
Generic Schema Matching with Cupid
Jayant Madhavan1 Philip A. Bernstein Erhard Rahm1

University of Washington Microsoft Corporation University of Leipzig
jayant@cs.washington.edu philbe@microsoft.com rahm@informatik.uni-leipzig.de

Abstract

Schema matching is a critical step in many applica-
tions, such as XML message mapping, data warehouse
loading, and schema integration. In this paper, we
investigate algorithms for generic schema matching,
outside of any particular data model or application. We
first present a taxonomy for past solutions, showing
that a rich range of techniques is available. We then
propose a new algorithm, Cupid, that discovers map-
pings between schema elements based on their names,
data types, constraints, and schema structure, using a
broader set of techniques than past approaches. Some
of our innovations are the integrated use of linguistic
and structural matching, context-dependent matching
of shared types, and a bias toward leaf structure where
much of the schema content resides. After describing
our algorithm, we present experimental results that
compare Cupid to two other schema matching systems.

1 Introduction
Match is a schema manipulation operation that takes two
schemas as input and returns a mapping that identifies
corresponding elements in the two schemas. Schema
matching is a critical step in many applications: in E-
business, to help map messages between different XML
formats; in data warehouses, to map data sources into
warehouse schemas; and in mediators, to identify points
of integration between heterogeneous databases.

Schema matching is primarily studied as a piece of
these other applications. For example, schema integration
uses matching to find similar structures in heterogeneous
schemas, which are then used as integration points
[1,3,12]. Data translation uses matching to find simple
data transformations [10]. Given the importance of XML
message mapping, we expect to see match solutions to
appear next in this context.

Schema matching is challenging for many reasons.
Most importantly, even schemas for identical concepts
may have structural and naming differences. Schemas
may model similar but non-identical content. They may
be expressed in different data models. They may use

similar words to have different meanings. And so on.
Today, schema matching is done manually by domain

experts, sometimes using a graphical tool [8]. At best,
some tools can detect exact matches automatically − even
minor name and structure variations lead them astray.

Like [4], we believe that Match is such a pervasive,
important and difficult problem that it should be studied
independently. Moreover, since it is critical to such a wide
variety of tools, we believe it should be built as an inde-
pendent component and be generic, meaning that it can
apply to many different data models and application
domains. To support these positions, in this paper we
offer the following contributions: a taxonomy of
approaches used by different applications, to show the
complexity of the solution space; a new match algorithm
that uses more powerful techniques than past approaches
and is generic across data models and application areas;
and experimental comparisons of our implementation
with others, to show the benefits of our approach and a
way of evaluating other implementations in the future.

Ultimately, we see Match as a key component of a
general-purpose system for managing models. By model,
we mean a complex structure that describes a design
artifact such as a database schema, XML schema, UML
model, workflow definition, or web-site map. The vision
of Model Management is a system that manipulates mod-
els generically, to match and merge them, and invert and
compose mappings between them [2]. This paper focuses
on just one piece of that vision, the Match operation.

The rest of the paper is organized as follows. We
define the schema matching problem in Section 2. Section
3 looks at past solutions, presents a taxonomy for schema
matching techniques, and reviews systems that use them.
Section 4 summarizes our approach in a new match algo-
rithm, Cupid, whose details are described in Sections 5-7.
Section 8 reports on experiments comparing Cupid with
two other algorithms. Section 9 is the conclusion.

2 The Schema Matching Problem
A schema consists of a set of related elements, such as
tables, columns, classes, or XML elements or attributes.
The result of a Match operation is a mapping. A mapping
consists of a set of mapping elements, each of which
indicates that certain elements of schema S1 are related to
certain elements of schema S2. For example, in Figure 1
a mapping between purchase order schemas PO and POr-
der could include a mapping element m that relates ele-
1 Work performed while at Microsoft Research.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

PO POrder
Lines Items
 Item Item
 Line ItemNumber
 Qty Quantity
 Uom UnitOfMeasure

Figure 1: Two schemas to be matched
ment Lines.Item.Line to element Items.Item.ItemNumber.

In general, a mapping element may also have an
associated expression that specifies its semantics (called a
value correspondence in [9]). For example, m’s expres-
sion might be “Lines.Item.Line=Items.Item.ItemNumber.”
We do not treat such expressions in this paper. Rather, we
only address mapping discovery, which returns mapping
elements that identify related elements of the two
schemas. Since we are not concerned with mapping
expressions, we treat mappings as non-directional.

The related problem of query discovery operates on
mapping expressions to obtain queries for actual data
translation. Both types of discovery are needed. Each is a
rich and complex problem that deserves independent
study. Query discovery is already recognized as an inde-
pendent problem, where it is usually assumed that a
mapping either is given [9] or is trivial [14].

Schema matching is inherently subjective. Schemas
may not completely capture the semantics of the data they
describe, and there may be several plausible mappings
between two schemas (making the concept of a single best
mapping ill-defined). This subjectivity makes it valuable
to have user input to guide the match and essential to have
user validation of the result. This guidance may come via
an initial mapping, a dictionary or thesaurus, a library of
known mappings, etc. Thus, the goal of schema matching
is: Given two input schemas in any data model and,
optionally, auxiliary information and an input-mapping,
compute a mapping between schema elements of the two
input schemas that passes user validation.

3 A Taxonomy of Matching Techniques
Schema matchers can be characterized by the following
orthogonal criteria (a longer survey based on this
taxonomy appears in [13]):
• Schema vs. Instance based – Schema-based matchers
consider only schema information, not instance data
[1,12]. Schema information includes names, descriptions,
relationships, constraints, etc. Instance-based matchers
either use meta-data and statistics collected from data
instances to annotate the schema [9], or directly find cor-
related schema elements, e.g. using machine learning [5].
• Element vs. Structure granularity – An element-level
matcher computes a mapping between individual schema
elements, e.g. an attribute matcher [6]. A structure-level
matcher compares combinations of elements that appear
together in a schema, e.g. classes or tables whose attribute
sets only match approximately [1].
• Linguistic based – A linguistic matcher uses names of
schema elements and other textual descriptions. Name

matching involves: putting the name into a canonical form
by stemming and tokenization; comparing equality of
names; comparing synonyms and hypernyms using gener-
ic and domain-specific thesauri; and matching sub-strings.
Information retrieval (IR) techniques can be used to com-
pare descriptions that annotate some schema elements.
• Constraint based – A constraint-based matcher uses
schema constraints, such as data types and value ranges,
uniqueness, required-ness, cardinalities, etc. It might also
use intraschema relationships such as referential integrity.
• Matching Cardinality – Schema matchers differ in the
cardinality of the mappings they compute. Some only pro-
duce 1:1 mappings between schema elements. Others
produce n:1 mappings, e.g. one that maps the combination
of DailyWages and WorkingDays in the source schema to
MonthlyPay in the target.
• Auxiliary information – Schema matchers differ in their
use of auxiliary information sources such as dictionaries,
thesauri, and input match-mismatch information. Reusing
past match information can also help, for example, to
compute a mapping that is the composition of mappings
that were performed earlier.
• Individual vs. Combinational – An individual matcher
uses a single algorithm to perform the match. Combina-
tional matchers can be one of two types: Hybrid matchers
use multiple criteria to perform the matching [1,6,10].
Multiple matchers run independent match algorithms on
the two schemas and combine the results [5].

We now look at some published implementations in
light of the above taxonomy.

The SEMINT system is an instance-based matcher
that associates attributes in the two schemas with match
signatures [6]. These consist of 15 constraint-based and 5
content-based criteria derived from instance values and
normalized to the [0,1] interval, so each attribute is a point
in 20-dimensional space. Attributes of one schema are
clustered with respect to their Euclidean distance. A
neural network is trained on the cluster centers and then is
used to obtain the most relevant cluster for each attribute
of the second schema. SEMINT is a hybrid element-level
matcher. It does not utilize schema structure, as the latter
cannot be mapped into a numerical value.

The DELTA system groups all available meta-data
about an attribute into a text string and then applies IR
techniques to perform matching [4]. Like SEMINT, it
does not make much use of schema structure.

The LSD system uses a multi-level learning scheme to
perform 1:1 matching of XML DTD tags [5]. A number
of base learners that use different instance-level matching
schemes are trained to assign tags of a mediated schema
to data instances of a source schema. A meta-learner com-
bines the predictions of the base learners. LSD is thus a
multi-strategy instance-based matcher.

The SKAT prototype implements schema-based
matching following a rule-based approach [11]. Rules are
formulated in first-order logic to express match and

mismatch relationships and methods are defined to derive
new matches. It supports name matching and simple
structural matches based on is-a hierarchies.

 The TranScm prototype uses schema matching to
drive data translation [10]. The schema is translated to an
internal graph representation. Multiple handcrafted
matching rules are applied in order at each node. The
matching is done top-down with the rules at higher-level
nodes typically requiring the matching of descendants.
This top-down approach performs well only when the top-
level structures of the two schemas are quite similar. It
represents an element-level and schema-based matcher.

The DIKE system integrates multiple ER schemas by
exploiting the principle that the similarity of schema ele-
ments depends on the similarity of elements in their
vicinity [12]. The relevance of elements is inversely
proportional to their distance from the elements being
compared, so nearby elements influence a match more
than ones farther away. Linguistic matching is based on
manual inputs.

ARTEMIS, the schema integration component of the
MOMIS mediator system, matches classes based on their
name affinity and structure affinity [1,3]. MOMIS has a
description logic engine to exploit constraints. The classes
of the input schemas are clustered to obtain global classes
for the mediated schema. Linguistic matching is based on
manual inputs using an interface with WordNet [16].

Both DIKE and ARTEMIS are hybrid schema-based
matchers utilizing both element- and structure-level infor-
mation. We give more details about them in Section 8.

4 The Cupid Approach
The prototypes of the previous section illustrate, and in
many cases were the original source of, the matching
approaches described in our taxonomy. However, each of
them is an incomplete solution, exploiting at most a few
of the techniques in our taxonomy. This is not really a
criticism. Each of them was either a test of one particular
approach or was not designed to solve the schema match-
ing problem per se, and therefore made matching compro-
mises in pursuit of its primary mission (usually schema
integration). However, the fact remains that none of them
provide a complete general-purpose schema matching
component. We believe that the problem of schema
matching is so hard, and the useful approaches so diverse,
that only by combining many approaches can we hope to
produce truly robust functionality.

In the rest of this paper, we explain our new schema
matching component, Cupid. In addition to being generic,
our solution has the following properties:
• It includes automated linguistic-based matching.
• It is both element-based and structure-based.
• It is biased toward similarity of atomic elements (i.e.

leaves), where much schema semantics is captured.
• It exploits internal structure, but is not overly misled

by variations in that structure.

• It exploits keys, referential constraints and views.
• It makes context-dependent matches of a shared type

definition that is used in several larger structures.
Cupid shares some general approaches with past algo-
rithms, though not the algorithms themselves, such as:
rating match quality in the [0,1] interval, clustering
similar terms (SEMINT), and matching structures based
on local vicinity (DIKE, ARTEMIS). The Cupid approach
is schema-based and not instance-based.

To explain the algorithm, we first restrict ourselves to
hierarchical schemas. Thus, we model the interconnected
elements of a schema as a schema tree. A simple relation-
al schema is an example of a schema tree; a schema con-
tains tables, which contains columns. An XML schema
with no shared elements is another example; elements
contain sub-elements, which in turn contain other sub-
elements or attributes. Later in the paper, we enrich the
model to capture more semantics, making it more generic.

We summarize the overall algorithm below in a run-
ning example. We want to match the two XML schemas,
PO and Purchase Order, in Figure 2. The schemas are en-
coded as graphs, where nodes represent schema elements.
Although even a casual observer can see the schemas are
very similar, there is much variation in naming and struc-
ture that makes algorithmic matching quite challenging.

PurchaseOrder

DeliverTo InvoiceTo

Items

Item Address

Street CityUnitOfMeasure

Quantity

ItemNumber

ItemCount

PO

POLines

Item

Qty

UoM

Line

CountPOShipTo

StreetCity

POBillTo

StreetCity

Address

Street City

PurchaseOrder

DeliverTo InvoiceTo

Items

Item Address

Street CityUnitOfMeasure

Quantity

ItemNumber

ItemCount

PO

POLines

Item

Qty

UoM

Line

CountPOShipTo

StreetCity

POBillTo

StreetCity

Address

Street City

Figure 2: Purchase order schemas

 Like previous approaches [1,3,5,6,12], we attack the
problem by computing similarity coefficients between ele-
ments of the two schemas and then deducing a mapping
from those coefficients. The coefficients, in the [0,1]
range, are calculated in two phases. The first phase, called
linguistic matching, matches individual schema elements
based on their names, data types, domains, etc. We use a
thesaurus to help match names by identifying short-forms
(Qty for Quantity), acronyms (UoM for UnitOfMeasure)
and synonyms (Bill and Invoice). The result is a linguistic
similarity coefficient, lsim, between each pair of elements.

The second phase is the structural matching of schema
elements based on the similarity of their contexts or
vicinities. For example, Line is mapped to ItemNumber
because their parents, Item, match and the other two
children of Item already match. The structural match
depends in part on linguistic matches calculated in phase
one. For example, City and Street under POBillTo match
City and Street under InvoiceTo, rather than under
DeliverTo, because Bill is a synonym of Invoice but not of
Deliver. The result is a structural similarity coefficient,
ssim, for each pair of elements.

The weighted similarity (wsim) is a mean of lsim and
ssim: wsim = wstruct × ssim + (1-wstruct) × lsim, where the
constant wstruct is in the range 0 to1. A mapping is created
by choosing pairs of schema elements with maximal
weighted similarity.

In the next two sections, we describe the linguistic and
structural matching phases in more detail. We then extend
the algorithm beyond tree structures in Section 7.

5 Linguistic Matching
The first phase of schema matching is based primarily on
schema element names. In the absence of data instances,
such names are probably the most useful source of infor-
mation for matching. We also make modest use of data
types and schema structure in this phase. This section
outlines the process. More details are presented in [7].

Linguistic matching proceeds in three steps:
normalization, categorization and comparison.
1. Normalization – Similar schema elements in different
schemas often have names that differ due to the use of
abbreviations, acronyms, punctuations, etc. So, as part of
our normalization step, we perform tokenization (parsing
names into tokens based on punctuation, case, etc.),
expansion (identifying abbreviations and acronyms) and
elimination (discarding prepositions, articles, etc.). In
each of these steps we use a thesaurus that can have both
common language and domain-specific references.
2. Categorization – Schema elements in each schema
are separately clustered into categories. This is based on
their data types, schema hierarchy and linguistic content
(from their names). For example, there might be
categories for real-valued elements and another one for
money-related elements. A schema element can belong to
multiple categories.
3. Comparison – Linguistic similarity coefficients (lsim)
are computed between schema elements by comparing the
tokens extracted from their names. We use a thesaurus
that has synonymy and hypernymy relationships for this
purpose. We also perform sub-string matching. The pur-
pose of the earlier categorization is to reduce the number
of one-one comparisons of elements in the two schemas,
by only considering schema elements that belong to
similar categories in the two schemas. See [7] for details.

The result of this phase is a table of lsim coefficients
between elements in the two schemas. The computed lsim
values are in the range [0,1], with 1 indicating a perfect
linguistic match.

6 Structure Matching
In this section we present a structure matching algorithm
for hierarchical schemas, i.e. tree structures. For each pair
of schema elements the algorithm computes a structural
similarity, ssim, which is a measure of the similarity of the
contexts in which the elements occur in the two schemas.
From ssim and lsim, the weighted similarity wsim is
computed, as described in Section 4.

6.1 Matching Schema Trees
The TreeMatch algorithm in Figure 3 is based on the
following intuitions:
(a) Atomic elements (leaves) in the two trees are similar
if they are individually (linguistic and data type) similar,
and if elements in their respective vicinities (ancestors and
siblings) are similar.
(b) Two non-leaf elements are similar if they are
linguistically similar, and the subtrees rooted at the two
elements are similar.
(c) Two non-leaf schema elements are structurally simi-
lar if their leaf sets are highly similar, even if their imme-
diate children are not. This is because the leaves represent
the atomic data that the schema ultimately describes.

Figure 3 describes the basic tree-matching algorithm
that exploits the above intuition.

 TreeMatch(SourceTree S, TargetTree T)
 for each s ∈ S, t ∈ T where s,t are leaves
 set ssim (s,t) = datatype-compatibility(s,t)
 S’ = post-order(S), T’ = post-order(T)
 for each s in S’
 for each t in T’
 compute ssim(s,t) = structural-similarity(s,t)
 wsim(s,t) = wstruct.ssim(s,t) + (1-wstruct).lsim (s,t)
 if wsim(s,t) > thhigh
 increase-struct-similarity(leaves(s),leaves(t),cinc)
 if wsim(s,t) < thlow
 decrease-struct-similarity(leaves(s),leaves(t),cdec)

Figure 3: The TreeMatch algorithm
The structural similarity of two leaves is initialized to

the type compatibility of their corresponding data types.
This value ([0,0.5]) is a lookup in a compatibility table.
Identical data types have a compatibility of 0.5. (A max of
0.5 allows for later increases in structural similarity.)

The elements in the two trees are then enumerated in
post-order, which is uniquely defined for a given tree.
Both the inner and outer loops are executed in this order.

The first step in the loop computes the structural simi-
larity of two elements. For leaves, this is just the value of
ssim that was initialized in the earlier loop. When one of
the elements is not a leaf, the structural similarity is
computed as a measure of the number of leaf level
matches in the subtrees rooted at the elements that are be-
ing compared (intuition (c)). We say that a leaf in one
schema has a strong link to a leaf in the other schema if
their weighted similarity exceeds a threshold thaccept. This
indicates a potentially acceptable mapping. We estimate
the structural similarity as the fraction of leaves in the two
subtrees that have at least one strong link (and are hence
mappable) to some leaf in the other subtree, i.e.:

|)()(|

}),(),()(|{

}),(),()(|{

),(
tleavessleaves

xystronglinksleavesytleavesxx

yxstronglinktleavesysleavesxx

tsssim
∪

∈∃∧∈∪
∈∃∧∈

=

where leaves(s) = set of leaves in the subtree rooted at s.
We chose not to compute a 1-1 bipartite matching (used in
[12]) as it is computationally expensive and would
preclude m:n mappings (that often make sense).

If the two elements being compared are highly similar,
i.e. if their weighted similarity exceeds the threshold
thhigh, we increase the structural similarity (ssim) of each
pair of leaves in the two subtrees (one from each schema)
by the factor cinc (ssim not to exceed 1). The rationale is
that leaves with highly similar ancestors occur in similar
contexts. So the presence of such ancestors should rein-
force their structural similarity. For example, in Figure 2,
if POBillTo is highly similar to InvoiceTo, then the struc-
tural similarity of their leaves City-Street would be
increased, to bind them more tightly than to other City-
Street pairs. For similar reasons, if the weighted similarity
is less than the threshold thlow, we decrease the structural
similarities of leaves in the subtrees by the factor cdec. The
linguistic similarity, however, remains unchanged.

The similarity computation has a mutually recursive
flavor. Two elements are similar if their leaf sets are simi-
lar. The similarity of the leaves is increased if they have
ancestors that are similar. The similarity of intermediate
substructure also influences leaf similarity: if the subtree
structures of two elements are highly similar, then
multiple element pairs in the subtrees will be highly
similar, which leads to higher structural similarity of the
leaves (due to multiple similarity increases). The post-
order traversals ensure that before two elements e1 and e2
are compared, all the elements in their subtrees have
already been compared. This ensures that e1’s and e2’s
leaves capture the similarity of e1’s and e2’s intermediate
subtree structure before e1 and e2 are compared.

The structural similarity of two nodes with a large
difference in the number of leaves is unlikely to be very
good. Such comparisons lead to a large number of
element similarities that are below the threshold thlow. We
prevent this by only comparing elements that have a
similar number of leaves in their subtrees (say within a
factor of 2). In addition to only comparing relevant
elements, such a pruning step decreases the number of
element pairs that need to be compared.

Instead of using leaves, we could consider only the
immediate descendants of the elements being compared.
Using the leaves for measuring structural similarity identi-
fies most matches that this alternative scheme would. In
addition, using the leaves ensures that schemas that have a
moderately different sub-structure (e.g. nesting of
elements) but essentially the same data content (similar
leaves) are correctly matched.

The post-order traversal results in a bottom-up match-
ing of the two schemas. Such an approach is more expen-
sive than top-down matching [10]. But, a bottom-up
approach is more conservative and is able to match
moderately varied schema structures. A top-down
approach is optimistic and will perform poorly if the two
schemas differ considerably at the top level.

6.2 Mappings
The output of schema matching is a set of mapping
elements, which were described in Section 2. Mapping

elements are generated using the computed linguistic and
structural similarities. In the simplest case we might just
need leaf-level mapping elements. For each leaf element t
in the target schema, if the leaf element s in the source
schema with highest weighted similarity to t is acceptable
(wsim(s, t) ≥ thaccept), then a mapping element from s to t
is returned. This resulting mapping may be 1:n, since a
source element may map to many target elements.

The exact nature of a mapping is often dependent on
requirements of the module that accepts these mappings.
For example, Query Discovery might require a 1:1
mapping instead of the 1:n mapping returned by the naïve
scheme above. Such requirements need to be captured by
a data-model- or tool-specific mapping-generator that
takes the computed similarities as input.

To generate non-leaf mappings, we need a second
post-order traversal of the two schemas to re-compute the
similarities of non-leaf elements. This is because the
updating of leaf similarities during tree-match may affect
the structural similarity of non-leaf nodes since they were
first calculated. After this, a scheme similar to leaf-level
mapping generation can be used.

7 Extending to General Schemas
7.1 Schema Graphs
The schemas we have looked at so far are trees. Real-
world schemas are rarely trees, since they share sub-
structure and have referential constraints. To extend our
techniques to these cases, we first present a generic
schema model that captures more semantics, leading to
non-tree schemas. We then extend our match algorithm to
use it by handling shared types and referential constraints.

In our generic schema model, a schema is a rooted
graph whose nodes are elements. We will use the terms
nodes and elements interchangeably. In a relational
schema, the elements are tables, columns, user-defined
types, keys, etc. In an XML schema the elements are
XML elements and attributes (and simpleTypes, complex-
Types, and keys/keyrefs in XML Schema (XSD) [17]).

Elements are interconnected by three types of relation-
ships, which together lead to non-tree schema graphs. The
first is containment, which models physical containment
in the sense that each element (except the root) is contain-
ed by exactly one other element. (Containment also has
delete propagation semantics, though we do not use that
property here.) E.g. a table contains its columns, and is
contained by its relational schema. An XML attribute is
contained by an XML element. The schema trees we have
used so far are essentially containment hierarchies.

A second type of relationship is aggregation. Like
containment, it groups elements, but is weaker (allows
multiple parents and has no delete propagation). E.g. a
compound key aggregates columns of a table. Thus, a
schema graph need not be a tree (a column can have two
parents: a table and a compound key).

The third type of relationship is IsDerivedFrom, which
abstracts IsA and IsTypeOf relationships to model shared

type information. Schemas that use them can be arbitrary
graphs (e.g. cycles due to recursive types). In XSD, an
IsDerivedFrom relationship connects an XML element to
its complex type. In OO models, IsDerivedFrom connects
a subtype to its supertype. IsDerivedFrom shortcuts con-
tainment: if an element e IsDerivedFrom a type t, then t’s
members are implicitly members of e. E.g. if USAddress
specializes Address, then an element Street contained by
Address is implicitly contained by USAddress too.

7.2 Matching Shared Types
When matching schemas expressed in the above model,
the linguistic matching process that we described earlier is
unaffected. We may, however, choose not to linguistically
match certain elements, e.g. those with no significant
name, such as keys. Structure matching is affected. Before
this step, we convert the schema to a tree, for two reasons:
to reuse the structure matching algorithm for schema trees
and to cope with context-dependent mappings.

An element, such as a shared type, can be the target of
many IsDerivedFrom relationships. Such an element e
might map to different elements relative to each of e’s
parents. For example, reconsider the XML schemas in
Figure 2. Suppose we change the PurchaseOrder schema
so that Address is a shared element, referenced by both
DeliverTo and InvoiceTo. POShipTo.Street and POBill-
To.Street now both map to Address.Street in Purchase-
Order, but for each of them the mapping needs to qualify
Address.Street to be in the context of either DeliverTo or
InvoiceTo. Including both of the mappings without their
contexts is ambiguous, e.g. complicating query discovery.
Thus, context-dependent mappings are needed. We
achieve this by expanding the schema into a schema tree.

There can be many paths of IsDerivedFrom and
containment relationships from the root of a schema to an
element e. Each path defines a context, and thus is a can-
didate for a different mapping for e. By converting a
schema to a tree, we can materialize all such paths. To do
this, the algorithm, shown in Figure 4, does a pre-order
traversal of the schema, creating a private copy of the
subschema rooted at the target t of each IsDerivedFrom
for each of t’s parents  essentially type substitution.

schema_tree = construct_schema_tree(schema.root, NULL)
construct_schema_tree(Schema Element current_se,
 Schema Tree Node current_stn)
 If current_se is the root or current_se was reached

through a containment relationship
 If current_se is not_instantiated then return current_stn
 new_stn = new schema tree node corresponding to current_se
 set new_stn as a child of current_stn
 current_stn = new_stn
 for each outgoing containment or isDerivedFrom relation
 new_se = schem element that is the target of the relationship
 construct_schema_tree(new_se, current_stn)
 return current_stn

Figure 4: Schema tree construction
For each element we add a schema tree node whose

successors are the nodes corresponding to elements
reachable via any number of IsDerivedFrom relationships
followed by a single containment. Some elements are

tagged not-instantiated (e.g. keys) during the schema tree
construction and are ignored during this process.

We now have a representation on which we can run
the TreeMatch algorithm of Section 6.

The similarities computed are now in terms of schema
tree nodes. The resulting output mappings identify similar
elements, qualified by contexts. This results in more
expressive and less ambiguous mappings.

Schema tree construction fails if a cycle of contain-
ment and IsDerivedFrom relationships is present. Such
cycles are the result of recursive type definitions. We do
not have a complete solution for this case and defer
treatment of cyclic schemas for future work.

In Section 7.4, we describe optimizations to mitigate
the increased computation costs due to the expanded tree.

7.3 Matching Referential Constraints
Referential integrity constraints are supported in most
data models. A foreign key in a relational schema is a
referential integrity constraint. So are ID/IDREF pairs in
DTDs, and key-keyref pairs in XSD.

Referential constraints are represented by RefInt
elements in our model. Referential constraints are directed
from a source (e.g. foreign key column) to a target (e.g.
primary key that the foreign key refers to). Such RefInt
elements aggregate the source, and reference (a new
relationship) the target of such relationship. E.g. the
modeling of a foreign key is as shown in Figure 5.

 SQL Table A SQL Table B

Foreign key

ForeignKeyColumn PrimaryKeyColumn

 Containment Containment

Aggregates References

SQL Table A SQL Table B

Foreign key

ForeignKeyColumn PrimaryKeyColumn

Aggregates References

Figure 5: RefInts in SQL schemas and XML DTDs

The aggregates relationship is 1:n. For example, a
compound foreign key aggregates its constituent columns.
The foreign key references the single compound primary
key element of the target table (which aggregates the key
columns of that table). The 1:n nature of the reference
relationship allows a single IDREF attribute to reference
multiple IDs in an XML DTD.

We augment the schema tree with nodes that model
referential constraints. The description below is for rela-
tional schemas, but a similar approach applies elsewhere.

We interpret referential constraints as potential join
views. For each foreign key, we introduce a node that
represents the join of the participating tables (see Figure
6). This reifies the referential constraint as a node that can
be matched. Intuitively, it makes sense since the referen-
tial constraint implies that the join is meaningful. Notice
that the join view node has as its children the columns
from both the tables. The common ancestor of the two
tables is made the parent of the new join view node.

These augmented nodes have two benefits. First, if
two pairs of tables in the two schemas are related by
similar referential constraints, then when the join views

Purchase Order Customer

OrderID

ProductName
CustomerID

Order-Customer-fk

Address

CustomerID
Name

Purchase Order Customer

OrderID

ProductName
CustomerID

Order-Customer-fk

Address

CustomerID
Name

Figure 6: Augmenting the schema tree
for the constraints are matched, the structural similarities
of those tables’ columns are increased. This improves the
structural match. Second, this enables the discovery of
mappings between a join view in one schema and, a
single table or other join views in the second schema.

The additional join view nodes create a directed acyc-
lic graph (DAG) of schema paths. Since the inverse-topo-
logical ordering of a DAG (equivalent to post-order for a
tree) is not unique, the algorithm is not Church-Rosser,
i.e. the final similarities depend on the order in which
nodes are compared. To make it Church-Rosser, we could
add more ordering constraints. E.g. we could compare the
RefInt nodes after the table nodes. However, determining
which ordering would be best is still an open problem.

If a table has multiple foreign keys, we add one node
for each of them. We also have the option of adding a
node for each combination of these foreign keys (valid
join views). However, we choose not to, in the interest of
maintaining tractability. Similarly, the join view node that
is added may also have a foreign key column (of the
target table). We could expand these further thus
escalating expansion of referential constraints, but choose
not to, both for computation reasons and due to the lower
relevance of tables at further distances.

7.4 Other Features
We now discuss some other features of Cupid.
• Optionality: Elements of semi-structured schemas may
be marked as optional, e.g. non-required attributes of
XML-elements. To exploit this knowledge, the leaves
reachable from a schema tree node n are divided into two
classes: optional and required. A leaf is optional if it has
at least one optional node on each path from n to the leaf.
The structural similarity coefficient expression is changed
to reduce the weight of optional leaves that have no strong
links (they are not considered in both the numerator and
denominator of ssim). Therefore, nodes are penalized less
for unmappable optional leaves than unmappable required
leaves, so the matching is more tolerant to the former.
• Views: View definitions are treated like referential
constraints. A schema tree node is added whose children
are the elements specified in the view. This represents a
common context for these elements and can be matched
with views or tables of the other schema.
• Initial mappings: The matcher uses a user-supplied
initial mapping to help initialize leaf similarities prior to
structural matching (cf. Section 2). The linguistic
similarity of elements marked as similar in the initial map
is initialized to a predefined maximum value. Such a hint
can lead to higher structural similarity of ancestors of the
two leaves, and hence a better overall match. The user can

modify a generated result map, make corrections, and then
re-run the match with the corrected input map, thereby
generating an improved map. Thus, initial maps are a way
to incorporate user interaction in the matching process.
• Lazy expansion: Recall that schema tree construction
expands elements into each possible context, much like
type substitution. This expansion duplicates elements,
leading to repeated comparisons of identical subtrees, e.g.
the Address element is duplicated in multiple purchase
order contexts and each is compared separately. We can
avoid these duplicate comparisons by a lazy schema tree
expansion, which compares elements of the schema graph
before converting it to a tree. The elements are enumerat-
ed in inverse topological order of containment and IsDe-
rivedFrom relationships. After comparing an element that
is the target t of multiple IsDerivedFrom and containment
relationships, multiple copies of the subtree rooted at t are
made, including the structural similarities computed so
far. This works because when two nodes are compared for
the first time, their similarity depends only on that of their
subtrees. We thus avoid identical recomputation for the
context-dependent copies of the subtree.
• Pruning leaves: In a deeply nested schema tree with a
large number of elements, an element e high in the tree
has a large number of leaves. These leaves increase the
computation time, even though many of them are irrele-
vant for matching e. Therefore, it may be better to consi-
der only nodes in a subtree of depth k rooted at node e
(pruning the leaves).

While comparing nearly identical schemas, it seems
wasteful to compare leaves. To avoid this, first compare
the immediate children of the nodes. If a very good match
is detected, then skip the leaf level similarity computation.

8 Comparative Study
In this section we compare the performance of Cupid with
two other schema matching prototypes, DIKE [12] and
MOMIS [1], using simple canonical examples and real
world schemas. The only prior published evaluation we
know of is a comparison of the SEMINT and DELTA
systems on US Air Force database schemas [4].

The three systems – Cupid, DIKE and MOMIS – are
roughly comparable, in that they are purely schema-based
and do element- and structure-level matching. Cupid and
MOMIS also have a linguistics-based matching-
component, which are significantly different. The three
systems differ in their structure matching algorithms. A
quantitative comparison of these systems is not possible
for two reasons: (i) matching is an inherently subjective
operation, and (ii) DIKE and MOMIS were designed with
a primary goal of schema integration, so some of their
features are biased towards integration, e.g. the type
conflict resolution in DIKE, and the class level matching
in MOMIS. Still, we believe experimental evaluation is
essential to make progress on this hard problem.

The Cupid prototype, presented in Sections 4-7, cur-
rently operates on XML and relational schemas. The

Table 1: Comparison based on canonical example
output mappings are displayed by BizTalk Mapper [8],
which then compiles them into XSL translation scripts. In
[7] we present some typical values of the thresholds used
in the matching algorithm for this application.

The DIKE system [12] operates on ER models. The
input includes a Lexical Synonymy Property Dictionary
(LSPD) that contains linguistic similarity coefficients
between elements in the two schemas. The schemas are
interpreted as graphs with entities, relationships and attri-
butes as nodes. The similarity coefficient of two nodes is
initialized to a combination of their LSPD entry, data
domains and keyness. This coefficient is re-evaluated
based on the similarity of nodes in their corresponding
vicinities  nodes further away contribute less. Conflict
resolution is also performed on the schemas, e.g. an
attribute might be converted to an entity to get a better
integrated schema. The output is an integrated schema,
and an abstracted schema (a simplification of the former).

The MOMIS mediator system [1] accepts schemas as
class definitions. The WordNet system [16] is used to
obtain name affinities among schema
elements. For each element name, the user
chooses an appropriate word form in
WordNet, and narrows down its possible
meanings to the most relevant ones. The
description-logic-based ODB-Tools [1] is
used to infer name affinities from inter-
class relationships in the schema.
ARTEMIS [3], the schema-mapping
component of MOMIS, computes the
structural affinity for all pairs of classes
based on their name affinity and their
respective class attributes. The classes of the input
schemas are clustered into global classes of the mediated
schema, based on their name and structural affinities. The
attributes of clustered classes are fused, if possible, to
determine the exact global class definitions.

8.1 Canonical Examples
We compared the matching performance of the three tools
on canonical examples that try to isolate their matching
properties. The test schemas used were object-oriented
schemas with a small number of class definitions. The
results are summarized in Table 1. A detailed analysis of
the examples that were used and the results is presented in
[7]. We make a few observations based on these:

1. Cupid is able to overcome some differences in
schema element names due to the normalization
performed as part of the linguistic matching. This requires
user effort in the case of the other tools.
2. Cupid is robust to different nesting of schema
elements due to its reliance of leaves rather than
intermediate structure. DIKE is able to perform the same
due to its entity merging operation.
3. Cupid is the only tool that is able to disambiguate
context dependent mappings. The results in the case of
DIKE are much dependent on the user feedback.

8.2 Real world example
We used two XML purchase orders, CIDX and Excel,
from www.BizTalk.org (see Figure 7). We chose these
particular schemas because, while somewhat similar, they
also have XML elements with differences in nesting,
some missing elements, non-matching data types and
slightly different names. For DIKE, we had to remodel
the schemas as an appropriate ER model.

Figure 7: Purchase order schemas

The linguistic input to the systems differed as follows.
For MOMIS the best possible meanings were chosen for
each of the schema elements. For Cupid, the thesauri had
a total of 4 abbreviations (UOM, PO, Qty, Num) and 2
synonymy entries (Invoice,Bill; Ship,Deliver) that were
relevant to the example. For DIKE, we added relevant
entries needed for matching to the LSPD.

The XML-element level mapping inferred by the three
systems is summarized in Table 2. We make the following
observations about the mappings:
1. DIKE: The abstracted schema depends on the choice
of ER model. We first chose to model the root elements,
and all XML-elements that had any attributes, as entities.

 Description Cupid DIKE MOMIS-ARTEMISβ

1 Identical schemas Y Y Y
2 Atomic elements with same names, but different data typesχ Y Y Y
3 Atomic elements with same data types, but different names (a prefix or suffix is added) Y Yα Y
4 Different class names, but atomic elements same names and data types Y Y Y
5 Different Nesting of the data – similar schemas with nested and flat structures Y Y N
6 Type Substitution or Context dependent mapping Y N N
α - LSPD entries have to be added
to identify corresponding elements

β - for each name the corresponding matching entry in the WordNet
dictionary has to be chosen to ensure correct mappings

χ - data type compatibility
tables are used by each tool

 PO

POHeader

PODate
PONumber ContactName

ContactEmail

Contact

ContactFunctionCode

ContactPhone

POBillTo

Street4
Street3

PostalCode

attn

StateProvince
City

Street2

Country

Street1

entityIdentifier

POShipTo

Street4
Street3

PostalCode

attn

StateProvince
City

Street2

Country

Street1

entityIdentifier
startAt

POLines

partno

Item

line

qty

unitPrice
uom

count

PurchaseOrder

partNumber

unitPrice

Item

itemNumber

unitOfMeasure

Items

Quantity

itemCount

yourPartNumber

partDescription

DeliverTo InvoiceTo

street2

city
stateProvince

street3

country

Address

street1

postalCode

street4

contactName

e-mail

Contact

companyName

telephone

yourAccountCode

orderDate
ourAccountCode

orderNum

Header

Footer

totalValue

CIDX Purchase Order Excel Purchase Order

CIDX →→→→ Excel Cupid DIKE MOMIS – ARTEMIS
POHeader → Header Yes Yes Yes

Item → Item Yes Yes

POLines → Items Yes Yes

The two Item elements
and the Items element
are in a single cluster.
POLines is in its own
cluster.

POBillTo→InvoiceTo Yes No

POShipTo→DeliverTo Yes No
Clustered together with
the Address element

Contact→Contact Yes Yes Yes

PO→PurchaseOrder Yes Yes
Yes, classes clustered,
but corresponding
elements not mapped.

Table 2: Mapping comparison for CIDX-EXCEL example

In the abstracted schema that results, entities POShipTo
and Address are merged into a single entity, and so are
PO, POBillTo and PurchaseOrder, and there are three
relationships between these two entities (PO-POShipTo,
InvoiceTo and DeliverTo). Hence we believe that some
but not all the desired mapping was achieved. The XML-
attributes are matched according to the LSPD entries.

To test type-conflict resolution, we then modeled PO-
ShipTo, POBillTo and POLines as entities in the CIDX
ER model and DeliverTo, InvoiceTo and Items as relation-
ships from PurchaseOrder in the Excel ER model. There
is one PO relationship in the CIDX schema that involves
all 5 entities corresponding to the XML-elements that are
children of PO. In the Excel schema, PurchaseOrder is an
entity. DIKE correctly identifies mappings POBillTo→
InvoiceTo and POShipTo→DeliverTo, but not POLines→
Items. The entities POBillTo, POShipTo and Address are
merged into one entity that has two relationships,
InvoiceTo and DeliverTo, with the PurchaseOrder entity.
2. MOMIS: Since ARTEMIS clusters the five classes
(POShipTo, POBillTo, InvoiceTo DeliverTo, Address)
together, and the corresponding elements in the PO and
PurchaseOrder cluster are not mapped to each other, we
believe that it did not achieve the desired mapping. This
might be because, unlike Cupid, MOMIS does not
perform context dependent matching. Not all possible
attribute level matches are performed: e.g. the
Street(1…4) attributes in the two schemas are not mapped
1:1 (though their meanings in WordNet are the same, the
names themselves are distinct, and hence we would
expect them to match correctly). The XML-element Items
was clustered with the Item classes (and not POLines).
Since attribute matching is done only within global
clusters (after the clusters have been decided), the XML-
attribute itemCount (in Items) is matched with Quantity
(in Item).
3. Cupid: Cupid identifies all the correct XML-attribute
matching pairs (leaves in the example). Cupid is the only
one to identify CIDX.line to correspond to Excel.itemNu-
mber (there were no supporting thesaurus entries). This
matching was based purely on the data-type and structural
matching. In addition, there are two false positives (e.g.
CIDX.contactName is mapped to both Excel.contactName
and Excel.companyName). This is due to the naïve

mapping-generator; for every XML attribute in the target
schema it returns the best matching XML attribute in the
source (whether or not the latter was already mapped).
The data types and elements in the vicinity of these XML-
attributes strongly match and thus these mappings are
reported. This demonstrates the need for a more sophisti-
cated scheme to generate mappings from the similarity
values. The XML-element mappings in [7] are reported
based on their respective structural similarity values.

In [7] we further demonstrate the utility of exploiting
referential constraints as join nodes  for a different real-
world example, Cupid is able to infer relationships such
as the correspondence of a single table in one of the
schemas to the join of two tables in the other schema.
MOMIS and DIKE are unable to infer similar
relationships.

8.3 Experimental Conclusions
We draw the following conclusions from our experiments.
1. Linguistic matching of schema element names results
in useful mappings. Cupid performs simple token manipu-
lation to be tolerant to variations in element names.
Unlike Cupid, DIKE and MOMIS expect identical names
for matching schema elements in the absence of linguistic
input (via LSPD or the user interface to WordNet
respectively). MOMIS uses the description logic based
ODB tools to infer name affinities within a single schema
(by exploiting object hierarchies and referential con-
straints), and also infers additional name affinities by tran-
sitive closure calculations — both are helpful features.
2. The thesaurus plays a crucial role in linguistic
matching. The effect of dropping the thesaurus varies.
With Cupid, the resulting mapping is comparatively poor
in the CIDX-Excel example, but it is unchanged in other
examples [7]. The WordNet interface of MOMIS provides
a useful tool for the user to pick from alternative mean-
ings in a thesaurus, but can be a bit restrictive (only one
applicable word form). The sense of a word is often
domain-specific; e.g. the correct sense of Header does not
exist in WordNet, and the synonym has to be manually
added. The tokenization done by Cupid, followed by
stemming, can aid in the automatic selection of possible
word meanings during name matching (done by the user
in MOMIS) and make it easier to use off-the-shelf
thesauri. A robust solution will need a module to
incrementally learn synonyms and abbreviations from
mappings that are performed over time.
3. Using linguistic similarity with no structure
similarity, Cupid cannot distinguish between the
instances of a single XML-attribute in multiple contexts
(there are 18 such XML attributes in the CIDX-Excel
example). So, to make a fair evaluation of the utility of
just the linguistic similarity, we compared elements in the
two schemas using just their complete path names (from
the root) in their schema trees. While in the CIDX-Excel
example only 2 of the correct matching XML attribute
pairs went undetected, there were as many as 7 false

positive mappings. In a relational schema, where the path-
names include only the table and column names, the
accuracy is much worse [7].
4. Granularity of similarity computation. MOMIS’s
ultimate goal is a mediated schema, so mappings are
performed at a class level granularity. As we have seen,
class-level similarity computation, can sometimes lead to
non-optimal mappings. Single classes might be nested or
normalized differently (with referential constraints) in
different schemas.
5. Using the leaves in the schema tree for the structur-
al similarity computation allows the Cupid approach to
match similar schemas that have different nesting. Also,
reporting mappings in terms of leaves allows a sophisti-
cated query discovery module to generate the correct
queries for data transformations.
6. Incorporating structure information beyond the
immediate vicinity of a schema element leads to better
matching. Thus, in the CIDX-Excel example, Cupid is
able to match POBillTo, POShipTo and POLines to
InvoiceTo, DeliverTo and Items respectively. For the same
reason, DIKE finds many of the matches. ARTEMIS tries
to incorporate such information using the ODB-Tools
during the name affinity computation.
7. Context-dependent mappings generated by con-
structing schema trees are useful when inferring different
mappings for the same element in different contexts.
8. Performance parameters. Some of the mapping
results for these tools might not be the best achievable by
them, in that improvements may be possible by adjusting
few of their parameters. Tuning performance parameters
in some cases requires expert knowledge of these tools.
Thus auto-tuning is an open problem, and a requirement
for a robust solution.

9 Summary and Future Work
In this paper, we studied schema matching as an indepen-
dent problem. We provided a survey and taxonomy of
past approaches. We presented a new algorithm that
improves on past methods in many respects, for example,
by including a substantial linguistic matching step and by
biasing matches by leaves of a schema. We implemented
the algorithm as an independent component. And we
compared our implementation to two others. This
demonstrated the strengths of our approach and is a
possible model for future algorithm comparisons.

While we believe we have made progress on the
schema-matching problem, we do not claim to have
solved it. A truly robust solution needs to include other
techniques, such as machine learning applied to instances,
natural language technology, and pattern matching to
reuse known matches. Some of the immediate challenges
for further work include: integrating Cupid transparently
with an off-the-shelf thesaurus; using schema annotations
(textual descriptions of schema elements in the data dic-
tionary) for the linguistic matching; and automatic tuning
of the control parameters. Scalability analysis and testing

are necessary to study the performance on large-sized
schemas. And much more comparative analysis of algo-
rithms is needed. Our long-term goal is to make Cupid be
a truly general-purpose schema matching component, that
can be used in systems for schema integration, data
migration, etc. The work reported here is just one step
along what we expect will be a very long research path.

Acknowledgements
We are very grateful to S. Bergamashchi, S. Castano, A. Corni
and F. Guerra for providing us with the binaries for MOMIS and
for their technical support; and to L. Palopoli, G. Terracina and
D. Ursino for providing us the same for DIKE. The analysis in
Section 8 would have been impossible without this generosity.

References
1. Bergamaschi, S., S. Castano, and M. Vincini: Semantic
Integration of Semistructured and Structured Data Sources.
SIGMOD Record 28(1), 1999, 54-59.
2. Bernstein, P.A., A. Halevy, and R.A. Pottinger: A Vision for
Management of Complex Models. SIGMOD Record 29(4),
2000, 55-63.
3. Castano, S. and V. De Antonellis: A Schema Analysis and
Reconciliation Tool Environment. IDEAS’99, 53-62.
4. Clifton, C. and E. Hausman, A. Rosenthal: Experience with a
Combined Approach to Attribute-Matching Across Heterogene-
ous Databases. Proc. 7th IFIP Conf. On DB Semantics, 1997.
5. Doan, A., P. Domingos, and A. Halevy: Reconciling Schemas
of Disparate Data Sources: A Machine-Learning Approach.
SIGMOD 2001, 509-520.
6. W. Li, C. Clifton: SEMINT: A tool for identifying attribute
correspondences in heterogeneous databases using neural
networks. Data & Knowledge Engineering, 33(1), 2000, 49-84.
7. Madhavan, J., P.A. Bernstein, and E. Rahm: Generic Schema
Matching using Cupid. MSR Tech. Report MSR-TR-2001-58,
2001, http://www.research.microsoft.com/pubs .
8. Microsoft Corp., BizTalk Mapper:
http://www.microsoft.com/technet/biztalk/btsdocs .
9. Miller, R., L. Haas, and M.A. Hernandez: Schema Mapping
as Query Discovery. VLDB 2000, 77-88.
10. Milo, T. and S. Zohar: Using Schema Matching to Simplify
Heterogeneous Data Translation. VLDB 1998, 122-133.
11. Mitra, P., G. Wiederhold, and J. Jannink: Semi-automatic
Integration of Knowledge Sources, FUSION 99.
12. Palopoli, L. G. Terracina, and D. Ursino: The System DIKE:
Towards the Semi-Automatic Synthesis of Cooperative
Information Systems and Data Warehouses. ADBIS-DASFAA
2000, Matfyzpress, 108-117.
13. Rahm, E. and P.A. Bernstein: On Matching Schemas
Automatically. MSR Tech. Report MSR-TR-2001-17, 2001,
http://www.research.microsoft.com/pubs.
14. Wald, J.A. and P.G. Sorenson: Explaining Ambiguity in a
Formal Query Language. ACM TODS 15(2), 1990, 125-161
15. Wang, Q-Y., J.X. Yu, and K-F. Wong: Approximate Graph
Schema Extraction for Semi-Structured Data. EDBT 2000, 302-
316.
16. WordNet – a lexical database for English:
http://www.cogsci.princeton.edu/~wn/.
17. XML Schema: http://www.w3.org/XML/Schema.

