
Notes

• Please read:

• Choi & Ko, “Stable but responsive cloth”,
SIGGRAPH’02

• Grinspun et al., “Discrete shells”, SCA’03

• Homework #4 (cloth simulation) goes out

today

• Due March 4, but you may want to look at it over

the break

Bending energy

• Bending is very difficult to get a handle on
without variational approach

• Bending strain energy density:
W=1/2 B !2

• Here ! is mean curvature

• Look at circles that fit surface

• Maximum radius R and minimum radius r

• !=(1/R + 1/r)/2

• Can define directly from second derivatives of X(p)

• Uh-oh - second derivatives? [FEM nastier]

• W is 2nd order, stress is 3rd order, force is 4th
order derivatives!

Interlude…

• Linearize and simplify drastically, look for
steady-state solution (F=0): spline equations
• Essentially 4th derivatives are zero

• Solutions are (bi-)cubics

• Model (nonsteady) problem: xtt=-xpppp

• Assume solution

Wave of spatial frequency k, moving at speed c

• [solve for wave parameters]

• Dispersion relation: small waves move really fast

• CFL limit (and stability): for fine grids, BAD

• Thankfully, we rarely get that fine
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Implicit/Explicit Methods

• Implicit bending is painful

• In graphics, usually unnecessary
• Dominant forces on the grid resolution we use

tend to be the 2nd order terms: stretching etc.

• But nice to go implicit to avoid time step
restriction for stretching terms

• No problem: treat some terms (bending)
explicitly, others (stretching) implicitly
• vn+1=vn+!t/m(F1(xn,vn)+F2(xn+1,vn+1))

• All bending is in F1, half the elastic stretch in F1,
half the elastic stretch in F2, all the damping in F2



Discrete Mean Curvature

• [draw triangle pair]

• ! for that chunk varies as

• So integral of !2 varies as

• Edge length, triangle areas, normals are all
easy to calculate

• " needs inverse trig functions

• But "2 behaves a lot like 1-cos("/2) over
interval [-#,#]        [draw picture]
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Bending Force

• Force on xi due to bending element involving i
is then

• Treat first terms as a constant (precompute in
the rest configuration)

• Sign should be the same as

• Still need to compute ""/"xi
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Gradient of Theta

• Can use implicit differentiation on
cos(theta)=n1•n2

• Not too fun

• Another approach: modal analysis
• Gradient is orthogonal to isocontours of theta

• Find a basis for tangent plane to isocontours
(perpendicular to grad(theta))

• [go through 11 modes: 6 rigid body modes, 5
planar deformations]

• Solve for the mode that is orthogonal to all the rest

• This gives directions, do a little diff. for mag

The bending mode

• Vertices 1 to 4 with common edge e=x4-x3

• [see Bridson et al., “Simulation of clothing…”,
SCA’03]

• ui=""/"xi     !1=(x1-x3)$(x1-x4)     !2=(x2-x4)$(x2-x3)
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Modal Analysis and Soft
Constraints

• Go back to

• Then elastic force is

• Here C="

• Think of "C/"x as the mode which directly
influences C (steepest ascent)
• Any other direction moves along isocontours of C:

inefficient, interferes with other physics

• So we want force in this direction

• And the magnitude should be proportional to
-C to restore C to 0
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Damping force

• We also want damping force to be in the
same mode
• Any other direction would again interfere with

other physics

• And should be proportional to the component
of the velocities in this mode
• The other components of velocity shouldn’t

influence the damping

• So damping force is

• Note symmetric, negative semi-definite, linear in v
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Damping bending

• Follow the same reasoning:

• The |e| factor is to get it to converge as
the mesh is refined
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Shells

• “Plates” in elasticity refer to surfaces that
resist bending, and have a flat rest pose

• “Shells” are same but with a curved rest pose

• We can easily do shells by storing a nonzero
rest angle

• Replace sin("/2) in elastic force by
 sin("/2)-sin("0/2)
• Or if "0 is far from zero, may need to go to "-"0

• Note: using second neighbour springs you
can’t do shells! [popping - also with
inconsistent edge springs]



Other stuff in cloth mechanics

• Better model planar elasticity
• Take into account anisotropy of weave and weft

• Creasing - allow rest angle to move when
current angle too big
• Plasticity coming up after the break…

• Subdivision for rendering
• Geometric buckling, collision-aware

• Adaptive meshes

• Interaction with the wind

• Speed-ups

Cloth collisions

• Can use just inelastic collisions
• Continuum takes care of rebound naturally

• Cloth colliding against non-sharp thick objects
• Just treat as a particle system, like assignment 2

• Can even allow particles to interpenetrate a bit
(staying relaxed about this can let cloth look nicer)

• For rendering need to push cloth -- the triangles as
well as the vertices -- out of the objects

• [wrinkle-preserving map]

• Cloth colliding against non-sharp thin objects
• Need to worry about robustness -- solve for

collision times, use repulsions.

Not quite…

• For large collision steps this can be bad

• This is not just a particle system: particles are
connected!

• If a collision impulse discontinuously bounces one
particle off, nearby cloth should feel it

• Otherwise can have excessive strains (or strain
rates) to deal with next time step

• Want to naturally smooth out discontinuity in

velocity field

Implicit Velocity Smoothing

• If we just evolve vt=Fdamp/m we get smoothing
• Damping forces seek to minimize relative

velocities

• Model problem is vt=vxx, the heat equation (also in
multiple dimensions)
• Solution is convolution with a Gaussian

• Doing one implicit time step of this equation is a
similar smoothing
• Explicit time steps can only do very local smoothing…

• We’ll use this to filter velocities after collision
processing



Collision time steps for cloth

• Evolve (x,v) to candidate new state

• Check for collisions
• Use average velocity vavg=(xnew-x)/!t for collision

formulas (only doing inelastic)

• Resolve with a collision resolution pipeline

• Get xnew with collisions resolved

• Find updated average velocity vavg=(xnew-x)/!t
• This “lives” at the midpoint: v(t+!t/2)

• Use implicit velocity update to get end value:
• Note it’s just linear
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Self-collision

• Need a collision resolution pipeline like we
had for rigid bodies
• Simple, accurate, fast but local algorithms at the

start

• Robust, global algorithms at the end

• Robustness is useful: it’s not so easy to
recover from a mistake without harming
motion
• Can do it though, and might need to (animators

doing the impossible…)

• See Baraff et al, SIGGRAPH’03


