization) » But if you adaptively change the discretization,

So we identify each point x of the continuum may need to use this
with the label p, where x=X(p)

Conservation of Momentum Cauchy’s Fundamental Postulate
In other words F=ma e Traction tis a function of position x and
Control volume again normal n
Split F into * Ignores rest of boundary (curvature, etc.)
* fooay (€-9. gravity, magnetic forces, ...) « Theorem
force per unit volume e Iftis smooth (be c_are_ful at .boundaries of object,
« and traction t (on boundary between two chunks of e.g. cracks) then tis linear in n:
continuum: contact) t=o(x)n

force per unit area (like pressure)

ffbodydx+ ftds= prdx
Qy Qy

aQ,

o is the Cauchy stress tensor (a matrix)
It also is force per unit area

Diagonal: normal stress components
Off-diagonal: shear stress components



Cauchy Stress

From conservation of angular momentum can
derive that Cauchy stress tensor o is
symmetric: 0 = o'

Thus there are only 6 degrees of freedom (in
3D)

* In 2D, only 3 degrees of freedom

What is 07

¢ That'’s the job of constitutive modeling

¢ Depends on the material
(e.g. water vs. steel vs. silly putty)

Constitutive Modeling

This can get very complicated for complicated
materials

Let’s start with simple elastic materials
We'll even leave damping out

Then stress o only depends on deformation
gradient A= 9X/ap

* No memory of past deformations

¢ Always will want to return to original shape (when
A is just a rotation matrix)

* Note we don’t care about translation at all (X)

Divergence Theorem

Try to get rid of integrals

First make them all volume integrals
with divergence theorem:

fonds= foT°nds= fV-ade= fV-odx

Qy Qy Qy Qy

Next let control volume shrink to zero:
fbody +VG=px

Strain

A isn’t so handy to deal with, though it
somehow encodes exactly how
stretched/compressed we are

|t also encodes how rotated we are, which we
don’t care about

We want to process A somehow to remove
the rotation part

[difference in lengths]

ATA-| is exactly zero when A is a rigid body
rotation

Define Green strain G = %(ATA - I)



Why the half2?

[Look at 1D, small deformation]

A=1+¢

ATA-l = A%-1 = 2e+e2 = 2¢

Therefore G = ¢, which is what we expect

Note that for large deformation, Green strain
grows quadratically
- maybe not what you expect!

Whole cottage industry: defining strain
differently

Linear elasticity

Very nice thing about Cauchy strain: it’s
linear in deformation

* No quadratic dependence

» Easy and fast to deal with

Natural thing is to make a linear
relationship with Cauchy stress o

Then the full equation is linear!

Cauchy strain tensor

Look at “small displacement”

* Not only is the shape only slightly deformed, but it
only slightly rotates
(e.g. if one end is fixed in place)

Then displacement x-p has gradient D=A-I
Then G=4(D'D+D+D")

And for small displacement, first term
negligible

Cauchy strain £=4(D+D")

Symmetric part of deformation gradient

* Rotation is skew-symmetric part

Young’s modulus

Obvious first thing to do: if you pull on
material, resists like a spring:
o=Es¢

E is the Young’s modulus

Let’s check that in 1D (where we know what
should happen with springs)

V-0=px

E[2X 4
ap

Almost:
(close enough) J

ox




Poisson Ratio

Real materials are essentially incompressible
(for large deformation - neglecting foams and
other weird composites...)

For small deformation, materials are usually
somewhat incompressible

Imagine stretching block in one direction

e Measure the contraction in the perpendicular
directions

* Ratio is v, Poisson’s ratio

. &
[draw experiment; v =--*

11

Putting it together

Eg, =0, -Vv0O,, = VO3,
Ee,, =-vo, + 0,, —=vO,,

Ee,, =-vo, —vO,, + 0,

» Can invert this to get normal stress, but

what about shear stress?
 [draw sheared block]

 When the dust settles,

Ee; =(1+v)o, i=]

What is Poisson’s ratio?

e Has to be between -1 and 0.5
* 0.5 is exactly incompressible
* [derive]
* Negative is weird, but possible [origami]
e Rubber: close to 0.5
o Steel: more like 0.33
» Metals: usually 0.25-0.35
 [cute: cork is almost 0]

Inverting...

1 v
=F 1 1®1
M PPV TPV R

» For convenience, relabel these expressions

. 7;1 anLd u are called 5 Ev
the Lamé =
coefficients (L+v)(1-2v)
* [incompressibility] E

“=2(1+v)

0, = rey b, +2ue;



Linear elasticity Rayleigh damping

 Putting it together and assuming » We'll need to look at strain rate
constant coefficients, simplifies to » How fast object is deforming
PV = froay + AVE +2uV - € » We want a damping force that resists
= Froqy + AV - Vx + M(V -Vx+VV- x) change in deformation
= Froy + (A+ ()Ax + UVV - x * Just the time derivative of strain
» For Rayleigh damping of linear elasticity
« APDE! damp _ _
» We'll talk about solving it later O; = ¢gkk6ij + 211’%-
Problems (Almost) Linear Elasticity
 Linear elasticity is very nice for small » Use the same constitutive model as before,
deformation but with Green strain tensor
 Linear form means lots of tricks allowed for speed- » This is the simplest general-purpose elasticity
up, simpler to code, ... model
* Butit's useless for large deformation, or even « Note this is different from “Green elasticity”
zero.deformatlon but large rotation  Slightly better foundation: write down a potential
* (without hacks) energy (a scalar function of strain) and take the
¢ [draw tangent to circle] gradient to get stress

* Thus we need to go back to Green strain



2D Elasticity

 Let’s simplify life before starting numerical
methods

 The world isn’t 2D of course, but want to track
only deformation in the plane

* Have to model why
* Plane stress: very thin material, 05.=0
[explain, derive g5, and new law, note change in
incompressibility singularity]
* Plane strain: very thick material, ¢5.=0
[explain, derive og.]

Finite Volume Method

» Simplest approach: finite volumes
» We picked arbitrary control volumes before

Now pick fractions of triangles from a triangle
mesh

« Split each triangle into 3 parts, one for each corner

» E.g. Voronoi regions

¢ Be consistent with mass!
Assume A is constant in each triangle (piecewise
linear deformation)
[work out]

Note that exact choice of control volumes not
critical - constant times normal integrates to zero



