
Theoretical Aspects of Schema Merging *

P. Buneman, S. Davidson and A. Kosky
Department of Computer and Information Sciences

Uuiversi ty of Pennsylvania
Philadelphia, PA 19104-6389

Abstract

A general technique for merging database schemas is developed that has a num-
ber of advantages over existiug techniques, the most importaut of which is that
schemes are placed in a partial order that has bouuded joins. This means that
the merging operation, when it succeeds, is both associative and commutative, i.e.,
that the merge of schemas is independent of the order in which they are considered
- a property uot possessed by existing methods. The operation is appropriate for
the design of interactive programs as it allows user assertions about relationships
between nodes in the schemas to be considered as elementary schemas. These can
be combiued with existing schemas using precisely the same merging operation.

The technique is general aud can be applied to a variety of data models. It can
also deal with certaiu cardiuality coastraiuts that arise through the imposition of
keys. A prototype imphuel~tation, together with a graphical interface, has been
developed.

1 Introduction

The desire to provide user views that combine existing databases, and to combine user
views during the design process of new databases, leads directly to the problem of schema
merging - a problem that has been present in the database literature for at least ten years
and to which a variety of sophisticated techniques have been applied. At one end of the
spectrum, the user is provided with a set of tools for manipulating two schema into some
form of consistency [l, 21; at the other end, algorithms have been developed that take two
schemas, together with some constraints, and create a merged schema (31. In general, one
will want to use a method that lies somewhere between these two extremes; a number of
such variations have been explored, and are surveyed in [4). It appears that some user
manipulation of the given schemas is essential - especially to introduce consistent names
- but that a merging algorithm can also be very useful, especially when large schemas
are involved.

To the best of our knowledge, the question of what meaning or semantics this merging
process should have has not been explored. Indeed, several of the techniques that have

‘This research was supported in part by AR0 DAAL03-89-G0031PRIME aud NSF IRl8610617, Peter
Buneman was also supported by a UK SERC funded visit to Imperial College, London.

153

been developed are heuristics: there is no independent characterization of what result
they should produce. One would like to have some semantic basis for a merge that would
characterize it with some notion of consistency with the *associated data. This iemantic
basis should be related to the notion of an instance of a schema, and is discussed in [5],
In this paper, we shall develop a simple and general characterization of database schemas
that allows us lo give natural definitions of what a merge is interms of the informational
content of the schemas being merged. In particular we shall define a merge which takes
the union of all the information stored in a collection of database schemas, and, when
possible, forms a schema presenting this but no additional information. We shall be able
to define a binary merging operator that is both commutative and associative, which
means that if two or more schemas are merged, the result is independent of the order in
which the merges are performed. Existing techniques do not have this property. Worse
still, lack of associativity is endemic to the data models against which the merging process
is commonly defined, such as the Entity-Relationship (RR) model.

Using a more general formalism, we will be able to rescue this situation by introducing
special, additional information during the merging process. The additional information
describes its own origin, and can be readily identified to allow subsequent merges to take
place. In addition, our new schema merging technique may be applied to other, existing
models, such as the ER-model, by first translating the schemas of these models into our
model, then carrying out the merge, and finally translating back into the original model.
It is possible to show that, if such an approach is used, then the merging process respects
the original model.

The paper is organized as follows: we shall first describe a general data model that sub-
sumes, in some sense, data models such as relational, entity-relationship and functional.
We then observe that even in this general model, we cannot expect to have associative
merges. We relax the constraints on our model to produce a still more general formu-
lation of a weuk schema for which the merging process is well behaved, and then show
how to convert these weak schem<as back into our original schemas. We also show that
certain common forms of constraints on the schemas, such as key constraints and some
cardinality constraints, can be handled in the same framework. Finally we shall indicate
how these methods could be used equally well to give definitions of alternative merge,
and, in particular, describe how we could form lower merges representing the intersection
of the information represented by a collection of schemas. c

2 The Model

We represent a schema as a directed graph, subject to certain restrictions, whose nodes
are taken from a set JV of classes, and with two kinds of edges that are used to represent
“attribute of” relationships or “specialization of” relationships between classes. Attribute
edges have labels taken from a set L, so that we represent the attribute-of edges by a
relation & C n/ x C x N. If (p,u, y) E E then we write p 5 q, with the meaning
that any instance of the class p must have an u-attribute which is a member of the class
Q. Since in some data models, like the ER data model, the term “attribute” is used to
designate a certain kind of node in a schema, we shall use the neutral term (zrmw to
refer to these labeled relationships, and say for p A q that p has uf~ a-arrow to cluss q.
The specialization edges are represented by a relation S on classes; we use the notation

154

p =+ q and say that p is a specialization of q when (p, q) E S. This indicates that all the
instances of p are also instances of q. Formally, a schema over N, t is a triple (C,E,S)
where C G n/ is a finite set of classes, S is a partial order (a reflexive transitive and
antisymmetric relation on C), and & is a subset of C x C x C satisfying

1. If p s q1 and p A q2 then 3s E C . s _ q1 and s _ q2 and p A s.

2. Ifp=+-qandq -% r then p 5 r.

3. If p “, s and s ==+ r then p A r.

for all a E C and p, q, r, a E C
The first constraint says that if p has an a-arrow, then there is feast class a (under the

ordering S) such that p has an u-arrow to class s. Such a class is said to be the canonical
class of the u-arrow of p. The second constraint says that, if q has an u-arrow to class
r and p is a specialization of q, then p must also have an u-arrow to class r. The third
constraint says that, if p has an u-arrow to class s and s is a specialization of r, then p
also has an a-tirow to class r, so constraints 2 and 3 together mean that arrows are, in
some sense, preserved by specialization. It is worth remarking that we could equally well
have defined the arrows as partial functions from classes to classes, which is how they are
expressed in the definition of a functional schema in [2]. If we write p f q when p has an
u-arrow with canonical class q, we have the equivalent conditions

Dl. IfpLqr andpLqs thenqr =q2

D2. If q 3 s and p =+ q then 3r E C.r =+ s and p 5 r

Also, given any - satisfying conditions Dl and D2, if we define the relation -+ by
p 4 q iff there exists a s E C such that s =+ q and p 2 s, then --t will satisfy
conditions 1, 2 and 3 above. Conditions Dl and D2 are those given for the arrow in [2]
and are also given by Motro [l] as axioms for functional schemas (the latter uses unlabeled
arrows).

For example, the ER diagram shown in figure 1 corresponds to the database schema
shown in figure 2, where single arrows are used to indicate edges in & and double arrows
are used to represent pairs in S (double arrows implied by the transitivity and reflexivity
of S are omitted). In all the subsequent diagrams, edges in E implied by constraint 2
above, will also be omitted.

Suitable restrictions of such graphs may be used to describe instances of a variety of
data models: relational, entity-relationship and functional. For a relational instance, we
stratify JV into two classes NR and N,, (relations and attribute domains), disallow spe-
cialization edges, and restrict arrows to run labeled with the name of the attribute from
n/R to n/A (first normal form), while, for the E-R model, we stratify C into three classes
(attribute domains, entities and relationships) and again place certain restrictions on the
edges. Moreover, it can be shown that the merging process described in section 4 preserves
these restrictions, so that we can merge schemes from other models by first translating
them into our model, then merging them, and finally translating them back into the
original data model (see [5] for details). By a less constrained process we can describe
instances of the functional model [6, 2, l]. The graphs are also general enough to repre-
sent databases with higher order relations (that is, relationships between relationships),

155

r

Figure 1: An En-diagram with “isa” relations

and complex data structures (such as circular definitions of entities and relationships),
features that are commonly found in object-oriented data models. Consequently, despite
its apparent simplicity, the generality of the model makes it a good candidate for schema
merging. One should note, however, that further adornment of these graphs is needed
to describe instances of sophisticated data models such as those proposed in [i’] and (81,
which contain constructors for sets and variants.

3 Problems with finding merges of schemas

The first problem to be resolved when forming a common merged schema for a number of
distinct databases is to state the correspondences between the classes and correspondences
between the arrow labels of the various databases. This problem is inherently ad hoc
in nature, and depends on the real-world interpretations of the underlying databases.
Therefore, the designer of the system must be called upon to resolve naming conflicts,
whether homonyms or synonyms, by renaming classes and arrows where appropriate. The
interpretation that the merging process places on names is that if two classes in different
schemas have the same name, then they are the same class, regardless of the fact that they
may have different arrow edges. For example, if one schema has a class Dog with arrow
edges License& Owner and Breed, and another schema has a class Dog with arrow edges
Name, Age and Breed, then the merging process wiI1 collapse them into one class with
name Dog and arrow edges Licenset, Owner, Name, Age, and Breed. It is also possible to
constrain the merging process by introducing specialization relations ul =+ 02 between
nodes q in schema & and a2 in schema G2. We can treat al * u2 as an atomic schema
that is to be merged with G1 and then with 83. Because our schema merge is associative
and commutative, the result is well-delined; indeed an arbitrary set of constraints can be
added in this fashion.

For the remainder of this section and the following section, we will’consider the merge
of a collection of schemas to be a schema that presents all the information of the schemas
being merged, but no additional information (although in Section 6, we will indicate that

Figure 2: A database schema with “isa” relations

there may be other, equally valid interpretations of what the merge should be). Hence
what we will consider to be the merge is the “least upper bound” of the database schemas
under some sort of information ordering.

One of the first problems we notice in looking for a suitable definition of merge is that
the merge of two schemes may contain extra implicit classes in addition to the classes
of the schemas being merged. For example, figure 3 shows two schemas being merged.
The first schema asserts that the class C is a subclass of both the classes Al and A2. The
second schema asserts that the classes Al and A2 both have a-arrows, of classes Bl and
B2 respectively. Combining this information, as we must when forming the merge, we
conclude that C must also have an a-arrow, and that this arrow must be of both the class
Bl and B2. Consequently, due to the restrictions in our definition of database schemes
in Section 2, the a-arrow from the class C must point to class which is a specialization of
both Bl and 82 and so we must introduce such a class into our merged schema.

When we consider these “implicit” classes further we find that it is not sufficient merely
to introduce extra classes into a schema with arbitrary names: the implicit classes must
be treated differently from normal classes. Firstly, if we were to give them the same status
as ordinary classes we would find that binary merges are not associative.

For example consider the three simple schema shown in figure 4. If we were to first
merge the schemes Gl and G2 we would need to introduce a new implicit class (X?) below
D and E, and then merging with G3 would make us introduce another new class below X?
and F, yielding the first schema shown in figure 5. On the other hand, if we were to merge
Gl with G3 and then merge the result with G2, we would first introduce an implicit class
below E and F, and then introduce another one below this one and D. Clearly what we
really want is one implicit cl‘ass which is a specialization of all three of D, E and F.

Another problem is that it is possible for one schema to present more’information
than another without containing as many implicit classes. Intuitively, for one scliema to
present all the information of another (plus additional information) it must have, at least,
all the normal classes of the other. However let us consider the two schemas shown in
figure 6. We would like to assert that the schema G3 shown in figure 7 is the merge of

. Al :

;lt :
.c :

. .
d :
: A2 :

.
\

.

\

1

a

: Bl B2 :

\

Figure 3: Schema merging involving implicit classes

the two schemas, Cl and G2, but the schema G4 also presents all the information of Gi
and G2, and in addition contains fewer classes than G3. The point is that G4 asserts that
the a-arrow of F has class E, which may have restrictions on it in addition to those which
state that it is a subclass of both C and D, while G3 only states that the a-arrow of F has
both classes C and D.

4 Merging Database Schemas

In order to avoid the complexities of introducing implicit classes, we will weaken our
definition of database schemes so that implicit classes become unnecessary. We then
define an information ordering on these menk s&emus, such that binary joins do exist and
are associative, and form the weak schema merge. Finally we convert the merged weak

Gl: A+D G2: G3:

B&E H H

C+F

Figure 4: Some simple schemas

Merge(Merge(G1, G2>, G3) : Merge (Merge(G1, G3) , G2> :

Figure 5: An example of non-associative merging

%l : G2:

\
a

C

v

;YB *

\d

B

Figure G: Yet more schemas

schema into a proper schema by introducing additional implicit classes (we will refer to
the schemas satisfying the conditions in section 2 as proper schemas.)

4.1 Weak Schemas

A weak schema is a schema in which we no longer require that if class p has an u-arrow,
then the a-arrow has a canonical class (condition 1 of proper scbemas). Formally, a weak
schema over N, t is a triple (C , E, S) where C C JV is a set of classes, S is a partial order
(a reflexive transitive and antisymmetric relation on C), and & is a subset of C x t x C
satisfying

Wl. Ifp*qandq&rthenp&r.

W2. If p L s and s _ r then p & r.

forallaEL:andp,q,r,sEC
The ordering on weak schemas is defined in the obvious way: Given two weak schemas
CL = (G,El,St) and 62 = (C 2, Is, SZ), we write & E 62 iff

1. cr cc,

159

c3: G4:

Figure 7: Possible candidates for the merges of the schemas

That is, every class in 61 appears in P 2, every u-arrow edge in 91 appears in &, and
every specialization edge in Qi appears in &.

It is clear that c is a partial ordering on weak schemas; it is also bounded complete,
as shown in the following proposition.

Proposition 4.1 For any weak schemas G, and 82, if there exists a weak schema 8’ such
that G1 L 9’ and & C 0’ then there is a least such weak schema 91 LI &.

Proof: Given weak schemas Gi and 82 as above, define ri = (C,S,S) by

c = c,ucz

s = (S, USZ)’

E = {p~sE(Cx~xC)I3rl,rEC,p~qES,r~sES,

and y 0, r E (Ei U &,)}

(where (Si U Sz)’ denotes the transitive closure of (Sr U Sa), and & adds edges to Sr U Es
necessary for conditions Wl and W2 to hold). It is clear that, if Q is a weak schema,
then it is the least weak schema such that 61 & 6 and (22 & Q. Hence it is sufficient to
show that, if there is a weak schema, 0’ = (C’, E’, S’), such that G1 E 0’ and 02 E G’,
then Q is indeed a weak schema. The only way that Q can fail to be a weak schema is if
the relation S fails to be antisymmetric, so the result follows from the fact that, for any
suitable 6’ as above, we must have S C S’, and so if S’ is antisymmetric then so is S. w

We say a finite collection of weak schemes, &, . . . , g,, is conlpatible if the relationship
(S1 u . . . U S,)’ is anti-symmetric (where Si, . . . , S, are the specialization relations of
Gl,...,Gn respectively). Consequently we have, for any finite compatible collection of
proper schemas, 6i, . . , , G,, there exists a weak schema merge 6 = ursI Gi. Furthermore,
since we define 0 as the least upper bound of gi,. . . , &, the operation is associative and
commutative.

For example, the schemas Cl and G2 in figure 6 are compatible, and their weak schema
merge is shown in figure S.

160

Cl U G2:

Figure S: The least upper bound of two schemes

4.2 Building proper schemas from weak schemas

We now must pay the price for our use of weak schemas: we must provide a way of
introducing implicit classes into a weak schema G, in order to form a proper schema c,
such that if there are any proper schemas greater than 9 then G is such a schema.

First we introduce some new notation. For any y E C and any u E C, we write R&u)
to denote the set of classes reachable from p via u-arrows

WV4 = h.CCP~d

Further, for any set X G C, we use R(X,a) to denote the set of classes reachable from
classes in X via u-arrows

R(X,u) = {qEcppEx *p&q}

We define the function Mills : P(N) --$ P(N) so that, for any set X G N, MinS(X)
is the set of minimal elements of .Y under the ordering S. That is

MitbS(A’) = {p E X 1 Vq E A’ . if (I + p then q = p}

where F(A) denotes the power set of the set A.
We now proceed to build a proper schema c = (c,z,s) from G as follows:

1. First we will construct a set, Imp & P(Af), of sels of classes, corresponding to our
implicit classes. We will construct Imp via a series of auxiliary definitions as follows:

I0 = HP) IPm
I n+l

= {R(X,u) 1 x E I”,u E L}

I” = l-j I”

Imp = ikts(X) j -3’ E I” and lMinS(X)l > 1)

Intuitively, Imp is the set of all sets of minimal classes which one can reach by
following a series of arrows from some class in C, with cardinahty greater than 1.
Note that the process of forming Imp will halt since there are a finite number of
subsets of P(N).

161

2. We define ?? by first taking C and then adding a new class 7 for every X E Imp.
That is

%=CU{XlXEImp}

3. We define r so that if p -% 4 for each Q E X then p 4. x E F, while if there is a
q such that p -L q then p 5 y E r. Formally:

where R(x, a) = R(X, a) for all X E Imp.

4. We define 3 by first taking S and then adding every x + F such that every class
in Y has a specialization in X; every X + p where p has a specialization iti X;
and every p =% x where p is a specialization of every class in X.

3 = SU{~e_,P~x,YEImp,vpEY * 3qEX * q=%pfS)

U(~‘pPI?LIE1’7’z’,PEC,34EX - q=apES}

U(p==$XIpEC,XEImp,v~Ex * p=sqES}

For example, the effect on the schema shown in figure S would be to introduce a single
implicit class, {C,D}, thus forming the schema G3 shown in figure 7 with the class ?
reDlaced by {C. D1.

-It can bk s’hiwi that for any weak schema 9, G is a weak schema and 9 C c. Further-
more, 5 can be shown to respect condition 1 of the definition of a proper schema, and is
therefore also a proper schema.

We would like to be able to show that c is the least proper schema greater than 6.
However there are two minor problems with this: first, it is possible to form @her similar
proper schemas by using different names for the implicit classes (compare this to alph&
conversion in the lambda calculus); second, for any two sets X, Y E Ima if every class in
Y has a specialization in X then our method will include the pair (X,Y) in 3. However
it is not necessarily the case that this specialization relation is required, and it might
be safe to omit it. We could attempt to modify our method so that such pairs are.only
introduced when required. InsteA we will argue that, since the implicit classes have no
additional information associated with them, it follows that these specialization relations
do not introduce any extra information into the database schema, and so, since they seem
natural, it is best to leave them there. Consequently we feel justified defining the merge
of a compatible collection of database schemes, &?,, . . . ,G,, to be the database schemac,
where B = UC1 Qi.

Of course, not every merge of a collection of compatible schemas makes sense. That
is, the new classes introduced may have no correspondence to anything in the real world.
To capture this semantic aspect of our model, we would need to introduce a “consistency
relationship” on n/, and require that, for every X E Imp and every p, q E X, the pair
(p, q) is in the consistency relationship. If this condition were violated, the schemaa would
be inconsistent, and g would not exist. Note that checking consistency would be very
efficient, since it just requires examining the consistency relationship. However, while
the idea is interesting, it is beyond the scope of this paper. Suffice it to say that if the
merge of 91,. . . , 6, fails, either because 8,). . . , $7, are incompatible, or because they are

162

inconsistent, the merge should not proceed, and the user must re-assess the assumptions
that were made to describe the schemas.

5 Cardinality Constraints and Keys

The model we have used so far concentrates on the semantic relationships between classes
via specialization and arrow edges, but does not further describe arrows as participating in
keys or having associated cardinality constraints. Cardinality constraints in the ER model
are typically indicated on the edges between a relationship and an entity by labeling them
“many” (or “N”, indicating unrestricted upper bounds), or “1” (sometimes indicated by
an arrow pointing into the entity set). 1 For example, consider the Advisor relationship
between Faculty and GS in Figure 9, and for the moment interpret this schema as an
ER diagram. As drawn, Advisor is a “many-many” relationship, typically indicated by
labeling the f acuity and victim edges “N”: a graduate student may be advised by several
faculty members, and each faculty member can advise several different graduate students.
If we decided to restrict Advisor to indicate that a gra.duate student can be advised by at
most one faculty member, the faculty edge from Advisor to Faculty would be relabeled
“ n 1 .

As it stands, however, our model has no way of distinguishing these different edge
semantics. Using the example of the previous paragraph, labeling the faculty edge in
the Advisor relationship “1” rather than “N” could result in the same graph in our model,
i.e. the graph in Figure 9. 2 In this section, we will capture such constraints by introducing
“key constraints” on nodes, and argue that in some sense they are more general than the
cardinality constraints typically found in ER models.

Key constraints, which indicate that certain attributes of an entity form a key for that
entity, are another common form of assertions found in database models. As an example,
in the ER and relational models, for the entity set Person@%, Name, Address), we
might claim that there are two~keys: {SS#} and {Name, Address}. The intuition behind
this statement is that if two people have the same social secuiity number, or the same
name and address, then they are the same person. Generalizing, one could claim that a set
of edges of a relationship form a key for that relationship. As an exampfe, for the Advisor
relationship in which the faculty edge was labelled with a “1” and the victim edge was
labelled with a “N”, we could claim that the victim edge forms a key. In the terminology
of proper schemas, we capture such key constraints by asserting that {al, az, a,} form
a key for p, where each a; is the label of some arrow out of p.

In many established data-models it is required that every class has at least one key,
so that the set of all the arrows of a class forms a key if no strict subset of the arrows
does. By relaxing this constraint, so that a class may have no key at all, we can capture
models in which there is a notion of object identity. A superkey of a class is any superset
of a key. We may therefore think of the set of superkeys for a class p, X(p), as a set of

‘It is worth noting that there is little agreeme%t on what edge labels to use, and what they mean in ER
digrams, especially for ternary and higher degree relationships. No semantics are given in [9]. Introductory
textbooks on databases avoid the question and merely give examples of binary relationships [lo, 11, 121;
[13] is slightly more bone& and says that “the semantics of ternary and higher-order relationship sets can
become quite complex to comprehend.” Varying interpretations can be found in (14, 15, 31.

aOf course, one might eliminate the Advisor node entirely, and draw a single A&visor-edge from OS
to Faculty, but this reasoning does uot extend to ternary arid higher degree relationships.

163

sets of labels of arrows out of p. SK(p) has the propertly that it is “upward closed”, i.e.
if s E SK(p) and 31 2 s, then SI f SK(p).

We now have the constraint on specialization edges that if p =+ y then SK(p) > SK(q),
i.e. all the keys for (I are keys (or superkeys) for p. For example, the specialisation Advisor
_ Committee in the schema shown in figure 9 asserts that the advisor of a student must
also be a member of the thesis committee for that student.

Figure 9: “Is&-A” Relation Between Relationships

Since the committee for a student consists of several faculty members, and each faculty
member can be on several thesis committees, the set of keys for Committee is {{f acuity,
victim}}. However, since each student has at most one advisor, but that each faculty
member can be the advisor of several students, the set of keys for Advisor is ({victim}}.
This is equivalent to having cardinality constraints asserting that the relation Advisor is
“one-to-many” while Committee is “many-to-many”. Note that ({victim}, {faculty,
victim}} 2 {{faculty, victim}}, thus the merged schema satisfies our constraint.

Our task now becomes to derive keys in the merged schema subject to this constraint.
Suppose schema 0 is the proper schema merge of 61 and 62. Each class p in $7 appears

at most once in each of Gl and &, with key assignments SKI(p), S&(p) respectively
(when defined). We define SK: t o b e a satisfactory assignment of keys to classes if

1. S&(p) C SK(p), if p E Cl; and

2. S&(p) G SK(p), if p E Cz; and

3. S/c satisfies the condition that SK(p) ,> SK(q) whenever p =+- q.

It is readily checked that if SK and SAC! are satisfactory assignments, then so is SKnSK/,
defined by (SK:nSK/)(p) = SK(p) nSK/(p). Tl urs there is a unique minimal satisfactory
assignment of keys to classes.

We can see that key constraints are sufficient to capture the kinds of cardinality con-
straint most commonly found in the ER. literature, namely the restriction of attributes
or relations to being “many-to-many”, “many-to-one” and so on, at least in the case of
binary relationships where their meaning is clear. However they are not capable of rep-
resenting the participation constraints, representing total versus partial participation of
an entity set in a relationship, found in some models (see [3]): for example, we cannot
use key in our schemas to specify that each graduate student must have a faculty advisor,
but that not every faculty member must necessarily advise some student. On the other
hand, cardinality constraints cannot capture all key assertions: For example, consider the
relationship Transaction in Figure 10. The statement that Transaction has two keys,
one being {lot, at], the other being {card, at}, has no correspondence in terms of
labeling edges.

164

Figure 10: A Class with Multiple Keys

Keys can also be used to determine when an object in the extent of a class in an
inltance of one schema corresponds to an object in the extent of the same class in an
instance of another schema. For example, if Person is a class in two schemas, 91 and &,
which are being merged, and both schemas agree that {SS#} is a key for Person, then an
object in the extent of Person in an instance of El corresponds to an object in the extent
of Person in an instance of 82 if they have the same social security number. However,
suppose that E1 claims that {SSII} is a key for Person, and Qz has an SSI-arrow for
Person but does not claim that it is a key. Since {SS#} is a key for Person in the merged
schema, an additional constraint has been placed on the extents of &: two objects in the
extent of Person are the same if they have the same social security number, no matter
whether both are from an instance of Q1, both are from an instance of (72, or one is from
an instance of Q1 while the other is from an instance of G2. Furthermore, if O1 claims that
{SS#} is a key for Person but Q2 does not have an SS#-arrow for Person, then there is
not way to tell when an object frown, the extent of Person in an instance of S1 corresponds
to an object from the extent of Person in an instance of (72.

6 Lower Merges

In Section 4 we defined the merge of a collection of schemas as their least upper bound
under an information ordering. A consequence of this is that, if we merge a number of
schemas, then any instance of the merged schema can be considered to be an instance
of any of the schemas being merged. In some cases, however, it is desirable to find the
greatest lower bound of a collection of schemas and use that as the merge. In this case
any instances of the schemas being merged would also be instances of the merged schema,
and, further, we would expect to be able to coalesce or take the union of a number of
instances of the collection of schemas and use that as an instance of the merged schema.
This kind of merge,is likely to arise in, for example, the formulation of federated database
systems.

We will refer to the merges defined in section 4 as upper Merges, and, in this section,
we will discuss the formulation of lower merges, representing the greatest lower bound of
a collection of schemas. It could legitamately be argued that lower merges are of primary
importance and should have been introduced first. However we introduced upper merges
as our primary concept of a merge because they are inherently &mpler and more natural
to formulate. There are’a number of complications involved in giving a formal definition
of lower merges. For a detailed treatment of the problems involved see [5].

As it stands, taking the lower bound of a collection of schemas using our iuformation

165

ordering is clearly unsatisfactory: any information on which two schemas disagree on is
lost. For example if one schema has the class Dog with arrows name and age, and another
has Dog with arrows name and btced, then in the lower bound of the two schemas the
class Dog will only have the arrow natne. What we want, however, is some way of saying
that instances of the class Dog mcry have crge-arrows and may have &e&arrows, but are
not necessarily required to do so. Worse still, if one schema has the class Guide-Dog and
another does not, then the lower bound of the two schemas will not. The second problem
can be dealt with easily by adding all classes involved in other schemas to each schema in a
collection before proceeding with the construction of the lower merge. The first problem,
however, is more difficult and requires us to extend our delinition’of (weak) schemas.

We define the semi-lattice of participation constraints, ordered by -<, to be as shown
in figure Il. We will extend the definition of (weak) schemas by associating a participation

Figure 11: The semi-lattice of participation constraints

constraint with each arrow of a schema via a mapping K : 8 + (0, O/l, 1). The idea is
that, if a class p has an u-arrow of class q, then if the arrow has participation constraint
1 then every instance of class y mud have a an u-arrow to an instance of class q; if the
arrow has participation constraint O/l then an instance of p may have an a-arrow of class
Q; and if the arrow has constraint 0 then an instance of p nzay not have an Q-arrow of
class q. We adopt the convention of not drawing arrows with the participation constraint
0 in our diagram, and, further, assume that a schema which does not have some arrow
p -L q is equivalent to th e same schema but with the arrow p A q with participation
constraint 0. I

Now, if one schema has an arrow which is not included in another, then we can assume
that the second schema also has the arrow, but with participation constraint 0, and we
can take the greatest lower bound of the participation constraints (under the ordering I)
to be the participation constraint of the arrow in the merged schema.

Hence, with the addition of participation constraints, we can form the we& lower merge
of a collection of schemas in a similar manner to that used to construct the we& upper
merges in section 4. We can also build a proper schema from a weak lower merge using an
algorithm similar to that in section 4, except that that the implicit classes are introduced
above, rather than bellow, the sets of proper schemas that they represent.

It is worth noting that, while upper and lower merges represent two extreme views of
what the merge of a collection of schemas should be, there may well be valid and useful
concepts of merges lying inbetween the two. However the authors believe that, in order
for a concept of a merge to be valid and well defined, it should have a definition in terms
of an information ordering similar to the ones given here.

7 Conclusions

Using a simple but general formalism, we have characterized the vreak schema merge
of a collection of schemas as their least upper bound. The tnerge of these schemas is
then defined by translating the weak schema merge to a proper schema. The translation
introduces new “implicit” classes as required, and identifies their origin in their name.
Although not discussed in detail in this paper, the “real-world” validity of an implicit
class can be efficiently checked by consulting a consistency relationship between the classes
from which the implicit class was formed.

Despite the simplicity of our mathematical construction, we believe that using an infor-
mation ordering is the right way of describing the merge of schemas: it has a well-defined
result, and the merge operation is associative and commutative. Thus user assertions
about the relationships between schemes can be thought of as real assertions rather than
“guiding heuristics” since the merge is independent of the order in which the assertions
are stated. The approach in this paper focused on the upper merge of schemas, which
seems to be the most uatural concept of a merge. Other kinds of merge can be defined,
including the lower merge, by varying the information ordering used.

The approach presented in this paper can be generalized to describe the merge in a
number of other data mddels by representing schemas in other data models as “restricted”
instances of $chemas in our general moclel (i.e. stratifying classes in terms of their meaning
in other models), and finding their proper schema merge. Our merge can be shown to
“preserve strata”, guaranteeing that the result will an instance of the original model; a
proof of this with full details can be found in 15).

To use this approach as a practical schema merging tool, several issues should be
addressed. Firstly, more attention should be paid to how cardinality constraints should
be encorporated. While our preliminary approach has been to use a notion of keys,
other ideas include allowing arrows to be “multivalued functions” as in [2]; [5] shows
how this idea can be extended to our model. Secondly, some form of assistance should
be given for “restructuring” schemas to obtain a better merge. Not only can “naming”
conflicts occur (such as homonyms and synonyms), but “structural” conflicts can occur.
For example, an attribute in one schema may look like an entity in another schema, or a
many-one relationship may be a single arrow in one schema but introduce a relationship
node in another schema. In these cases, the merge will not “resolve” the differences but
present both interpretations. To force an integration, we need some kind of “normal
form”. Thirdly, we need to evaluate how many implicit classes can be introduced in the
merge. Although in the examples we have looked al this number has been small, it may
be possible to construct pathological examples in which the number of implicit classes is
very large; however, we do not think these are likely to occur in practice. Fourthly, we
must discuss how to merge instances; for a discussion of the problems involved, see [16].

We have found that the simplicity of the method and presence of strong theoretical
underpinnings have made extensions of the technique very easy to develop. In addition,
we have been able to rapidly prototype the method, together with a graphical interface
for creating and displaying schema graphs.

167

References

[l] A. Motro, “Superviews: Virtual Integration of Multiple Databases,” IE,?Z%!? $“mnseclions on
Software Engineering, vol. SE-13, pp. 785-798, July 1987.

[2] J. Smith, P. Bernstein, U. Dayal, N. Goodman, T. Landers, I<. Lin, and E. Wong,
“Multibase- Integrating Heterogeneous Distributed Database Systems,” in Proceedings of
AFIPS, pp. 487-499, 1981.

[3] S. Navathe, R. Elmasri, and J. Larson, “Integrating User Views in Database Designs,”
IEEE Computer, pp. 50-62, January 1986.

[4] C. Batini, M. Lenzerini, and S. Navathe, “A Comparative Analysis of Methodologies for
Database Schema Integration,” ACM Conquting Surveys, vol. 18, pp. 323-364, December
1986

[5] A. Kosky, “Modeling and Merging Database Schemas,” Tech. Rep. MS-CIS-91-65, Univer-
sity of Pennsylvania, 1991.

[S] D. Shipman, “The Functional Data Model and the Data Language DAPLEX,” ACM tins-
actions on Data6use Systems, vol. 6, pp. 140-173, March 1981.

[7] R. Hull and R. King, “Semantic Database Modeling: Survey, Applications, and Research
Issues,” ACM Computing Surveys, vol. 19, pp. 201-2G0, September 1987.

[S] A. Ohori, “Semantics of Types for Database Objects,” Theoretical Computer Science,
vol. 76, pp. 53-91,199o.

[9] P. Chen, “The Entity-Relationship Model: Towards a Unified View of Data,” TODS, vol. 1,
no. 1, pp. 9-36, 1976.

[lo] J. Ullman, Principles of Dal&se and Knowledge-Base Systems. Vol. 1, Computer Science
Press, 1988.

[ll] H. Korth and A. Silberschatz, D&&se System Concepts. McGraw Hill, second ed., 1991.

[12] R. Elmasri and S. Navathe, Fundumentrds of DaMuse Systems. Benjamin/Cummings,
1989.

[13] D. Tsichritzis and F. Lochovsky, Data Models. Prentice-Hall, 1982.

[14] T. Teory, D. Yang, and J. Fry, “A Logicd Design Methodology for Relational Databases
Using the Entity-Relationship Model,” ACh4 Computing Surveys, vol. 18, pp. 197-222, June
1986.

[15] M. Lenzerini and G. Santucci, “Cardinality Constraints in the Entity Relationship Model,”
in The Entity-Relationship Appnnack to Softwaw Engineering, pp. 529-549, North-Holland,
1983.

[16] S. Widjojo, R. Hull, and D. Wile, “Distributed Information Sharing Using WorldBase,” in
A Newsletter of the Computer Society of IEEE, pp. 17-26, August 1989.

