

Model Management 2.0: Manipulating Richer Mappings

Philip A. Bernstein, Sergey Melnik
Microsoft Corporation

One Microsoft Way, Redmond, WA 98052-6399 U.S.A.
{philbe, melnik}@microsoft.com

ABSTRACT
Model management is a generic approach to solving problems of
data programmability where precisely engineered mappings are
required. Applications include data warehousing, e-commerce,
object-to-relational wrappers, enterprise information integration,
database portals, and report generators. The goal is to develop a
model management engine that can support tools for all of these
applications. The engine supports operations to match schemas,
compose mappings, diff schemas, merge schemas, translate
schemas into different data models, and generate data
transformations from mappings.
Much has been learned about model management since it was
proposed seven years ago. This leads us to a revised vision that
differs from the original in two main respects: the operations must
handle more expressive mappings, and the runtime that executes
mappings should be added as an important model management
component. We review what has been learned from recent
experience, explain the revised model management vision based
on that experience, and identify the research problems that the
revised vision opens up.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]

General Terms
Algorithms, Design, Theory

Keywords
data exchange, data integration, data translation, model
management, schema evolution, schema matching, schema
mapping, engineered mapping

1. INTRODUCTION
One of the main goals of database management is to make it
easier for users to write programs that access large shared data-
bases. We call this the data programmability problem. One reason
why data programmability is not easy is that it often requires
complex mappings between different representations of data.
Those different representations arise for two main reasons:
heterogeneity and impedance mismatch. Heterogeneity arises
because data sources are independently developed by different
people and for different purposes and subsequently need to be

integrated. The data sources may use different data models,
different schemas, and different value encodings. Impedance
mismatches arise because the logical schemas required by
applications are different from the physical ones exposed by data
sources [31]. In both cases, much of the work to access the data
involves designing, implementing, testing, and using mappings
between these different data representations. The subject of this
paper is how to make this work easier.
Integrating heterogeneous data is among the oldest of database
problems. It predates �SIGMOD,� which was called SIGFIDET
(for FIle DEscription and Translation) before being renamed
SIGMOD in 1975. Every database research self-assessment has
listed interoperability of heterogeneous data as one of the main
problems where more research is needed [2][12][13] [94].
The database field has been quite successful in addressing the data
programmability problem. Data integration, the problem of pro-
viding access to heterogeneous data sources, has been a popular
research topic for 25 years [34][95][100]. There is a huge research
literature on solutions to the heterogeneity and impedance
mismatch problems. And there are many products to help solve
those problems.
However, despite this progress, coping with heterogeneity and
impedance mismatch remains one of the most time-consuming
data management problems. Anecdotal evidence suggests that it is
40% or more of the work in enterprise IT departments. One study
of development projects found that coding and configuring object-
to-relational mappings was 30-40% of the effort [58]. It is a large
and growing part of scientific, engineering and medical
computing. It is needed for many web searches. And it is the
essence of the semantic web vision. In short, it is a problem in
need of better solutions.

1.1 The Nature of Schema Mappings
To cope with heterogeneity and impedance mismatch, the core
problem is in developing and using complex mappings between
schemas. The nature of the problem depends a lot on the amount
of precision required in the mapping specification.
In enterprise IT and many other domains, one needs to specify an
engineered mapping between the schemas of the data to be
accessed or integrated. By �engineered,� we mean that the
mapping is precisely specified and tested for each application.
We�ll use the term data architect for the role of the person
developing engineered mappings.
At the other end of the spectrum lies approximate mappings,
where users find relationships between data as they go, as in web
search or in mining a heterogeneous set of data sources. In these
cases, imprecision is tolerable since there is usually no well-
defined notion of correct answer. In some cases, a probabilistic
analysis may be able to give a formal estimate of the accuracy of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD�07, June 12�14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006...$5.00.

1

the mapping. But in the end, it is usually up to the user�often an
end-user, not a skilled data architect�to determine if the retrieved
data is useful.
In between these two ends of the spectrum are cases where both
engineered and approximate mappings are developed. For exam-
ple, data integration is sometimes performed incrementally, where
some mappings are carefully engineered and others are done as a
best-effort. This approach, called �dataspaces� in [43] [52], arises
in data exploration scenarios, such as the management of scientif-
ic data, personal information, and military command and control,
and in schema extraction from text [47].
The spectrum from engineered to approximate mappings is quite
broad. Many points along that spectrum are described in position
papers at a recent workshop on data integration [101]. Although
the entire spectrum is of great practical importance, we will focus
on just one end of it, that of engineered mappings.
There are many usage scenarios that require engineered mappings.
One way to characterize them is to list the types of tools used to
support them. The following are some common tools where
engineered mappings play a central role1:

• Extract-Transform-Load (ETL) tools, to simplify the
programming of scripts to extract data from sources, clean it,
reshape it, and load it into a data warehouse [36][59].

• Message mapping tools, to simplify the programming of
message translation between different formats. These are
often embedded in message-oriented transactional middle-
ware, such as enterprise application integration (EAI)
environments [5][9][71][98].

• Query mediators to access heterogeneous databases. In
database research, this is called data integration [63]. In
commercial IT, it is called Enterprise Information Integration
(EII) [51], where there are many variations, e.g., supporting
web services and updates [26]. There are custom implemen-
tations for bio-informatics and medical informatics [33][35].
This usage scenario may also be served by keyword search.

• Wrapper generation tools, for example, to produce an object-
oriented wrapper for a relational database [4][54][79]. Unlike
query mediators, wrappers often need to support incremental
updates. Some enterprise application products include
custom tools for this, since the wrappers are such a large
piece of the application.

• Graphical query design tools, to define a mapping between
source and target schemas [84].

• Portal design tools, to map data sources to controls that can
be conveniently displayed [9][73][90].

• Forms managers to map between structured data sources and
forms [56][72]. Many enterprise application products include
custom tools for this.

• Report writers that map between structured data sources and
a report format [32][74].

• OLAP databases, which map data sources into data cubes
that are suitable for OLAP queries [29].

• Data translation tools for moving data between different
applications [72]. For commercial applications, this role has
been partly subsumed by ETL tools. However, for design

1 Of the large number of products in each category, we cite a

somewhat random and small subset that happen to be known to
us. We apologize for all of the omissions.

tools it is a separate product category. For example,
mechanical CAD tools need to translate between different
geometric coordinate systems, assembly structures, and data
formats [23].

Despite the obvious overlap in mapping functionality between
these tools, there is little shared mechanism between them, in
some cases even when offered by the same vendor.

1.2 The Problem
Given the existence of all these tools, why is it still so labor-
intensive to develop engineered mappings? To some extent, it is
an unavoidable consequence of ambiguity in the meaning of the
data to be integrated. If there is a specification of the schemas, it
often says little about integrity constraints, units of measure, data
quality, intended usage, data lineage, etc. Given that the
specification of meaning is weak and the mapping must be
precisely engineered, it seems hopeless to fully automate the
process anytime soon. A human must be in the loop.
Since human designers are required, the solution must lie in
raising the level of abstraction in which engineered mappings are
specified and in offering better tools to do that specification. We
need better tools to help the data architect understand the
semantics of the data to be integrated, select data sources, extract
schema from unstructured sources, deduplicate overlapping data,
clean up inconsistencies, choose among different types of
integration tools (ETL, EII, replication), design and implement
mappings, debug mappings, expose mapping provenance, and
revise mappings when schemas evolve. These problems and
others were nicely summarized by Laura Haas in [48].
Most of these problems are hard. A lot of engineering effort is
required to build tools to solve them. To maximize the
functionality of the tools that can be built with a given engineer-
ing budget, we need reusable components that can be applied to a
wide variety of scenarios. We already do this for the execution
environment, notably with query execution engines, which are
usually part of a database system or middleware framework. We
need to do this for the design-time environment too�we need to
produce reusable components of tools.

1.3 The Initial Research Agenda
One component that is present in all of the tools listed in
Section 1.1 is a mapping designer. This component helps the data
architect design a mapping between schemas in a high-level
notation. It generates code that implements the mapping, typically
in a programming language or query language, depending on the
scenario. Ideally, it should also help the user evolve a mapping
after one of the mapped schemas changes, though this is not
commonly offered today.
The need for a more powerful mapping designer was recognized
by Miller, Haas, and Hernández [75] in the first of a long series of
papers about the Clio project (e.g., [49][76][99][102]). The project
has explored ways to simplify the data architect�s job by propos-
ing mappings based on simple correspondences between elements
of the source and target schema, generating code from the
mappings, and updating the mappings when one of the schemas
changes [103]. The tool can be used to generate executable map-
pings in a range of languages, such as SQL, XQuery, or XSLT.
Some of the technology is now available in IBM Rational Data
Architect [57][89].
An alternative to building a general-purpose mapping designer is
to build an engine for schema and mapping manipulation func-

2

tions that are common to a wide variety of tools for data
programmability. In [16][17] we proposed such an engine, called
a model management system, and refined the proposal in [10].
Model management supports operations to match schemas, merge
schemas, translate schemas, diff schemas, and compose mappings.
It is generic in the sense that it supports multiple metamodels and
mapping languages.

1.4 The Revised Research Agenda
Initially, this model management approach seemed rather different
than the mapping designer approach of Clio. However, over time,
the two approaches have converged and are exploring essentially
the same problem space. Let us see how this came about.
The original model management proposal was influenced by the
first author�s experience with Microsoft Repository [11]. That
system was meant to support tools for application and database
design and development. The tools were meant to use Microsoft
Repository for impact analysis, dependency management, confi-
guration management, static lineage, and other functions that
required only simple relationships between artifacts.
Since the manipulation of simple relationships is well understood,
the initial model management proposal used a mapping language
based on them, rather than a highly expressive mapping language
that would require solutions to difficult mathematical problems,
such as composing and merging mappings expressed in a
predicate calculus language. The simple mapping language was
designed to be easy to manipulate, factoring out the problem of
manipulating complex expressions that have instance-level
semantics. Indeed, the first implementation of a model man-
agement system followed this approach [69]. We hoped that
implementations could eventually offer extensibility hooks for
plugging in and manipulating more expressive languages.
So far, this hope has not been realized by most of our experience
in applying model management to practical problems. Instead, we
have usually found it easier to build custom implementations for
expressive mapping languages and solve the mathematical
problems that this implies. In part, this is due to the choice of
practical problems we have tackled�problems of data integration
and wrapper generation, not of design and development tools�
which require expressive mappings. In part, it is also due to the
difficulty of developing a generic expressive mapping language
and applying it to different metamodels. Some would argue that
this result is inevitable; a variety of approaches to generating and
manipulating engineered mappings is necessary due to the wide
range of data programmability problems being addressed. While it
may turn out this way, we still have reason to believe that a
generic model management engine is feasible. But it requires
developing model management operators that manipulate highly
expressive mappings, which was not the original vision. This is
one reason why our vision for model management has changed.
Another outcome of our experience in applying model manage-
ment to practical problems is the need for more focus on the
runtime system that supports the execution of mappings. The
runtime system does not simply execute queries over mappings. It
must also propagate updates, notifications, exceptions, and access
rights, and provide other services, such as debugging, synchroni-
zation, and provenance. These problems are sensitive to the
expressiveness of mappings and to the capabilities of the model
management operators that generate the mappings. That is, the
ability to support a certain amount of expressiveness in mappings
depends not only on design-time capabilities of a model

management system to manipulate those mappings but also on
runtime capabilities to provide services over those mappings.
Given these interdependencies, the runtime support for mappings
needs to be considered as part of the model management system.
This too has caused us to rethink our vision.
Recent published work from the Clio group at IBM and their
university collaborators has evolved in a similar direction, but
from a different starting point. Their early work focused mostly
on the mapping design tool. However, since then they have done
seminal work on two of the model management operations,
Compose [40] and Inverse [37][41], and on the semantics of query
answering [38][39], which is closely related to code generation. A
summary of this work appears in [60]. Model management
research has landed in the same place: Starting with operations on
schemas and simple mappings, it has evolved to focus on highly
expressive mappings, like Clio.
Given our experience and that of others, it is time to revisit the
model management vision to review what has been learned from
that experience, to revise the vision based on that experience, and
to identify the research problems that the revised vision opens up.
Necessarily, much of this will involve summarizing our own work
and that of the Clio group.
The next section introduces the abstractions and capabilities of a
model management system. Sections 3-6 explore those
capabilities in more detail, describing the main operators of model
management and summarizing what is known about them.
Section 7 is the conclusion.

2. MODEL MANAGEMENT
A model management system is a component that supports the
creation, compilation, reuse, evolution, and execution of
mappings between schemas represented in a wide range of meta-
models. The user-oriented goal is to simplify the development and
maintenance of applications that perform data programming.
However, a model management system (MMS) is not a user-
oriented tool. Rather, it is a reusable component that can be
embedded, with relatively modest customization, into user-
oriented tools for data warehouse loading, message mapping,
query mediation, wrapper generation, report writing, and other
data programmability problems.
The main abstractions supported by an MMS are schemas and
mappings. Since an MMS should be generic, the choice of lan-
guages in which to express schemas and mappings is important.
A schema is an expression that defines a set of possible instances,
that is, database states. A metamodel is a language for expressing
schemas. To enable reuse for a wide enough range of scenarios,
an MMS must support schemas expressed in all popular
metamodels. Today, that means SQL, XML Schema (XSD),
Entity-Relationship (ER), and object-oriented (OO) metamodels
(e.g., Java, ODMG [28], and .NET), and perhaps Service
Modeling Language (SML) [91], Resource Description
Framework (RDF) [85] and Web Ontology Language (OWL)
[80]. Ideally, a basis set of data type constructs that are common
to many metamodels could cover most of their features, with only
a few specials that are included for one metamodel only. It is not a
trivial undertaking to define such a universal metamodel that is
elegant and has precise semantics that can be succinctly specified.
However, it is clearly doable with some effort and not what stands
in the way of building a powerful MMS.

3

The harder part is in developing technology for an MMS to sup-
port mappings between many popular metamodels. It is unclear
how best to go about this. One could develop a language that can
express mapping constraints between schemas in the universal
metamodel. While it is beneficial to have one mechanism like this,
the mapping language might have to be rather complex to handle
so many different types. Or one could use multiple languages. For
example, to map XML to SQL, one could use SQL as a mapping
language to pull shredded data from a SQL database, compose
that mapping with a default XML representation of the data, and
compose the result with an XQuery mapping to reshape the XML.
A mapping expresses a relationship between the instances of two
schemas [66]. We can formally define the instance-level seman-
tics of a mapping as follows: If D1 and D2, are the sets of possible
instances of schemas S1 and S2 respectively, then a mapping
between S1 and S2 defines a subset of D1 × D2 [66][67]. Usually, a
mapping is expressed as a set of mapping constraints (sometimes
called inter-schema constraints [27]), each of which is a formula
in some mapping language; it defines the subset of D1 × D2 for
which the formula holds.
An MMS must support a rich mapping language so it can be
applied to a wide variety of scenarios. Given the tension between
the expressiveness of mapping constraints and the tractability of
manipulating them, choosing the mapping language is a major
design challenge. If tractability were not a consideration, one
would want a mapping language that includes first-order logic
with aggregation, with set and bag semantics, user-defined
functions, regular expressions, rich type constructors (e.g., to
construct XML fragments), and even heuristic operations such as
deduplication.
A transformation is a functional mapping constraint, such as a
query or view definition. If mappings are restricted to be transfor-
mations, and the MMS needs to do nothing more than compile the
transformation into executable code, then a highly expressive
mapping language may be tractable. However, as we will see, an
MMS may need to allow non-functional mapping constraints
which it can translate into transformations. Moreover, an MMS
must do more than compile mappings. This translation and
additional manipulation operations are tractable only if compro-
mises are accepted, such as constraining the expressiveness of
mappings or using algorithms that are slow or that make a best
effort to solve an intractable problem.
A closely related challenge is the choice of a common language
for defining integrity constraints, that is, constraints on one
schema (as opposed to mapping constraints that relate two
schemas). It needs to be powerful enough to express integrity
constraints supported by popular metamodels. Yet it must be
feasible to reason over the integrity constraints across mappings.
For example, for a given source and target database that are
related by a given mapping, we might need to check that if the
source database satisfies the source integrity constraints then the
target database also satisfies the target integrity constraints.
The functionality of a model management system is encapsulated
in its design-time and runtime operations. The main components
are shown in Figure 1. They are presented in Sections 3-6,
organized as follows:

• Section 3 discusses the generation of mappings either
between two given schemas or between a given schema S

and a schema generated from S. The main operations are
Match and ModelGen.

• Section 4 discusses the generation of transformations from
mapping constraints. The main operation is TransGen.

• Section 5 discusses the runtime functions that are needed to
support mappings.

• Section 6 discusses problems that arise from schema evolu-
tion. The solutions require several additional operations:
Compose, Diff, Extract, Merge, and Inverse.

3. THE ORIGIN OF MAPPINGS
There are two main scenarios for mapping generation, each with
variations. In the first scenario, the source and target schemas are
given and the data architect defines a mapping between them. For
example, the schemas could be a data source and data warehouse
schema or message schemas from two business partners. The
second scenario is defined by the model management operation
called ModelGen; given only one of the two schemas, the other is
(semi-) automatically derived along with a mapping between the
given schema and the derived schema. For example, the input
schema could be a data source schema and the derived schema
could be an OO wrapper or form definition. We now discuss each
scenario in more detail.

3.1 Given Two Schemas, Generate a Mapping
A good way to think about mapping design is as a three-step
process that produces mappings in three successively more refined
representations: correspondences, mapping constraints, and trans-
formations. Correspondences are pairs of elements from the two
schemas that are believed to be related in some unspecified way.
Usually, correspondences do not define a mapping. Rather, they
are hints that tell which elements of the two schemas need to be
related by a mapping. The second step is to translate those corres-
pondences into mapping constraints [75]. In some cases, the map-
ping constraints are transformations, so step two completes the
process. In other cases, the mapping constraints are not functions,
so a third step is required to translate them into transformations.

3.1.1 Schema Matching
The problem of generating correspondences is called schema
matching. There is a big literature on this topic, offering many
different algorithms to compute correspondences [86][92]. They
include ways to exploit lexical analysis of element names, schema
structure, data types, value distributions, thesauri, ontologies, and
previous matches. Most recent work has focused on improving the
precision and recall of a schema matcher based on certain types of

Web
Service

SQL XML

Data providers

Applications

Metadata
Repository

Match Merge ModelGen

Diff Extract Compose

Model Mgmt Engine

1010101010101
0101010111010
1011100011010

Mapping Runtime

Wrapper
Generator

Query
Mediator ETL ���

Tools

Figure 1: Model Management System Architecture

4

schema and instance information. Such work is valuable for
approximate data integration, especially in unsupervised settings
like the semantic web, and for ontology integration.
However, it is unlikely that improved precision and recall will
yield big productivity gains for the data architect who is develop-
ing an engineered mapping between independently developed
schemas. This is especially true for mapping tasks that are
unrelated to previous ones, where there are no validated mappings
to reuse. The reason is that much of the data architect�s time is
spent reading documentation, learning application requirements,
writing functions that combine or split element values, and run-
ning tests with sample data�activities that are currently beyond
the reach of algorithmic solutions. For engineered mappings, we
expect that the main value of the matcher is to avoid the need for
tedious scrolling around large schemas by offering candidate
matches to consider. Thus, a better goal for this setting is to
ensure that a matcher returns all viable candidates for a given
element, rather than only the best one for every element [18] [46].
The above beliefs are only educated guesses, based on a limited
number of discussions we have had with product developers and
users. What is missing from the literature are more comprehensive
and controlled investigations of how people spend time using a
schema matching tool for engineered mappings and, hence, what
kinds of features would be most likely to improve their productiv-
ity. We believe the biggest productivity gains will come from
better user interfaces [42][88], not from more accurate schema
matching algorithms. Examples include helping the user focus on
the schema elements of interest by dynamically reorganizing them
to fit on one screen and providing workflow assistance to track
what the user knows about elements that he has already examined.

3.1.2 Mapping Constraint Generation
Given a set of correspondences between two schemas, the data
architect needs to generate a transformation, such as a query or
view definition over the source schema that populates the target
schema.

Some tools automatically generate transformations directly from
correspondences. Thus, the correspondences amount to a visual
programming language. In some tools the semantics of that
language is unclear, so the data architect needs to read the
generated transformation to understand the meaning of the
correspondences [62].
In our opinion, a better approach is for the mapping design tool to
help the data architect translate correspondences into mapping
constraints. Each constraint should specify a small enough portion
of the desired mapping that the data architect can easily
understand what it does and hence determine whether it is what
she wants [70].

SELECT VALUE -- Constructing Persons
 CASE
 WHEN (T5._from2 AND NOT(T5._from1))
 THEN Person(T5.Person_Id, T5.Person_Name)
 WHEN (T5._from1 AND T5._from2)
 THEN Employee(T5.Person_Id, T5.Person_Name,
 T5.Employee_Dept)
 ELSE Customer(T5.Person_Id, T5.Person_Name,
 T5.Customer_CreditScore,
 T5.Customer_BillingAddr)
 END
 FROM ((
 SELECT T1.Person_Id, T1.Person_Name,
 T2.Employee_Dept,
 CAST(NULL AS SqlServer.int) AS Customer_CreditScore,
 CAST(NULL AS SqlServer.nvarchar) AS
 Customer_BillingAddr, False AS _from0,
 (T2._from1 AND T2._from1 IS NOT NULL) AS _from1,
 T1._from2
 FROM (
 SELECT
 T.Id AS Person_Id,
 T.Name AS Person_Name,
 True AS _from2
 FROM dbo.HR AS T) AS T1
 LEFT OUTER JOIN (
 SELECT
 T.Id AS Person_Id,
 T.Dept AS Employee_Dept,
 True AS _from1
 FROM dbo.Empl AS T) AS T2
 ON T1.Person_Id = T2.Person_Id)
 UNION ALL (
 SELECT
 T.Id AS Person_Id,
 T.Name AS Person_Name,
 CAST(NULL AS SqlServer.nvarchar) AS Employee_Dept,
 T.Score AS Customer_CreditScore,
 T.Addr AS Customer_BillingAddr,
 True AS _from0,
 False AS _from1,
 False AS _from2
 FROM dbo.Client AS T)
) AS T5

Figure 3: A query to populate Persons based on constraints
in Figure 2

SELECT Id, Name
FROM dbo.HR

SELECT p.Id, p.Name
FROM Persons AS p
WHERE p IS OF (ONLY Person)
 OR p IS OF (ONLY Employee)

=

SELECT Id, Dept
FROM dbo.Empl

SELECT e.Id, e.Dept
FROM Persons AS e
WHERE e IS OF Employee

=

SELECT Id, Name,
 Score, Addr
FROM dbo.Client

SELECT c.Id, c.Name,
 c.CreditScore, c.BillingAddr
FROM Persons AS c
WHERE c IS OF Customer

=

Figure 2: Mapping constraints between an ER and SQL schema

5

For example, consider the is-a hierarchy in Figure 2, where Em-
ployee and Customer are specializations of Person, which need to
be mapped to relational tables HR, Empl, and Client [70]. We can
express the mapping constraints as equalities of simple queries,
shown in the figure. The queries are expressed in Entity SQL [77],
an extension of SQL that can deal with inheritance and other ER
concepts. Its syntax uses the keywords IS OF or IS OF ONLY to test
whether a variable is of a particular type. The first constraint maps
the ID and Name of entities that are either of type Person or
Employee to the HR table. The second constraint maps the ID and
Dept of entities that are of type Employee to the Empl table. The
third maps ID, Name, CreditScore, and BillingAddr of entities of
type Customer to the Client table. Each of these constraints is rel-
atively easy to express and understand. However, these constraints
imply a rather complex hard-to-understand query on tables that
returns data to populate the Person entity set, shown in Figure 3.
This problem of going from correspondences to mapping con-
straints or queries was explored in IBM�s Clio project. In the first
Clio paper [75], transformations are generated directly from cor-
respondences. Value correspondences are taken as input, which
may include selection predicates and computations over source
elements that generate a target element. With some optional user
guidance, Clio produces a query. For example, if the source is a
relational database schema and the target is a relation schema,
then the problem boils down to selecting source relations that
have correspondences to the target, choosing joins between the
source relations, and possibly adding selections over some of the
source relations.
In later papers from the Clio project, mapping constraints are
generated from correspondences. For example, in [38] they
propose using constraints expressed as source-to-target tuple-
generating dependencies, which correspond to global-and-local-
as-view (GLAV) formulas [44]. (A more technical definition
appears later, in Section 6.1.)
Melnik et al. give a case where correspondences can be unambi-
guously interpreted as mapping constraints [67]. Intuitively, if the
source and target schemas are snowflake schemas as used in data
warehousing and the correspondences include one correspondence
relating the roots of the two schemas, then each correspondence
can be unambiguously interpreted as a mapping constraint that is
the equality of two join expressions: one over the source and one
over the target. See Figure 4 (taken from [68]). Thus, the data
architect only needs to specify correspondences and does not need
to translate them into mapping constraints. This simplifies the
process of designing mapping constraints, but there�s a cost: the
set of expressible mappings is quite constrained. It would be
useful to find more expressive graphical representations that are
relatively simple (like correspondences) and have a precise
interpretation as constraints.
Bohannon et al. [24] show how to generate an XML mapping
from correspondences that map one DTD to another.

3.2 ModelGen
ModelGen is a model management operation that automatically
translates a source schema expressed in one metamodel into an
equivalent target schema expressed in a different metamodel,
along with mapping constraints between the two schemas.
The first generic (i.e., metamodel-independent) approach we
know of is that of Atzeni and Torlone [6]. They introduced the
idea of using a repertoire of rules over schemas expressed in a

universal metamodel, where each rule replaces one construct by
others. The universal metamodel contains modeling constructs of
all metamodels. A sequence of rules is applied to the source
schema to eliminate all modeling constructs that are absent from
the target metamodel. Their rules are expressed in C++ with
abstract signatures that help them determine the correct rule
sequence for a given source and target metamodel. They did not
generate instance-level mapping constraints.
Two recent projects have extended Atzeni and Torlone�s work to,
among other things, generate instance translations via three data-
copy steps [7][81]: (1) copy the source data into the universal
metamodel�s format; (2) reshape the data using instance-level
rules that mimic the schema transformation rules; and (3) copy the
reshaped data into the target system. This approach represents
considerable progress, but it has two weaknesses: It is rather
inefficient for data exchange. And it still falls short of the need for
ModelGen to return declarative mapping constraints between the
source and target schema.
An approach to ModelGen that generates declarative mapping
constraints is described briefly in [19]. It also describes a flexible
mapping of inheritance hierarchies to tables, which is needed for
complex enterprise applications. Although there is some claim of
genericity in [19], we do not know of a published comprehensive
demonstration that mapping constraints can be generated when
ModelGen is applied to rich schema languages, e.g., going from
SQL to XSD or from XSD to ODMG [28].
McBrien and Poulovassilis describe equivalence-preserving trans-
lations of schema constructs in [65][83]. Their goal is data inte-
gration rather than schema translation per se, but their translation
rules may also be applicable to ModelGen.

4. TRANSFORMATION GENERATION
In most of today�s tools where engineered mappings play a central
role, data architects must design transformations manually,
possibly with automated support for generating correspondences
using a schema matching algorithm. If we follow the three-step
approach described at the beginning of Section 3.1, then data
architects would design mapping constraints (as explained in
Section 3.1.2), which the mapping design tool translates into
executable transformations. We encapsulate this translation
activity in an operation called TransGen, which produces a
transformation that is consistent with the mapping constraints it
takes as input.

EID

Name
Tel
AID

SID

Name
BirthDate
City

AID

City
Zip

Empl

Addr

Staff !

1. πEID(Empl) = πSID(Staff)

2. πEID,Name(Empl) = πSID,Name(Staff)

"

3. πEID,City(Empl ⋈ Addr) = πSID,City(Staff)

Figure 4: Interpreting Correspondences as Constraints

6

The type of transformations that are generated depends on the
usage scenario. For data exchange, the transformation copies the
source database into the target database. For wrapper generation,
report writers, and many other scenarios, view definitions are
needed to support queries on the target database. For wrapper
generation in support of data access applications, the views must
also enable updates on the target (i.e., wrapper) schema to be
translated into updates on the source.
In some approaches the mapping constraints are not functions
from source to target. For example, they may be GLAV
constraints. Thus, given a database state that conforms to the
source schema, there may be many states of the target database
schema that satisfy the constraints. Usually, the desired
transformation is a function that creates a target database from a
source database. So one of the many target database states that
satisfy the constraints must be selected. The approach taken in the
Clio project [38][39] is to pick one that has the semantics of
certain answers [1]: a query over the target should return only
those tuples that are in the output of the query for every target
database that satisfies the constraints. In some cases, the desired
database state, called a universal instance, contains labeled null
values that are needed to compute the answers to queries but are
not allowed to be returned as part of the answer.
Another approach is to generate the transformation directly, as in
Microsoft�s next release of ADO.NET [70]. In ADO.NET, the
target is an extended entity-relationship (ER) schema, called the
Entity Data Model [22]. The source is a relational database. Users
write queries and updates against the target ER schema, which are
translated into queries and updates on the relational source
database. Each constraint is expressed as an equality condition
between two algebraic expressions: one over the target and one
over the source, as in Figure 2. These constraints allow
inheritance mappings, projections, and selections, but currently do
not allow nesting (as in XML) or joins. The paper describes an
algorithm that translates the mapping into two view definitions: a
query view that expresses the target as a function of the source,
which is used to support queries on the target ER schema; and an
update view that expresses the source as a function of the target,
which is used to translate updates on the ER schema into updates
on the relational source database. The views must be lossless. In
MMS terms, this says that the composition of the update view
with the query view must equal the identity on the target. It is
called roundtripping since data that passes through the update
view and back through the query view is unchanged.
As soon as one moves beyond flat relational mappings, it becomes
more difficult to interpret them as transformations. The Clio
project has papers explaining how to interpret mappings over
XML schemas [45][99], and in [49] how to generate XSLT
transformations. In ADO.NET the need for a sophisticated
algorithm for generating transformations is in part due to the
richness of inheritance mappings.
A lot more work is needed on generating transformations.
Constraints need to be enriched to handle more complex map-
pings. Yet they must still be easy to understand to the data
architects who design them. In addition, it must be possible to
generate efficient transformations that implement them, which is
likely to expose a wealth of optimization opportunities.

5. MAPPING RUNTIME
Most of the literature on problems related to engineered
mappings, especially data integration and wrapper generation,

assumes that the result of the mapping design is a query or view
that relates one or more source schemas S to a target schema T.
So the runtime is simply a query processor. However, there are
many scenarios that imply other runtime requirements, where
actions on data in the context of T need to be interpreted in the
context of S, or vice versa. The difficulty of this interpretation
depends on the choice of language for expressing the mapping
mapST between S and T. The amount of interpretation that must be
done by the runtime depends on how much of it can be done
statically by an MMS. For example, consider the following issues:

• Update propagation � Allow updates on schema T. These
may be expressed in a data manipulation language. Or they
may be the result of object-at-a-time updates to cached
objects which are later written through to the data sources. In
either case, the updates on T need to be translated into
updates on S via mapST.

• Peer-to-peer � There is a chain of mappings from the schema
to be queried, T, to a source S1, which is mapped to a source
S2, etc. The mapping design tool might optimize a query on
T to collapse the chain into direct mappings, e.g., from T to
S2. In any case, the runtime needs to be able to process a
query on T by propagating it through the chain [14][53].

• Provenance � After moving data from source to target, a user
wants to know the source data that contributed to a particular
target data item. This requires design-time analysis of the
mapping plus runtime support to assemble a path of data
instances that show how the target was derived.

• Errors � If a data access via T is translated into an access on
S that generates an error, then the error needs to be passed
back through mapST in a form that is understandable in the
context of T. For example, in an object-to-relational map-
ping, an object access may cause an erroneous access to a
table that the user of T doesn�t recognize.

• Debugging � Like any program, a mapping needs to be
debugged. This could be done with breakpoints and single-
stepping, which are set in the context of T but may need to
be executed in the context of S. Debugging can also benefit
from provenance information that shows how the mapping
generated target data (as in [30]), and from intelligent
mapping of errors from S to T.

• Access control � Access control constraints on the target
might be enforced by a combination of constraints enforced
on the server and those enforced by the client runtime. This
may affect the constraint preprocessing required by the
design tools to distribute the access control work between the
two layers.

• Integrity constraints � Integrity constraints exhibit the same
design choices as for access control constraints above. There
are both efficiency and feasibility issues when distributing
constraint checking between the two layers. That is, due to
differences in S �s and T �s metamodels, some constraints on
T may not be expressible on S. For example, the disjointness
of two sets of instances of two classes in T with a common
superclass is not expressible as relational integrity constraints
on S if S is relational and the classes are mapped to distinct
tables.

• Indexing � It may be desirable to index data that is exposed
via T to support keyword search. However, in a wrapper or
query mediator scenario, the data physically resides in the

7

data sources which have schemas S. For efficiency reasons, it
is probably best to index the data sources and derive a
mapping that enables the index to be accessed via T.

• Business logic � Triggers and other business logic may be
attached to data in the context of T. It may be more efficient
to execute them in the context of S. This requires pushing the
business logic through mapST, which should be done
statically.

• Notifications � Suppose data is materialized according to T,
either fully (e.g., for a data warehouse) or partially (e.g., as a
cache). Then it may be valuable for certain actions on data in
S to produce notifications of corresponding actions to data in
T. For update actions, this is the problem of maintaining
materialized views.

• Synchronization logic � Data replication rules may be stated
in terms of T, e.g., that complex objects in schema T1 should
be replicated to corresponding complex objects in T2. For
efficiency, it may be better to translate the rules into
equivalent rules on finer-grained (e.g., relational) data in the
corresponding sources S1 and S2 to be executed there.

• Batch loading � Since most database systems have a high
performance interface for batch loading, in many scenarios it
would be more efficient to load data directly into S rather
than through T. This requires transforming the data to be
loaded via mapST into the format required by S �s loader.

• Data exchange � Suppose S and T are logical views of
physical schemas SP and TP, with logical-to-physical
mappings mapS-SP and mapT-TP. To execute mapST on the
physical databases, it may be more efficient to translate it
into a transformation mapSP-TP from SP to TP. If S is a data
source and T is a data warehouse, then the mapping may
have interesting characteristics, such as deduplication or
other heuristic operators, staging of data in mini-batches,
sorting or other blocking operators, and a variety of
metamodels such as spreadsheets and pivot tables.

Solutions to many of the above problems are in hand when S and
T are relational schemas and mappings are conjunctive queries.
However, there are many open problems when richer data models
and mapping languages are permitted.

6. SCHEMA EVOLUTION
When a schema changes, the objects that depend on it may no
longer work properly. These dependent objects include views,
queries, constraints, and programs that reference the changed
schema and databases that are instances of the changed schema.
Many commercial tools to solve the engineered mapping
problems of Section 1 require the data architect to develop
mappings. As mappings proliferate, the importance of schema
evolution is likely to increase as will the need for tools to help.
There are hardly any schema evolution tools today. This is rather
surprising since there is a huge literature on schema evolution
spanning more than two decades. Why is this? Is it because
research solutions are impractical in some way? It would be
valuable to have case studies that apply these research solutions to
identify their strengths and weaknesses.
Many of the approaches to repairing dependent objects that are af-
fected by schema changes require the manipulation of mappings.
These manipulations can be abstracted as sequences of model
management operations. We discuss some of these sequences in

this section. Along the way, we will cite papers that are directly
relevant to the use of model management for schema evolution. A
more complete bibliography with references to over 300 schema
evolution papers appears in [87].

6.1 Using Composition
Consider the relatively simple schema evolution scenario in
Figure 5. Initially, we have schema S that has a database instance
D and a view V defined on S. Now suppose S is modified, yield-
ing S′. What options do we have to cope with that change?

One possibility is to express the change from S to S′ as a mapping
mapS-S′, and to use the mapping mapS-S′ first to migrate D to
become an instance of S′, and then to modify mapV-S so it refers to
S′ instead of S. How might this be done? The process of
developing mapS-S′ was discussed in Section 3.1. The process of
generating a transformation from mapS-S′ to migrate D to become
an instance D′ of S′ was discussed in Section 4. Thus, the mapping
mapV-S′ can be obtained by composing mapV-S with mapS-S′ ′.
A concrete example is shown in Figure 6. We are given mapping
constraint mapV-S between V and S. Then the Addresses table in S
is split into two tables for local addresses and foreign addresses,
yielding S′. Since S has changed, mapping mapV-S is no longer
valid. To update it, we first represent the change from S to S′ as
the mapping mapS-S′ shown in the figure, and then compose the
two mappings mapV-S and mapS-S′, yielding the following mapping
mapV-S′ : Students = πName,Address, Country (Names′ ⋈
 (Local×{�US�} ∪ Foreign))
What exactly does the composition operation do? We can express
this using instance-level semantics, which we introduced in
Section 2: each schema S has a set D of possible database
instances and a mapping map12 between S1 and S2 defines a subset
of D1 × D2. Given mapping constraints map12 between S1 and S2
and map23 between S2 and S3, the composition map12 • map23 is
defined to be the set of all pairs of instances D1 ∈ D1 and D3 ∈ D3
such that there exists a D2 ∈ D2 such that <D1, D2> satisfies map12
and <D2, D3> satisfies map23 [40][66].
Instance-level semantics precisely defines the behavior of compo-
sition in the abstract. However, for the operation to be useful, we
need concrete algorithms that can implement it for particular
schema and mapping languages. There has been some progress
along these lines which we summarize briefly. See also [60].
Suppose a mapping is expressed as a containment of two project-
join expressions, PJS ⊆ PJT, over relational schemas, meaning that
the set of tuples in the result of the first expression is contained in
the result of the second expression. In the theory literature, this is

D

S

V

S′ mapS-S′

mapV-S

D′

mapV-S′

Figure 5: Schema evolution scenario

8

called a tuple generating dependency 2 (tgd) [3]. If PJS refers only
to symbols of the source schema and PJT refers only to symbols of
the target schema, then it is a source-to-target tgd (st-tgd) [38].
In [40], Fagin et al. showed that the composition of two st-tgd�s is
not always expressible as a set of st-tgd�s. That is, st-tgd�s are not
closed under composition. To circumvent this problem, they
introduced a second-order extension of st-tgd�s that is closed
under composition. They give an algorithm to compute that
composition, which has an exponential lower bound since the size
of the output may be exponential. Their decision to use second-
order st-tgd�s is another example of how the behavior of design-
time model management operations can affect the mapping
runtime. That is, they proposed a different mapping constraint
language to obtain a well-behaved mapping composition algo-
rithm. If one wants to execute constraints, then the proposal places
a requirement either on the mapping runtime to support that
language or on design-time operations to translate these con-
straints into a language that the runtime can execute.
Yu and Popa [103] extend the algorithm of [40] to handle nesting
and apply it to some schema evolution scenarios. They also study
optimizations of the result of the composition.
In [78], Nash et al. show that the problem of composing mapping
expressed as tgd�s that may not be source-to-target is undecidable.
Nevertheless, they give an algorithm to compute the composition.
Clearly, the algorithm does not terminate for all inputs, but when
it does it gives the right answer. In [15], Bernstein et al. describe

2 The term �tgd� comes from considering the mapping to be a

logic formula of the form "#$ %&%#$' ()* +,%#$, *-)), where #$ and * + are sets of variables, &%#$' is a conjunction of relation atoms,
and ,%#$, *-) is a conjunction of relation atoms that uses all of the
variables of * + . So the tuples of relations in &%#$' �generate�
tuples of relations in ,%#$, *-). If &%#$' is restricted to use only
relation atoms of the source schema, and ,%#$, *-) is restricted to
use only relation atoms of the target, then it is source-to-target.

an implementation of that algorithm with some extensions and
report on experiments.
From this recent work, we know that mapping composition is a
hard problem whose difficulty is quite sensitive to the expressive-
ness of the allowed mappings. To apply composition in practical
settings, we expect that richer languages will need to be consider-
ed. Thus, there is much opportunity for further research, both to
extend the reach of existing algorithms and to use them to solve
practical problems in the real world.

6.2 Diff
Let us revisit the scenario of Figure 5. Suppose S′ includes some
information that was not expressed by S. What if we want to
update V to include that information? Versions of this scenario
are described in [10][17][20][67], with example programs. We
summarize one variation briefly here to motivate the need for
some of the other model management operations.

First, we need to identify the new parts of S′. This is the responsi-
bility of the Diff operation. It takes S′ and mapS′-S as input. Intui-
tively, it returns a schema S″ that includes the new parts of S′ (i.e.,
the parts of S′ that do not participate in the mapping mapS-S′) and a
mapping mapS′-S″ that describes the overlapping parts of S′ and S″.

The instance-level semantics of Diff can be described using its
dual operation: Extract(S′, mapS′-S) returns a maximal sub-schema
of S′ that can be populated with data from S via mapS′-S along with
a mapping between that sub-schema and S′. Diff(S′, mapS′-S) is
essentially the complement of Extract. That is, it returns a sub-
schema of S′ that includes the parts of S′ that were not returned by
Extract. We omit the instance-level semantics of Diff, which are
rather involved; see [67] for details. The first mathematical
characterization of Diff that we know of was given in [8] using
category theoretic concepts, where it was called the view
complement problem. The only algorithm we know of to
compute Diff is that of Lechtenbörger and Vossen [61] for the
case when the input mapping is a relational select-join view.

Notice that the definition of Diff takes S′ and mapS′-S as input,
while the mapping given in Figure 5 is mapS-S′. This is just a
minor syntactic issue that can be fixed by the Invert operation.
Recall that mapS′-S defines a subset of D′ × D, where D′ and D are
the sets of possible instances of S′ and S respectively.
Invert(mapS′-S) is defined to be the set of pairs <D, D′> such that
<D′, D> is in mapS′-S. Thus, to identify the new parts S″ of S′, we
run Diff(S′, Invert(mapS-S′)).

It is possible that some of the information in S is lost in S′. We can
capture this using the concept of information capacity [55].
Roughly speaking, we say that the information capacity of S′ is at
least that of S if there is a function f on database instances such
that for any instance D of S, there is an instance D′ of S′ such that
f(D′) = D. If the information capacity of S′ is not at least that of S,
then some information is lost in S′. We can save the data that
would be lost in a migration from S to S′ by calling Diff(S,
mapS-S′), which returns a schema that covers the lost data and a
mapping to populate that schema.

6.3 Merge
Now that we have new parts S″ of S′, we need to combine it with
V. If S″ and V are expressed in the same metamodel, then this can
be done with the Merge operation. It takes as input the two

Figure 6: Using mapping composition for schema evolution

SID
Address
Country

Name
Address
Country

V S S′mapV-S mapS-S′

Students = πName,Address,Country(Names ⋈ Addresses) mapV -S =

Names = Names′
σCountry=�US�(Addresses)
 = Local×{�US�}
σCountry≠�US�(Addresses) = Foreign

mapS-S′ =

Student

Local

Names′

Foreign

SID
Name

Names

SID
Address
Country

Addresses

SID
Name

SID
Address

9

schemas to be merged and a mapping between them that describes
where the two schemas overlap. It returns a merged schema along
with mappings between the merged schema and each of the two
input schemas. In our example, the mapping required as input to
Merge is calculated by composing the mappings on the path
between S″ and V. That is, mapV-S″ = mapV-S′ • mapS′-S″ .

If S″ is not expressed in the same metamodel as V, then before
doing the merge, we need to invoke the ModelGen operation on
S″ to produce an equivalent schema S′′′ in V�s metamodel and a
mapping mapS″- S′′′ . Then we can merge S′′′ with V using mapV-S′′′
= mapV-S′ • mapS′-S″ • mapS″- S′′′ .
An instance-level semantics of Merge was given in [67].
Algorithms for computing a merged schema from input schemas
when the input mapping is defined by exact match of element
names appeared in [25] and when the input mapping is a set of
correspondences in [67][82]. Some view integration algorithms
can also be used as Merge algorithms [21][64][97]. Still, we are
lacking an understanding of Merge relative to the expressiveness
of its input and output mappings, as has been developed for
Compose. Thus, when expressive mappings are used in schema
evolution, new merge algorithms are likely to be needed.

6.4 Computing an Inverse
Suppose that database D is migrated to D′, as in Figure 5, but it is
later determined that the migration was a mistake. If updates were
applied to D′ after the migration, then the transformation tranD-D′
from D to D′ needs to be reversed. That is, we need the inverse
tranD′-D of tranD-D′. This is not the same as the Invert operation of
Section 6.2, which simply reverses the roles of the source and
target of the mapping (which may be a relation, not a function).
Rather, we need a transformation that can actually produce an
instance D from an instance D′. Ideally, we would like this inverse
to roundtrip. That is, given an instance D, if we use the forward
transformation tranD-D′ to produce D′ and then execute the inverse
transformation tranD′-D, we would like the result to be the same D
that we started with. This is the same as the roundtripping
condition described for ADO.NET in Section 4.
Fagin studies inverses of schema mappings in [37]. He formally
defines the inverse of a mapping and gives several cases where it
can be computed. In a follow-on paper [41], Fagin et al. introduce
a relaxation of the notion of an inverse, called quasi-inverse. They
give conditions where it does and does not exist and characterize
the language to express inverses.

7. CONCLUSION
We have discussed a revised vision of model management�an
infrastructure for tools that support data programmability. Model
management operations include Match, ModelGen, TransGen,
Compose, Diff, Merge and several others. The revised vision has
two main aspects: first, the operations need to manipulate highly
expressive mapping languages; and second, the runtime system to
support mappings is part of model management. These aspects of
the revised vision lead to many challenging research problems.
We summarized recent work along these lines and highlighted
some areas where additional work is most pressing.
The vision of model management is to encapsulate its operations
in a schema and mapping manipulation engine that is used for a
wide range of products where engineered mappings play a central
role. To accomplish this, we need algorithms for all of the
operations based on a common metamodel and expressive

mapping language, and a way of using them to support
metamodels and query languages that are in common use.
Solutions to these problems are not in hand. We are still at the
stage of reusing algorithms and designs for each new practical
problem and mapping language that we face, not at the stage of
reusing packaged components.
Schema mappings are proliferating. They are coming from ETL
tools, object-to-relational mappers, report writers, and many other
applications. Whether or not one buys the vision of model man-
agement, the need for more powerful and cost-effective solutions
can hardly be denied. Thus, there are still many years of research
ahead to greatly improve the quality of tool support we offer to
help data architects solve the data programmability problems that
arise from the design, implementation, and use of engineered
mappings.

8. ACKNOWLEDGMENTS
We are grateful to José Blakeley, Christoph Freytag, Erhard
Rahm, and Ivo Garcia dos Santos for many helpful comments.

9. REFERENCES
[1] S. Abiteboul and O.M. Duschka: Complexity of Answering

Queries Using Materialized Views. PODS 1998: 254-263.
[2] S. Abiteboul et al.: The Lowell Database Research Self-

Assessment. Commun. ACM 48(5): 111-118 (2005).
[3] S. Abiteboul, R. Hull, V. Vianu: Foundations of Databases.

Addison-Wesley, 1995.
[4] A. Adya, J.A. Blakeley, S. Melnik, S. Muralidhar, and the

ADO.NET Team: Anatomy of the ADO.NET Entity
Framework, SIGMOD 2007.

[5] Altova, http://www.altova.com/
[6] P. Atzeni and R. Torlone: Management of Multiple Models

in an Extensible Database Design Tool. EDBT 1996, 79-95.
[7] P. Atzeni, P. Cappellari and P. Bernstein: ModelGen: Model

Independent Schema Translation. EDBT 2006, 368-385.
[8] F. Bancilhon and N. Spyratos: Update Semantics of

Relational Views. ACM TODS 6(4): 557-575 (1981).
[9] BEA Aqualogic User Interaction, http://www.bea.com
[10] P.A. Bernstein: Applying Model Management to Classical

Meta Data Problems. CIDR 2003.
[11] P.A. Bernstein, T. Bergstraesser, J. Carlson, S. Pal, P.

Sanders, D. Shutt: Microsoft Repository Version 2 and the
Open Information Model. Inf. Syst. 24(2): 71-98 (1999).

[12] P.A. Bernstein, M.L. Brodie, S. Ceri, D.J. DeWitt, M.J.
Franklin, H. Garcia-Molina, J. Gray, G. Held, J.M. Heller-
stein, H.V. Jagadish, M. Lesk, D. Maier, J.F. Naughton, H.
Pirahesh, M. Stonebraker, J.D. Ullman: The Asilomar Report
on Database Research. SIGMOD Record (27)4:74-80 (1998).

[13] P.A. Bernstein, Dayal, U., DeWitt, D.J., Gawlick, D., Gray,
J., Jarke, M., Lindsay, B.G., Lockemann, P.C., Maier, D.,
Neuhold, E.J., Reuter, A., Rowe, L.A., Schek, H.-J.,
Schmidt, J.W., Schrefl, M., and Stonebraker: M. Future
Directions in DBMS research�The Laguna Beach
Participants. SIGMOD Record (18)1: 17-26 (1989).

[14] P.A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J.
Mylopoulos, L. Serafini, I. Zaihrayeu: Data Management for
Peer-to-Peer Computing : A Vision. WebDB 2002: 89-94.

10

[15] P.A. Bernstein, T.J. Green, S. Melnik, A. Nash:
Implementing Mapping Composition. VLDB 2006: 55-66.

[16] P.A. Bernstein, L.M. Haas, M. Jarke, E. Rahm, G.
Wiederhold: Panel: Is Generic Metadata Management
Feasible? VLDB 2000: 660-662.

[17] P.A. Bernstein, A.Y. Halevy, R. Pottinger: A Vision of
Management of Complex Models. SIGMOD Record 29(4):
55-63 (2000).

[18] P.A. Bernstein, S. Melnik, J.E. Churchill: Incremental
Schema Matching. VLDB 2006: 1167-1170.

[19] P.A. Bernstein, S. Melnik, and P. Mork: Interactive Schema
Translation with Instance-Level Mappings. VLDB 2005:
1283-1286.

[20] P.A. Bernstein and E. Rahm: Data Warehouse Scenarios for
Model Management. ER 2000: 1-15.

[21] J. Biskup and B. Convent: A Formal View Integration
Method. SIGMOD 1986: 398-407.

[22] J. A. Blakeley, D. Campbell, S. Muralidhar, A. Nori: The
ADO.NET Entity Framework: Making the Conceptual Level
Real. SIGMOD Record (35)4: 552-565 (2006).

[23] M.S. Bloor and J. Owen: Product Data Exchange. CRC
Press, 1995.

[24] P. Bohannon, W. Fan, M. Flaster, P. Narayan: Information
Preserving XML Schema Embedding. VLDB 2005: 85-96

[25] P. Buneman, S.B. Davidson, and A. Kosky: Theoretical
Aspects of Schema Merging. EDBT 1992: 152-167.

[26] M. J. Carey: Data delivery in a Service-Oriented World: the
BEA AquaLogic Data Services Platform. SIGMOD 2006:
695-705.

[27] T. Catarci and M. Lenzerini: Representing and Using
Interschema Knowledge in Cooperative Information
Systems. Int. J. Cooperative Inf. Syst. 2(4): 375-398 (1993).

[28] R.G.G. Cattell and D.K. Barry (editors) et al.: The Object
Data Standard: ODMG 3.0. Morgan Kaufmann, 2000.

[29] S. Chaudhuri and U. Dayal: An Overview of Data
Warehousing and OLAP Technology. SIGMOD Record
26(1): 65-74 (1997).

[30] L. Chiticariu and W.-C. Tan: Debugging Schema Mappings
with Routes. VLDB 2006: 79-90.

[31] G.P. Copeland and D. Maier: Making Smalltalk a Database
System. SIGMOD 1984: 316-325.

[32] Crystal Reports, http://www.businessobjects.com/
products/reporting/crystalreports/default.asp.

[33] S.B. Davidson, G. Christian Overton, V. Tannen, L. Wong:
BioKleisli: A Digital Library for Biomedical Researchers.
Int. J. on Digital Libraries 1(1): 36-53 (1997).

[34] U. Dayal: Processing Queries Over Generalization Hierar-
chies in a Multidatabase System. VLDB 1983: 342-353.

[35] L. Donelson, P. Tarczy-Hornoch, P. Mork, C. Dolan, JA
Mitchell, M. Barrier, H. Mei: The BioMediator System as a
Data Integration Tool to Answer Diverse Biologic Queries.
Medinfo: 768-72, 2003.

[36] ETL Tool Survey 2006-2007, http://www.etltool.com/
[37] R. Fagin: Inverting Schema Mappings. PODS 2006: 50-59.

[38] R. Fagin, P.G. Kolaitis, R.J. Miller, and L. Popa: Data
Exchange: Semantics and Query Answering. Theor. Comput.
Sci. 336(1): 89-124 (2005).

[39] R. Fagin, P.G. Kolaitis, and L. Popa: Data exchange: Getting
to the Core. ACM TODS 30(1): 174-210 (2005).

[40] R. Fagin, P.G. Kolaitis, and L. Popa, W.C. Tan: Composing
Schema Mappings: Second-order Dependencies to the
Rescue. ACM TODS 30(4): 994-1055 (2005).

[41] R. Fagin, P.G. Kolaitis, L. Popa, and W.C. Tan: Quasi-
inverses of Schema Mappings. PODS 2007.

[42] S.M. Falconer and M. Storey: Cognitive Support for
Human-Guided Mapping Systems. Tech. Report DCS-318-
IR, 2007, Univ. of Victoria , http://www.cs.uvic.ca/~seanf/
files/cog_support_mapping_systems.pdf

[43] M.J. Franklin, A.Y. Halevy, and D. Maier: From Databases
to Dataspaces: A New Abstraction for Information
Management. SIGMOD Record 34(4): 27-33 (2005).

[44] M. Friedman, A.Y. Levy, and T.D. Millstein: Navigational
Plans For Data Integration. AAAI/IAAI 1999: 67-73.

[45] A. Fuxman, M.A. Hernández, C.T.H. Ho, R.J. Miller, P.
Papotti, and L. Popa: Nested Mappings: Schema Mapping
Reloaded. VLDB 2006: 67-78.

[46] A. Gal: Managing Uncertainty in Schema Matching with
Top-K Schema Mappings. J. Data Semantics VI: 90-114,
Springer LNCS Vol. 4090/2006.

[47] M. Gubanov, P.A. Bernstein: Structural Text Search and
Comparison using Automatically Extracted Schema. WebDB
2006.

[48] L.M. Haas: Beauty and the Beast: The Theory and Practice
of Information Integration. ICDT 2007: 28-43.

[49] L.M. Haas, M.A. Hernández, H. Ho, L. Popa, and M. Roth:
Clio Grows Up: From Research Prototype to Industrial Tool.
SIGMOD 2005: 805-810.

[50] A.Y. Halevy: Answering Queries Using Views: A Survey.
VLDB J. 10(4): 270-294 (2001).

[51] A.Y. Halevy, N. Ashish, D. Bitton, M.J. Carey, D. Draper, J.
Pollock, A. Rosenthal, and Vishal Sikka: Enterprise
Information Integration: Successes, Challenges and
Controversies. SIGMOD 2005: 778-787.

[52] A.Y. Halevy, M.J. Franklin, and D. Maier: Principles of
Dataspace Systems. PODS 2006: 1-9.

[53] A.Y. Halevy, Z.G. Ives, J. Madhavan, P. Mork, D. Suciu, and
I. Tatarinov: The Piazza Peer Data Management System.
IEEE Trans. Knowl. Data Eng. 16(7): 787-798 (2004).

[54] Hibernate, http://www.hibernate.org
[55] R. Hull: Relative Information Capacity of Simple Relational

Database Schemata. SIAM J. Comput. 15(3): 856-886 (1986).
[56] IBM FileNet Forms Manager,

http://www.filenet.com/English/Products/Forms_Manager/.
[57] IBM Rational Data Architect,

http://www-306.ibm.com/software/data/integration/rda/
[58] C. Keene: Data Services for Next-Generation SOAs. SOA

WebServices Journal, 4(12), 2004. http://webservices.sys-
con.com/read/47283.htm

11

[59] R. Kimball and J. Caserta. The Data Warehouse ETL Toolkit,
Wiley and Sons, 2004.

[60] P.G. Kolaitis: Schema Mappings, Data Exchange, and
Metadata Management. PODS 2005: 61-75.

[61] J. Lechtenbörger, G. Vossen: On the computation of Rela-
tional View Complements. ACM TODS 28(2): 175-208.

[62] F. Legler and F. Naumann: A Classification of Schema Map-
pings and Analysis of Mapping Tools. BTW 2007: 449-464.

[63] M. Lenzerini: Data Integration: A Theoretical Perspective.
PODS 2002: 233-246.

[64] J. Lin and A.O. Mendelzon: Merging Databases Under
Constraints. Int. J. Cooperative Inf. Syst. 7(1): 55-76 (1998).

[65] P. McBrien and A. Poulovassilis: A Uniform Approach to
Inter-model Transformations. CAiSE 1999: 333-348.

[66] S. Melnik: Generic Model Management: Concepts and
Algorithms, Springer LNCS 2967, 2004.

[67] S. Melnik, P.A. Bernstein, A.Y. Halevy, and E. Rahm:
Supporting Executable Mappings in Model Management.
SIGMOD 2005: 167-178.

[68] S. Melnik, P.A. Bernstein, A.Y. Halevy, and E. Rahm: A
Semantics for Model Management Operators. MSR-TR-
2004-59, http://research.microsoft.com, June 2004. An early
but somewhat extended version of [67].

[69] S. Melnik, E. Rahm, P.A. Bernstein: Rondo: A Programming
Platform for Generic Model Management. SIGMOD 2003:
193-204.

[70] S. Melnik, A. Adya and P.A. Bernstein, Compiling Mappings
to Bridge Applications and Databases, SIGMOD 2007.

[71] Microsoft BizTalk, http://www.microsoft.com/biztalk/
[72] Microsoft Office InfoPath, http://office.microsoft.com/en-

us/infopath
[73] Microsoft Sharepoint Server, http://www.microsoft.com

/sharepoint
[74] Microsoft SQL Server Reporting Services,

http://www.microsoft.com/sql/technologies/reporting/
[75] R.J. Miller, L.M. Haas, and M.A. Hernández: Schema

Mapping as Query Discovery. VLDB 2000: 77-88.
[76] R.J. Miller, M.A. Hernández, L.M. Haas, L-L. Yan, H. Ho,

R. Fagin, L. Popa: The Clio Project: Managing
Heterogeneity. SIGMOD Record 30(1): 78-83 (2001).

[77] MSDN Library: The ADO.NET Entity Framework
Overview. June 2006. http://msdn2.microsoft.com/en-
us/library/aa697427(vs.80).aspx

[78] A. Nash, P.A. Bernstein, and S. Melnik: Composition of
Mappings Given by Embedded Dependencies. PODS 2005:
172-183. Extended version to appear in ACM TODS.

[79] Oracle Toplink, http://www.oracle.com/technology/
products/ ias/ toplink/index.html

[80] OWL Web Ontology Language Reference,
http://www.w3.org/TR/owl-ref/

[81] P. Papotti and R. Torlone: An Approach to Heterogeneous
Data Translation based on XML Conversion. CAiSE
Workshops (1) 2004: 7-19.

[82] R. Pottinger and P.A. Bernstein: Merging Models Based on
Given Correspondences. VLDB 2003: 826-873.

[83] A. Poulovassilis, P. McBrien: A General Formal Framework
for Schema Transformation. Data Knowl. Eng. 28(1): 47-71.

[84] Query Tools: Products,
http://www.bitpipe.com/plist/term/Query-Tools.html

[85] Resource Description Framework, http://www.w3.org/RDF/
[86] E. Rahm and P.A. Bernstein: A Survey of Approaches to Au-

tomatic Schema Matching. VLDB J. 10(4):334-350 (2001).
[87] E. Rahm and P.A. Bernstein: An On-line Bibliography on

Schema Evolution. SIGMOD Record 35(4):30-31, 2006. The
full bibliography is at http://se-pubs.dbs.uni-leipzig.de/.

[88] G.G. Robertson, M. Czerwinski, and J.E. Churchill: Visual-
ization of Mappings Between Schemas. CHI 2005: 431-439.

[89] M. Roth, M.A. Hernandez, P. Coulthard, L. Yan, L. Popa,
H.C.-T. Ho, and C.C. Salter: XML Mapping Technology:
Making Connections in an XML-centric World. IBM Sys. J.
(45,2), 389-409 (2006).

[90] SAP Netweaver Portal, http://www.sap.com/usa/platform
/netweaver/components/portal/index.epx

[91] Service Modeling Language, http://www.serviceml.org/
[92] P. Shvaiko and J. Euzenat: A Survey of Schema-based

Matching Approaches. J. Data Semantics IV:146-171 (2005).
[93] N.C. Shu, B.C. Housel, R.W. Taylor, S.P. Ghosh, and V.Y.

Lum: EXPRESS: A Data EXtraction, Processing, and
REStructuring System. ACM TODS 2(2): 134-174 (1977).

[94] A. Silberschatz, M. Stonebraker, and J.D. Ullman: Database
systems: Achievements and opportunities. Commun. ACM
(34)10: 110-120 (1991).

[95] J.M. Smith, P.A. Bernstein, U. Dayal, N. Goodman, T.
Landers, K.W.T. Lin, E. Wong, �MULTIBASE -- Integrating
Heterogeneous Distributed Database Systems,� Proc. of 1981
National Computer Conf., AFIPS Press, 487-499.

[96] Solidworks, http://www.solidworks.com/
[97] S. Spaccapietra and C. Parent: View Integration: A Step

Forward in Solving Structural Conflicts. IEEE TKDE 6(2):
258-274 (1994).

[98] Stylus Studio, http://www.stylusstudio.com/
[99] Y. Velegrakis, R. J. Miller, and L. Popa: Mapping

Adaptation under Evolving Schemas. VLDB 2003: 584-595.
[100] G. Wiederhold: Mediators in the Architecture of Future

Information Systems. IEEE Computer 25(3): 38-49 (1992).
[101] Workshop on Information Integration, Oct. 2006,

http://db.cis.upenn.edu/iiworkshop/index.htm
[102] L.-L. Yan, R.J. Miller, L.M. Haas, R. Fagin: Data-Driven

Understanding and Refinement of Schema Mappings.
SIGMOD 2001: 485-496.

[103] C. Yu and L. Popa: Semantic Adaptation of Schema
Mappings when Schemas Evolve. VLDB 2005: 1006-1017.

12

