Notes

- Please read Pentland and Williams, “Good vibrations”, SIGGRAPH’89
- 1st bug in assignment 4
 - Thanks Igor and Richard
 - `v=calloc(3*nv,sizeof(float))` fixed online

Cloth Collisions

- From last time
 - Use the same basic algorithm as for particle systems
 - But ignore elastic collisions - elastic/inelastic comes from internal dynamics (damping), not collisions
 - Also update post-collision velocity with an implicit step (smoothing filter from damping)
- Looking at collision resolution pipeline now

Repulsions

- Pipeline starts with repulsion forces
 - Simplest thing for resting contact
 - Can even model the thickness of the cloth, its compressibility, etc.
 - Avoids chainmail friction
 - Without a soft buffer, sharp folds lock together like alligator teeth

Pointwise collisions

- Next stage in pipeline: need to check for fast moving simple collisions
- Do point vs. triangle and edge vs. edge (as before, talking about rigid bodies)
 - Solve cubic for collision time, check if close enough to collision, etc.
- Will want to iterate a few times
Rigid impact zones

- Last stage in pipeline
 - Need a last resort to clean up complicated collisions
- Provot’s approximation:
 - Glue together elements that are still colliding
 - Too stable (too much friction, too inelastic) but that’s OK
- Algorithm:
 - Start off with each triangle as a separate “impact zone”
 - Check if any two zones collide - if so, merge, rigidify (preserve linear and angular momentum)

Why it works

- If the points in a mesh move rigidly, mesh cannot self-intersect
 - Thus no self-intersections inside an impact zone
- We keep merging zones: very quickly end up with no more collisions
- Technical detail: if we use an Euler step to advance positions with rigid bodies, we actually induce a dilation
 - But non-intersection property still holds for general affine maps!
 - In fact, can generalize momentum… related to modal analysis

When this fails

- Constraints on cloth are incompatible with rigid impact zone
 - Could cut time step to solve, or relax constraints, or solve cloth self-intersection problem
- Collision adjustments strain the cloth too much (and strain limiting etc. goes crazy)
 - See this around sharp points
 - Ultimately, may want to forget black-box approach: directly incorporate contact forces into implicit time stepping, e.g. Baraff & Witkin, “Large steps…”, SIGGRAPH’98 (but they don’t get robustness)

Wind force on cloth

- Use simple approximation: ignore effect of cloth on wind
 - Take given wind velocity field v_{wind}
 - Look at a piece of cloth with velocity v and normal n
 - Apply traction $t=D(v_{wind}-v)\cdot n$ n
 - Implement triangle by triangle: multiply traction by area of triangle to get force
 - Distribute force on triangle equally to vertices
 - $D>0$ is some parameter to tune
- This misses some effects, but is often adequate
Cloth speed-ups

- Curvature-accelerated interference detection
 - Form a hierarchy, find normal cone for each
 - Self-intersection is unlikely if normals all lie in same half-space
 - See Volino and Magnenat-Thalmann EG’94
- Take liberties with implicit integration
 - More approximations for speed
- Use selective collisions
 - Only run collision code on parts of clothing that are likely to come into contact with other things
- ...

3D Elasticity

- We basically covered the theory earlier
 - Tensors are now 3x3 instead of 2x2 or 3x2
- What about numerics?
 - [work out FVM/FEM on tetrahedra]
- Tetrahedra can lock - may prefer hexahedra
 - Meshing is more difficult - may prefer embedding geometry in elements

Inverted elements

- If too much force is applied to an element, it will be crushed and even inverted
 - The constitutive model should not let this happen
 - [simple example with springs]
- In cloth (2d material in 3d world) this is not an issue
 - But 2d in 2d has exactly the same problem!
- Usually not a problem for stiff materials, but often with soft objects undergoing large deformation (e.g. point-based collisions!)
- Can partially alleviate with design of mesh

Volume springs

- Volume of tetrahedron $x_1, ..., x_4$ is
 \[V = \frac{1}{6} (x_2 - x_1) \times (x_3 - x_1) \cdot (x_4 - x_1) \]
 - Actually signed (to indicate right- or left-handed labeling)
- Crushed element: $V=0$
- Inverted element: $V<0$
- We generally want to control excess volume changes (most materials are incompressible in bulk), so natural to add soft constraint (potential energy) $K/2(V-V_0)^2$
Volume springs

• Take derivative w.r.t. x_i to get force
 • Example:
 \[F_4 = -\frac{1}{6} K (V - V_0) (x_2 - x_1) \times (x_3 - x_1) \]
 • To do the other forces easily, rewrite volume formula so that x_i appears only in the dot-product
• Note cross-product is proportional to area-weighted normal of opposite triangle
 • So these are “altitude springs” (with the right scaling automatically)
• To fully enforce no inversion, can change force to go to infinity as V approaches 0
 • But may have stiffness problems…

Small deformation

• We can use linear elasticity
 • Except if there’s rigid body rotation
 • Can fix this: rotate to approximate rest configuration, do linear elasticity, rotate back
 • Rigid body + small deformation
 • May need to keep track of Coriolis and centripetal pseudo-forces
 • Terzopoulos & Witkin GI'88, others
• Use of linear elasticity opens up new doors
 • Modal Analysis
 • BEM
 • Also: appropriate for acoustics

Modal Analysis

• Discretization of linear elasticity boils down to
 \[M\ddot{x} = -Kx - D\dot{x} + F_{ext} \]
• M, K, and D are constant matrices
 • M is the mass matrix (often diagonal)
 • K is the stiffness matrix
 • D is the damping matrix: assume a multiple of K
• This a large system of coupled ODE’s now
• We can solve eigen problem to diagonalize and decouple into scalar ODE’s
 • M and K are symmetric, so no problems here - complete orthogonal basis of real eigenvectors

Eigenstuff

• Say $U=(u_1 \mid u_2 \mid \ldots \mid u_{3n})$ is a matrix with the columns the eigenvectors of $M^{-1}K$ (and also $M^{-1}D$)
 • $M^{-1}Ku_i = \lambda_i u_i$ and $M^{-1}Du_i = \mu_i u_i$
 • Assume λ_i are increasing
 • We know $\lambda_1 = \ldots = \lambda_6 = 0$ and $\mu_1 = \ldots = \mu_6 = 0$ (with u_1, ..., u_6 the rigid body modes)
 • The rest are the deformation modes: the larger that λ_i is, the smaller scale the mode is
• Use this with
 \[\ddot{x} = -M^{-1}Kx - M^{-1}D\dot{x} + M^{-1}F_{ext} \]
Decoupling into modes

- Take $y = U^T x$ (so $x = U y$) - decompose positions (and velocities, accelerations) into a sum of modes

 $U \dot{y} = -M^{-1} K U y - M^{-1} D U \dot{y} + M^{-1} F_{ext}$

- Multiply by U^T to decompose equations into modal components:

 $U^T U \dot{y} = -U^T M^{-1} K U y - U^T M^{-1} D U \dot{y} + U^T M^{-1} F_{ext}$

 $\ddot{y} = -\text{diag}(\lambda) y - \text{diag}(\mu) \dot{y} + U^T M^{-1} F_{ext}$

- So now we have $3n$ independent ODE’s

 - If F_{ext} is constant over the time step, can even write down exact formula for each

Examining modes

- Mode i:

 $\ddot{y}_i = -\lambda_i y_i - \mu_i \dot{y}_i + u_i \cdot M^{-1} F_{ext}$

- Rigid body modes have zero eigenvalues, so just depend on force

 - Roughly speaking, rigid translations will take average of force, rigid rotations will take cross-product of force with positions (torque)

 - Better to handle these as rigid body…

- The large eigenvalues (large i) have small length scale, oscillate (or damp) very fast

 - Important acoustically, generally not visually

 - Left with small eigenvalues being important

Throw out high frequencies

- Only track a few low-frequency modes (e.g. 5-10)
- Time integration is blazingly fast!
- Essentially reduced the degrees of freedom from thousands or millions down to 10 or so

 - But keeping full geometry, just like embedded element approach

 - Collision impulses need to be decomposed into modes just like external forces

 - But may have a harder time resolving collisions, like rigid bodies - not much freedom left

Simplifying eigenproblem

- Low frequency modes not affected much by high frequency geometry

 - And visually, difficult for observers to quantify if a mode is actually accurate

 - So we can use a very coarse mesh to get the modes, or even analytic solutions for a block of comparable mass distribution

 - Or use a Rayleigh-Ritz approximation to the eigensystem (eigen-version of Galerkin FEM)

 - E.g. assume low frequency modes are made up of affine and quadratic deformations

 - [Do FEM, get eigenvectors to combine them]
More savings

• External forces (other than gravity, which is in the rigid body modes) rarely applied to interior, and we rarely see the interior deformation
• So just compute and store the boundary particles
 • E.g. see James and Pai, “DyRT…”, SIGGRAPH’02 -- did this in graphics hardware!