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Abstract 

Schema matching is a critical step in many applica-
tions, such as XML message mapping, data warehouse 
loading, and schema integration. In this paper, we 
investigate algorithms for generic schema matching, 
outside of any particular data model or application. We 
first present a taxonomy for past solutions, showing 
that a rich range of techniques is available. We then 
propose a new algorithm, Cupid, that discovers map-
pings between schema elements based on their names, 
data types, constraints, and schema structure, using a 
broader set of techniques than past approaches. Some 
of our innovations are the integrated use of linguistic 
and structural matching, context-dependent matching 
of shared types, and a bias toward leaf structure where 
much of the schema content resides. After describing 
our algorithm, we present experimental results that 
compare Cupid to two other schema matching systems. 

1 Introduction 
Match is a schema manipulation operation that takes two 
schemas as input and returns a mapping that identifies 
corresponding elements in the two schemas. Schema 
matching is a critical step in many applications: in E-
business, to help map messages between different XML 
formats; in data warehouses, to map data sources into 
warehouse schemas; and in mediators, to identify points 
of integration between heterogeneous databases.  

Schema matching is primarily studied as a piece of 
these other applications. For example, schema integration 
uses matching to find similar structures in heterogeneous 
schemas, which are then used as integration points 
[1,3,12]. Data translation uses matching to find simple 
data transformations [10]. Given the importance of XML 
message mapping, we expect to see match solutions to 
appear next in this context. 

Schema matching is challenging for many reasons. 
Most importantly, even schemas for identical concepts 
may have structural and naming differences. Schemas 
may model similar but non-identical content. They may 
be expressed in different data models. They may use 

similar words to have different meanings. And so on. 
Today, schema matching is done manually by domain 

experts, sometimes using a graphical tool [8]. At best, 
some tools can detect exact matches automatically − even 
minor name and structure variations lead them astray. 

Like [4], we believe that Match is such a pervasive, 
important and difficult problem that it should be studied 
independently. Moreover, since it is critical to such a wide 
variety of tools, we believe it should be built as an inde-
pendent component and be generic, meaning that it can 
apply to many different data models and application 
domains. To support these positions, in this paper we 
offer the following contributions: a taxonomy of 
approaches used by different applications, to show the 
complexity of the solution space; a new match algorithm 
that uses more powerful techniques than past approaches 
and is generic across data models and application areas; 
and experimental comparisons of our implementation 
with others, to show the benefits of our approach and a 
way of evaluating other implementations in the future. 

Ultimately, we see Match as a key component of a 
general-purpose system for managing models. By model, 
we mean a complex structure that describes a design 
artifact such as a database schema, XML schema, UML 
model, workflow definition, or web-site map. The vision 
of Model Management is a system that manipulates mod-
els generically, to match and merge them, and invert and 
compose mappings between them [2]. This paper focuses 
on just one piece of that vision, the Match operation.  

The rest of the paper is organized as follows. We 
define the schema matching problem in Section 2. Section 
3 looks at past solutions, presents a taxonomy for schema 
matching techniques, and reviews systems that use them. 
Section 4 summarizes our approach in a new match algo-
rithm, Cupid, whose details are described in Sections 5-7. 
Section 8 reports on experiments comparing Cupid with 
two other algorithms. Section 9 is the conclusion. 

2 The Schema Matching Problem 
A schema consists of a set of related elements, such as 
tables, columns, classes, or XML elements or attributes. 
The result of a Match operation is a mapping. A mapping 
consists of a set of mapping elements, each of which 
indicates that certain elements of schema S1 are related to 
certain elements of schema S2. For example, in Figure 1  
a mapping between purchase order schemas PO and POr- 
der  could  include  a  mapping element m that relates ele- 
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PO POrder 
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   Item    Item 
      Line       ItemNumber 
      Qty       Quantity 
      Uom       UnitOfMeasure 

Figure 1: Two schemas to be matched 
ment Lines.Item.Line to element Items.Item.ItemNumber. 

In general, a mapping element may also have an 
associated expression that specifies its semantics (called a 
value correspondence in [9]). For example, m’s expres-
sion might be “Lines.Item.Line=Items.Item.ItemNumber.” 
We do not treat such expressions in this paper. Rather, we 
only address mapping discovery, which returns mapping 
elements that identify related elements of the two 
schemas. Since we are not concerned with mapping 
expressions, we treat mappings as non-directional. 

The related problem of query discovery operates on 
mapping expressions to obtain queries for actual data 
translation. Both types of discovery are needed. Each is a 
rich and complex problem that deserves independent 
study. Query discovery is already recognized as an inde-
pendent problem, where it is usually assumed that a 
mapping either is given [9] or is trivial [14]. 

Schema matching is inherently subjective. Schemas 
may not completely capture the semantics of the data they 
describe, and there may be several plausible mappings 
between two schemas (making the concept of a single best 
mapping ill-defined). This subjectivity makes it valuable 
to have user input to guide the match and essential to have 
user validation of the result. This guidance may come via 
an initial mapping, a dictionary or thesaurus, a library of 
known mappings, etc. Thus, the goal of schema matching 
is: Given two input schemas in any data model and, 
optionally, auxiliary information and an input-mapping, 
compute a mapping between schema elements of the two 
input schemas that passes user validation. 

3 A Taxonomy of Matching Techniques 
Schema matchers can be characterized by the following 
orthogonal criteria (a longer survey based on this 
taxonomy appears in [13]): 
•  Schema vs. Instance based – Schema-based matchers 
consider only schema information, not instance data 
[1,12]. Schema information includes names, descriptions, 
relationships, constraints, etc. Instance-based matchers 
either use meta-data and statistics collected from data 
instances to annotate the schema [9], or directly find cor-
related schema elements, e.g. using machine learning  [5].  
•  Element vs. Structure granularity – An element-level 
matcher computes a mapping between individual schema 
elements, e.g. an attribute matcher [6]. A structure-level 
matcher compares combinations of elements that appear 
together in a schema, e.g. classes or tables whose attribute 
sets only match approximately [1]. 
•  Linguistic based – A linguistic matcher uses names of 
schema elements and other textual descriptions. Name 

matching involves: putting the name into a canonical form 
by stemming and tokenization; comparing equality of 
names; comparing synonyms and hypernyms using gener-
ic and domain-specific thesauri; and matching sub-strings. 
Information retrieval (IR) techniques can be used to com-
pare descriptions that annotate some schema elements.  
•  Constraint based – A constraint-based matcher uses 
schema constraints, such as data types and value ranges, 
uniqueness, required-ness, cardinalities, etc. It might also 
use intraschema relationships such as referential integrity. 
•  Matching Cardinality – Schema matchers differ in the 
cardinality of the mappings they compute. Some only pro-
duce 1:1 mappings between schema elements. Others 
produce n:1 mappings, e.g. one that maps the combination 
of DailyWages and WorkingDays in the source schema to 
MonthlyPay in the target. 
•  Auxiliary information – Schema matchers differ in their 
use of auxiliary information sources such as dictionaries, 
thesauri, and input match-mismatch information. Reusing 
past match information can also help, for example, to 
compute a mapping that is the composition of mappings 
that were performed earlier. 
•  Individual vs. Combinational – An individual matcher 
uses a single algorithm to perform the match. Combina-
tional matchers can be one of two types: Hybrid matchers 
use multiple criteria to perform the matching [1,6,10]. 
Multiple matchers run independent match algorithms on 
the two schemas and combine the results [5]. 

We now look at some published implementations in 
light of the above taxonomy. 

The SEMINT system is an instance-based matcher 
that associates attributes in the two schemas with match 
signatures [6]. These consist of 15 constraint-based and 5 
content-based criteria derived from instance values and 
normalized to the [0,1] interval, so each attribute is a point 
in 20-dimensional space. Attributes of one schema are 
clustered with respect to their Euclidean distance. A 
neural network is trained on the cluster centers and then is 
used to obtain the most relevant cluster for each attribute 
of the second schema. SEMINT is a hybrid element-level 
matcher. It does not utilize schema structure, as the latter 
cannot be mapped into a numerical value.  

The DELTA system groups all available meta-data 
about an attribute into a text string and then applies IR 
techniques to perform matching [4]. Like SEMINT, it 
does not make much use of schema structure. 

The LSD system uses a multi-level learning scheme to 
perform 1:1 matching of XML DTD tags [5]. A number 
of base learners that use different instance-level matching 
schemes are trained to assign tags of a mediated schema 
to data instances of a source schema. A meta-learner com-
bines the predictions of the base learners. LSD is thus a 
multi-strategy instance-based matcher. 

The SKAT prototype implements schema-based 
matching following a rule-based approach [11]. Rules are 
formulated in first-order logic to express match and 



 

mismatch relationships and methods are defined to derive 
new matches. It supports name matching and simple 
structural matches based on is-a hierarchies. 

 The TranScm prototype uses schema matching to 
drive data translation [10]. The schema is translated to an 
internal graph representation. Multiple handcrafted 
matching rules are applied in order at each node. The 
matching is done top-down with the rules at higher-level 
nodes typically requiring the matching of descendants. 
This top-down approach performs well only when the top-
level structures of the two schemas are quite similar. It 
represents an element-level and schema-based matcher. 

The DIKE system integrates multiple ER schemas by 
exploiting the principle that the similarity of schema ele-
ments depends on the similarity of elements in their 
vicinity [12]. The relevance of elements is inversely 
proportional to their distance from the elements being 
compared, so nearby elements influence a match more 
than ones farther away. Linguistic matching is based on 
manual inputs. 

ARTEMIS, the schema integration component of the 
MOMIS mediator system, matches classes based on their 
name affinity and structure affinity [1,3]. MOMIS has a 
description logic engine to exploit constraints. The classes 
of the input schemas are clustered to obtain global classes 
for the mediated schema. Linguistic matching is based on 
manual inputs using an interface with WordNet [16]. 

Both DIKE and ARTEMIS are hybrid schema-based 
matchers utilizing both element- and structure-level infor-
mation. We give more details about them in Section 8.  

4 The Cupid Approach 
The prototypes of the previous section illustrate, and in 
many cases were the original source of, the matching 
approaches described in our taxonomy. However, each of 
them is an incomplete solution, exploiting at most a few 
of the techniques in our taxonomy. This is not really a 
criticism. Each of them was either a test of one particular 
approach or was not designed to solve the schema match-
ing problem per se, and therefore made matching compro-
mises in pursuit of its primary mission (usually schema 
integration). However, the fact remains that none of them 
provide a complete general-purpose schema matching 
component. We believe that the problem of schema 
matching is so hard, and the useful approaches so diverse, 
that only by combining many approaches can we hope to 
produce truly robust functionality. 

In the rest of this paper, we explain our new schema 
matching component, Cupid. In addition to being generic, 
our solution has the following properties: 
•  It includes automated linguistic-based matching. 
•  It is both element-based and structure-based. 
•  It is biased toward similarity of atomic elements (i.e. 

leaves), where much schema semantics is captured. 
•  It exploits internal structure, but is not overly misled 

by variations in that structure. 

•  It exploits keys, referential constraints and views. 
•  It makes context-dependent matches of a shared type 

definition that is used in several larger structures. 
Cupid shares some general approaches with past algo-
rithms, though not the algorithms themselves, such as: 
rating match quality in the [0,1] interval, clustering 
similar terms (SEMINT), and matching structures based 
on local vicinity (DIKE, ARTEMIS). The Cupid approach 
is schema-based and not instance-based. 

To explain the algorithm, we first restrict ourselves to 
hierarchical schemas. Thus, we model the interconnected 
elements of a schema as a schema tree. A simple relation-
al schema is an example of a schema tree; a schema con-
tains tables, which contains columns. An XML schema 
with no shared elements is another example; elements 
contain sub-elements, which in turn contain other sub-
elements or attributes. Later in the paper, we enrich the 
model to capture more semantics, making it more generic. 

We summarize the overall algorithm below in a run-
ning example. We want to match the two XML schemas, 
PO and Purchase Order, in Figure 2. The schemas are en-
coded as graphs, where nodes represent schema elements. 
Although even a casual observer can see the schemas are 
very similar, there is much variation in naming and struc-
ture that makes algorithmic matching quite challenging. 
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Figure 2: Purchase order schemas 

 Like previous approaches [1,3,5,6,12], we attack the 
problem by computing similarity coefficients between ele-
ments of the two schemas and then deducing a mapping 
from those coefficients. The coefficients, in the [0,1] 
range, are calculated in two phases. The first phase, called 
linguistic matching, matches individual schema elements 
based on their names, data types, domains, etc. We use a 
thesaurus to help match names by identifying short-forms 
(Qty for Quantity), acronyms (UoM for UnitOfMeasure) 
and synonyms (Bill and Invoice). The result is a linguistic 
similarity coefficient, lsim, between each pair of elements.  

The second phase is the structural matching of schema 
elements based on the similarity of their contexts or 
vicinities. For example, Line is mapped to ItemNumber 
because their parents, Item, match and the other two 
children of Item already match. The structural match 
depends in part on linguistic matches calculated in phase 
one. For example, City and Street under POBillTo match 
City and Street under InvoiceTo, rather than under 
DeliverTo, because Bill is a synonym of Invoice but not of 
Deliver. The result is a structural similarity coefficient, 
ssim, for each pair of elements.  



 

The weighted similarity (wsim) is a mean of lsim and 
ssim: wsim = wstruct × ssim + (1-wstruct) × lsim, where the 
constant wstruct  is in the range 0 to1. A mapping is created 
by choosing pairs of schema elements with maximal 
weighted similarity.  

In the next two sections, we describe the linguistic and 
structural matching phases in more detail. We then extend 
the algorithm beyond tree structures in Section 7. 

5 Linguistic Matching 
The first phase of schema matching is based primarily on 
schema element names. In the absence of data instances, 
such names are probably the most useful source of infor-
mation for matching. We also make modest use of data 
types and schema structure in this phase. This section  
outlines the process. More details are presented in [7].  

Linguistic matching proceeds in three steps: 
normalization, categorization and comparison. 
1. Normalization – Similar schema elements in different 
schemas often have names that differ due to the use of 
abbreviations, acronyms, punctuations, etc. So, as part of 
our normalization step, we perform tokenization (parsing 
names into tokens based on punctuation, case, etc.), 
expansion (identifying abbreviations and acronyms) and 
elimination (discarding prepositions, articles, etc.). In 
each of these steps we use a thesaurus that can have both 
common language and domain-specific references. 
2. Categorization – Schema elements in each schema 
are separately clustered into categories. This is based on 
their data types, schema hierarchy and linguistic content 
(from their names). For example, there might be 
categories for real-valued elements and another one for 
money-related elements. A schema element can belong to 
multiple categories.  
3. Comparison – Linguistic similarity coefficients (lsim) 
are computed between schema elements by comparing the 
tokens extracted from their names. We use a thesaurus 
that has synonymy and hypernymy relationships for this 
purpose. We also perform sub-string matching. The pur-
pose of the earlier categorization is to reduce the number 
of one-one comparisons of elements in the two schemas, 
by only considering schema elements that belong to 
similar categories in the two schemas. See [7] for details.  

The result of this phase is a table of lsim coefficients 
between elements in the two schemas. The computed lsim 
values are in the range [0,1], with 1 indicating a perfect 
linguistic match.  

6 Structure Matching 
In this section we present a structure matching algorithm 
for hierarchical schemas, i.e. tree structures. For each pair 
of schema elements the algorithm computes a structural 
similarity, ssim, which is a measure of the similarity of the 
contexts in which the elements occur in the two schemas. 
From ssim and lsim, the weighted similarity wsim is 
computed, as described in Section 4. 

6.1 Matching Schema Trees 
The TreeMatch algorithm in Figure 3 is based on the 
following intuitions: 
(a) Atomic elements (leaves) in the two trees are similar 
if they are individually (linguistic and data type) similar, 
and if elements in their respective vicinities (ancestors and 
siblings) are similar. 
(b) Two non-leaf elements are similar if they are 
linguistically similar, and the subtrees rooted at the two 
elements are similar. 
(c) Two non-leaf schema elements are structurally simi-
lar if their leaf sets are highly similar, even if their imme-
diate children are not. This is because the leaves represent 
the atomic data that the schema ultimately describes. 

Figure 3 describes the basic tree-matching algorithm 
that exploits the above intuition.   

 TreeMatch(SourceTree S, TargetTree T) 
     for each s ∈ S, t ∈ T where s,t are leaves    
          set  ssim (s,t) = datatype-compatibility(s,t) 
    S’ = post-order(S), T’ = post-order(T) 
    for each s in S’ 
        for each t in T’ 
            compute ssim(s,t) = structural-similarity(s,t) 
            wsim(s,t)  = wstruct.ssim(s,t) +  (1-wstruct).lsim (s,t) 
            if  wsim(s,t)  > thhigh 
              increase-struct-similarity(leaves(s),leaves(t),cinc) 
            if  wsim(s,t)  < thlow 
              decrease-struct-similarity(leaves(s),leaves(t),cdec)  

Figure 3: The TreeMatch algorithm 
The structural similarity of two leaves is initialized to 

the type compatibility of their corresponding data types. 
This value ([0,0.5]) is a lookup in a compatibility table. 
Identical data types have a compatibility of 0.5. (A max of 
0.5 allows for later increases in structural similarity.) 

The elements in the two trees are then enumerated in 
post-order, which is uniquely defined for a given tree. 
Both the inner and outer loops are executed in this order.  

The first step in the loop computes the structural simi-
larity of two elements. For leaves, this is just the value of 
ssim that was initialized in the earlier loop. When one of 
the elements is not a leaf, the structural similarity is 
computed as a measure of the number of leaf level 
matches in the subtrees rooted at the elements that are be-
ing compared (intuition (c)). We say that a leaf in one 
schema has a strong link to a leaf in the other schema if 
their weighted similarity exceeds a threshold thaccept. This 
indicates a potentially acceptable mapping. We estimate 
the structural similarity as the fraction of leaves in the two 
subtrees that have at least one strong link (and are hence 
mappable) to some leaf in the other subtree, i.e.: 
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where leaves(s) = set of leaves in the subtree rooted at s. 
We chose not to compute a 1-1 bipartite matching (used in 
[12]) as it is computationally expensive and would 
preclude m:n mappings (that often make sense). 



 

If the two elements being compared are highly similar, 
i.e. if their weighted similarity exceeds the threshold 
thhigh, we increase the structural similarity (ssim) of each 
pair of leaves in the two subtrees (one from each schema) 
by the factor cinc (ssim not to exceed 1). The rationale is 
that leaves with highly similar ancestors occur in similar 
contexts. So the presence of such ancestors should rein-
force their structural similarity. For example, in Figure 2, 
if POBillTo is highly similar to InvoiceTo, then the struc-
tural similarity of their leaves City-Street would be 
increased, to bind them more tightly than to other City-
Street pairs. For similar reasons, if the weighted similarity 
is less than the threshold thlow, we decrease the structural 
similarities of leaves in the subtrees by the factor cdec. The 
linguistic similarity, however, remains unchanged. 

The similarity computation has a mutually recursive 
flavor. Two elements are similar if their leaf sets are simi-
lar. The similarity of the leaves is increased if they have 
ancestors that are similar. The similarity of intermediate 
substructure also influences leaf similarity: if the subtree 
structures of two elements are highly similar, then 
multiple element pairs in the subtrees will be highly 
similar, which leads to higher structural similarity of the 
leaves (due to multiple similarity increases). The post-
order traversals ensure that before two elements e1 and e2 
are compared, all the elements in their subtrees have 
already been compared. This ensures that e1’s and e2’s 
leaves capture the similarity of e1’s and e2’s intermediate 
subtree structure before e1 and e2 are compared.  

The structural similarity of two nodes with a large 
difference in the number of leaves is unlikely to be very 
good. Such comparisons lead to a large number of 
element similarities that are below the threshold thlow. We 
prevent this by only comparing elements that have a 
similar number of leaves in their subtrees (say within a 
factor of 2). In addition to only comparing relevant 
elements, such a pruning step decreases the number of 
element pairs that need to be compared. 

Instead of using leaves, we could consider only the 
immediate descendants of the elements being compared. 
Using the leaves for measuring structural similarity identi-
fies most matches that this alternative scheme would. In 
addition, using the leaves ensures that schemas that have a 
moderately different sub-structure (e.g. nesting of 
elements) but essentially the same data content (similar 
leaves) are correctly matched. 

The post-order traversal results in a bottom-up match-
ing of the two schemas. Such an approach is more expen-
sive than top-down matching [10]. But, a bottom-up 
approach is more conservative and is able to match 
moderately varied schema structures. A top-down 
approach is optimistic and will perform poorly if the two 
schemas differ considerably at the top level.  

6.2 Mappings 
The output of schema matching is a set of mapping 
elements, which were described in Section 2. Mapping 

elements are generated using the computed linguistic and 
structural similarities. In the simplest case we might just 
need leaf-level mapping elements. For each leaf element t 
in the target schema, if the leaf element s in the source 
schema with highest weighted similarity to t is acceptable 
(wsim(s, t) ≥ thaccept), then a mapping element from s to t 
is returned. This resulting mapping may be 1:n, since a 
source element may map to many target elements. 

The exact nature of a mapping is often dependent on 
requirements of the module that accepts these mappings. 
For example, Query Discovery might require a 1:1 
mapping instead of the 1:n mapping returned by the naïve 
scheme above. Such requirements need to be captured by 
a data-model- or tool-specific mapping-generator that 
takes the computed similarities as input. 

To generate non-leaf mappings, we need a second 
post-order traversal of the two schemas to re-compute the 
similarities of non-leaf elements. This is because the 
updating of leaf similarities during tree-match may affect 
the structural similarity of non-leaf nodes since they were 
first calculated. After this, a scheme similar to leaf-level 
mapping generation can be used. 

7 Extending to General Schemas 
7.1 Schema Graphs 
The schemas we have looked at so far are trees. Real-
world schemas are rarely trees, since they share sub-
structure and have referential constraints. To extend our 
techniques to these cases, we first present a generic 
schema model that captures more semantics, leading to 
non-tree schemas. We then extend our match algorithm to 
use it by handling shared types and referential constraints. 

In our generic schema model, a schema is a rooted 
graph whose nodes are elements. We will use the terms 
nodes and elements interchangeably. In a relational 
schema, the elements are tables, columns, user-defined 
types, keys, etc. In an XML schema the elements are 
XML elements and attributes (and simpleTypes, complex-
Types, and keys/keyrefs in XML Schema (XSD) [17]).  

Elements are interconnected by three types of relation-
ships, which together lead to non-tree schema graphs. The 
first is containment, which models physical containment 
in the sense that each element (except the root) is contain-
ed by exactly one other element. (Containment also has 
delete propagation semantics, though we do not use that 
property here.) E.g. a table contains its columns, and is 
contained by its relational schema. An XML attribute is 
contained by an XML element. The schema trees we have 
used so far are essentially containment hierarchies.  

A second type of relationship is aggregation. Like 
containment, it groups elements, but is weaker (allows 
multiple parents and has no delete propagation). E.g. a 
compound key aggregates columns of a table. Thus, a 
schema graph need not be a tree (a column can have two 
parents: a table and a compound key). 

The third type of relationship is IsDerivedFrom, which 
abstracts IsA and IsTypeOf relationships to model shared 



 

type information. Schemas that use them can be arbitrary 
graphs (e.g. cycles due to recursive types). In XSD, an 
IsDerivedFrom relationship connects an XML element to 
its complex type. In OO models, IsDerivedFrom connects 
a subtype to its supertype. IsDerivedFrom shortcuts con-
tainment: if an element e IsDerivedFrom a type t, then t’s  
members are implicitly members of e. E.g. if USAddress 
specializes Address, then an element Street contained by 
Address is implicitly contained by USAddress too. 

7.2 Matching Shared Types 
When matching schemas expressed in the above model, 
the linguistic matching process that we described earlier is 
unaffected. We may, however, choose not to linguistically 
match certain elements, e.g. those with no significant 
name, such as keys. Structure matching is affected. Before 
this step, we convert the schema to a tree, for two reasons: 
to reuse the structure matching algorithm for schema trees 
and to cope with context-dependent mappings. 

An element, such as a shared type, can be the target of 
many IsDerivedFrom relationships. Such an element e 
might map to different elements relative to each of e’s 
parents. For example, reconsider the XML schemas in 
Figure 2. Suppose we change the PurchaseOrder schema 
so that Address is a shared element, referenced by both 
DeliverTo and InvoiceTo. POShipTo.Street and POBill-
To.Street now both map to Address.Street in Purchase-
Order, but for each of them the mapping needs to qualify 
Address.Street to be in the context of either DeliverTo or 
InvoiceTo. Including both of the mappings without their 
contexts is ambiguous, e.g. complicating query discovery. 
Thus, context-dependent mappings are needed. We 
achieve this by expanding the schema into a schema tree. 

There can be many paths of IsDerivedFrom and 
containment relationships from the root of a schema to an 
element e. Each path defines a context, and thus is a can-
didate for a different mapping for e. By converting a 
schema to a tree, we can materialize all such paths. To do 
this, the algorithm, shown in Figure 4, does a pre-order 
traversal of the schema, creating a private copy of the 
subschema rooted at the target t of each IsDerivedFrom 
for each of t’s parents   essentially type substitution.  

schema_tree  = construct_schema_tree(schema.root, NULL)
construct_schema_tree(Schema Element current_se,
                                      Schema Tree Node current_stn)
     If current_se is the root or current_se was reached 

through a containment relationship
          If current_se is not_instantiated then return current_stn
          new_stn = new schema tree node corresponding to current_se
          set new_stn as a child of current_stn
          current_stn = new_stn
     for each outgoing containment or isDerivedFrom relation
          new_se = schem element that is the target of the relationship
          construct_schema_tree(new_se, current_stn)
     return current_stn

Figure 4: Schema tree construction 
For each element we add a schema tree node whose 

successors are the nodes corresponding to elements 
reachable via any number of IsDerivedFrom relationships 
followed by a single containment. Some elements are 

tagged not-instantiated (e.g. keys) during the schema tree 
construction and are ignored during this process.  

We now have a representation on which we can run 
the TreeMatch algorithm of Section 6.  

The similarities computed are now in terms of schema 
tree nodes. The resulting output mappings identify similar 
elements, qualified by contexts. This results in more 
expressive and less ambiguous mappings.  

Schema tree construction fails if a cycle of contain-
ment and IsDerivedFrom relationships is present. Such 
cycles are the result of recursive type definitions. We do 
not have a complete solution for this case and defer 
treatment of cyclic schemas for future work.  

In Section 7.4, we describe optimizations to mitigate 
the increased computation costs due to the expanded tree. 

7.3 Matching Referential Constraints 
Referential integrity constraints are supported in most 
data models. A foreign key in a relational schema is a 
referential integrity constraint. So are ID/IDREF pairs in 
DTDs, and key-keyref pairs in XSD.  

Referential constraints are represented by RefInt 
elements in our model. Referential constraints are directed 
from a source (e.g. foreign key column) to a target (e.g. 
primary key that the foreign key refers to). Such RefInt 
elements aggregate the source, and reference (a new 
relationship) the target of such relationship. E.g. the 
modeling of a foreign key is as shown in Figure 5. 

 SQL Table A SQL Table B 

Foreign key 

ForeignKeyColumn PrimaryKeyColumn 
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Aggregates References 
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Figure 5: RefInts in SQL schemas and XML DTDs 

The aggregates relationship is 1:n. For example, a 
compound foreign key aggregates its constituent columns. 
The foreign key references the single compound primary 
key element of the target table  (which aggregates the key 
columns of that table). The 1:n nature of the reference 
relationship allows a single IDREF attribute to reference 
multiple IDs in an XML DTD. 

We augment the schema tree with nodes that model 
referential constraints. The description below is for rela-
tional schemas, but a similar approach applies elsewhere. 

We interpret referential constraints as potential join 
views. For each foreign key, we introduce a node that 
represents the join of the participating tables (see Figure 
6). This reifies the referential constraint as a node that can 
be matched. Intuitively, it makes sense since the referen-
tial constraint implies that the join is meaningful. Notice 
that the join view node has as its children the columns 
from both the tables. The common ancestor of the two 
tables is made the parent of the new join view node.  

These augmented nodes have two benefits. First, if 
two pairs of tables in the two schemas are related by 
similar referential constraints, then when the join views  
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Figure 6: Augmenting the schema tree 
for the constraints are matched, the structural similarities 
of those tables’ columns are increased. This improves the 
structural match. Second, this enables the discovery of 
mappings between a join view in one schema and, a  
single table or other join views in the second schema. 

The additional join view nodes create a directed acyc-
lic graph (DAG) of schema paths. Since the inverse-topo-
logical ordering of a DAG (equivalent to post-order for a 
tree) is not unique, the algorithm is not Church-Rosser, 
i.e. the final similarities depend on the order in which 
nodes are compared. To make it Church-Rosser, we could 
add more ordering constraints. E.g. we could compare the 
RefInt nodes after the table nodes. However, determining 
which ordering would be best is still an open problem.  

If a table has multiple foreign keys, we add one node 
for each of them. We also have the option of adding a 
node for each combination of these foreign keys (valid 
join views). However, we choose not to, in the interest of 
maintaining tractability. Similarly, the join view node that 
is added may also have a foreign key column (of the 
target table). We could expand these further thus 
escalating expansion of referential constraints, but choose 
not to, both for computation reasons and due to the lower 
relevance of tables at further distances. 

7.4 Other Features 
We now discuss some other features of Cupid.  
•  Optionality: Elements of semi-structured schemas may 
be marked as optional, e.g. non-required attributes of 
XML-elements. To exploit this knowledge, the leaves 
reachable from a schema tree node n are divided into two 
classes: optional and required. A leaf is optional if it has 
at least one optional node on each path from n to the leaf. 
The structural similarity coefficient expression is changed 
to reduce the weight of optional leaves that have no strong 
links (they are not considered in both the numerator and 
denominator of ssim). Therefore, nodes are penalized less 
for unmappable optional leaves than unmappable required 
leaves, so the matching is more tolerant to the former. 
•  Views: View definitions are treated like referential 
constraints. A schema tree node is added whose children 
are the elements specified in the view. This represents a 
common context for these elements and can be matched 
with views or tables of the other schema. 
•  Initial mappings: The matcher uses a user-supplied 
initial mapping to help initialize leaf similarities prior to 
structural matching (cf. Section 2). The linguistic 
similarity of elements marked as similar in the initial map 
is initialized to a predefined maximum value. Such a hint 
can lead to higher structural similarity of ancestors of the 
two leaves, and hence a better overall match. The user can 

modify a generated result map, make corrections, and then 
re-run the match with the corrected input map, thereby 
generating an improved map. Thus, initial maps are a way 
to incorporate user interaction in the matching process. 
•  Lazy expansion: Recall that schema tree construction 
expands elements into each possible context, much like 
type substitution. This expansion duplicates elements, 
leading to repeated comparisons of identical subtrees, e.g. 
the Address element is duplicated in multiple purchase 
order contexts and each is compared separately. We can 
avoid these duplicate comparisons by a lazy schema tree 
expansion, which compares elements of the schema graph 
before converting it to a tree. The elements are enumerat-
ed in inverse topological order of containment and IsDe-
rivedFrom relationships. After comparing an element that 
is the target t of multiple IsDerivedFrom and containment 
relationships, multiple copies of the subtree rooted at t are 
made, including the structural similarities computed so 
far. This works because when two nodes are compared for 
the first time, their similarity depends only on that of their 
subtrees. We thus avoid identical recomputation for the 
context-dependent copies of the subtree.  
•  Pruning leaves: In a deeply nested schema tree with a 
large number of elements, an element e high in the tree 
has a large number of leaves. These leaves increase the 
computation time, even though many of them are irrele-
vant for matching e. Therefore, it may be better to consi-
der only nodes in a subtree of depth k rooted at node e 
(pruning the leaves). 

While comparing nearly identical schemas, it seems 
wasteful to compare leaves. To avoid this, first compare 
the immediate children of the nodes. If a very good match 
is detected, then skip the leaf level similarity computation. 

8 Comparative Study 
In this section we compare the performance of Cupid with 
two other schema matching prototypes, DIKE [12] and 
MOMIS [1], using simple canonical examples and real 
world schemas. The only prior published evaluation we 
know of is a comparison of the SEMINT and DELTA 
systems on US Air Force database schemas [4]. 

The three systems – Cupid, DIKE and MOMIS – are 
roughly comparable, in that they are purely schema-based 
and do element- and structure-level matching. Cupid and 
MOMIS also have a linguistics-based matching-
component, which are significantly different. The three 
systems differ in their structure matching algorithms. A 
quantitative comparison of these systems is not possible 
for two reasons: (i) matching is an inherently subjective 
operation, and (ii) DIKE and MOMIS were designed with 
a primary goal of schema integration, so some of their 
features are biased towards integration, e.g. the type 
conflict resolution in DIKE, and the class level matching 
in MOMIS. Still, we believe experimental evaluation is 
essential to make progress on this hard problem.   

The Cupid prototype, presented in Sections 4-7, cur-
rently operates on XML and relational schemas. The



 

Table 1: Comparison based on canonical example
output mappings are displayed by BizTalk Mapper [8], 
which then compiles them into XSL translation  scripts. In 
[7] we present some typical values of the thresholds used 
in the matching algorithm for this application.  

The DIKE system [12] operates on ER models. The 
input includes a Lexical Synonymy Property Dictionary 
(LSPD) that contains linguistic similarity coefficients 
between elements in the two schemas. The schemas are 
interpreted as graphs with entities, relationships and attri-
butes as nodes. The similarity coefficient of two nodes is 
initialized to a combination of their LSPD entry, data 
domains and keyness. This coefficient is re-evaluated 
based on the similarity of nodes in their corresponding 
vicinities   nodes further away contribute less. Conflict 
resolution is also performed on the schemas, e.g. an 
attribute might be converted to an entity to get a better 
integrated schema. The output is an integrated schema, 
and an abstracted schema (a simplification of the former). 

The MOMIS mediator system [1] accepts schemas as 
class definitions. The WordNet system [16] is used to 
obtain name affinities among schema 
elements. For each element name, the user 
chooses an appropriate word form in 
WordNet, and narrows down its possible 
meanings to the most relevant ones. The 
description-logic-based ODB-Tools [1] is 
used to infer name affinities from inter-
class relationships in the schema. 
ARTEMIS [3], the schema-mapping 
component of MOMIS, computes the 
structural affinity for all pairs of classes 
based on their name affinity and their 
respective class attributes. The classes of the input 
schemas are clustered into global classes of the mediated 
schema, based on their name and structural affinities. The 
attributes of clustered classes are fused, if possible, to 
determine the exact global class definitions. 

8.1 Canonical Examples 
We compared the matching performance of the three tools 
on canonical examples that try to isolate their matching 
properties. The test schemas used were object-oriented 
schemas with a small number of class definitions. The 
results are summarized in Table 1. A detailed analysis of 
the examples that were used and the results is presented in 
[7]. We make a few observations based on these: 

1. Cupid is able to overcome some differences in 
schema element names due to the normalization 
performed as part of the linguistic matching. This requires 
user effort in the case of the other tools. 
2. Cupid is robust to different nesting of schema 
elements due to its reliance of leaves rather than 
intermediate structure. DIKE is able to perform the same 
due to its entity merging operation. 
3. Cupid is the only tool that is able to disambiguate 
context dependent mappings. The results in the case of 
DIKE are much dependent on the user feedback. 

8.2 Real world example 
We used two XML purchase orders, CIDX and Excel, 
from www.BizTalk.org (see Figure 7). We chose these 
particular schemas because, while somewhat similar, they 
also have XML elements with differences in nesting, 
some missing elements, non-matching data types and 
slightly different names. For DIKE, we had to remodel 
the schemas as an appropriate ER model. 

Figure 7: Purchase order schemas 

The linguistic input to the systems differed as follows. 
For MOMIS the best possible meanings were chosen for 
each of the schema elements. For Cupid, the thesauri had 
a total of 4 abbreviations (UOM, PO, Qty, Num) and 2 
synonymy entries (Invoice,Bill; Ship,Deliver) that were 
relevant to the example. For DIKE, we added relevant 
entries needed for matching to the LSPD. 

The XML-element level mapping inferred by the three 
systems is summarized in Table 2. We make the following 
observations about the mappings: 
1. DIKE: The abstracted schema depends on the choice 
of ER model. We first chose to model the root elements, 
and all XML-elements that had any attributes, as entities. 

 Description Cupid DIKE MOMIS-ARTEMISβ 

1 Identical schemas  Y Y Y 
2 Atomic elements with same names, but different data typesχ Y Y Y 
3 Atomic elements with same data types, but different names (a prefix or suffix is added) Y Yα Y 
4 Different class names, but atomic elements same names and data types Y Y Y 
5 Different Nesting of the data – similar schemas with nested and flat structures Y Y N 
6 Type Substitution or Context dependent mapping  Y N N 
α - LSPD entries have to be added 
to identify corresponding elements 

β - for each name the corresponding matching entry in the WordNet 
dictionary has to be chosen to ensure correct mappings 

χ - data type compatibility 
tables are used by each tool 
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CIDX →→→→ Excel Cupid DIKE MOMIS – ARTEMIS 
POHeader → Header Yes Yes Yes 

Item → Item Yes Yes 

POLines → Items Yes Yes 

The two Item elements 
and the Items element 
are in a single cluster. 
POLines is in its own 
cluster. 

POBillTo→InvoiceTo Yes No 

POShipTo→DeliverTo Yes No 
Clustered together with 
the Address element 

Contact→Contact Yes Yes Yes 

PO→PurchaseOrder Yes Yes 
Yes, classes clustered, 
but corresponding 
elements not mapped. 

Table 2: Mapping comparison for CIDX-EXCEL example 

In  the  abstracted  schema  that results, entities POShipTo   
and Address are merged into a single entity, and so are 
PO, POBillTo and PurchaseOrder, and there are three 
relationships between these two entities (PO-POShipTo, 
InvoiceTo and DeliverTo). Hence we believe that some 
but not all the desired mapping was achieved. The XML-
attributes are matched according to the LSPD entries.  

To test type-conflict resolution, we then modeled PO-
ShipTo, POBillTo and POLines as entities in the CIDX 
ER model and DeliverTo, InvoiceTo and Items as relation-
ships from PurchaseOrder in the Excel ER model. There 
is one PO relationship in the CIDX schema that involves 
all 5 entities corresponding to the XML-elements that are 
children of PO. In the Excel schema, PurchaseOrder is an 
entity. DIKE correctly identifies mappings POBillTo→ 
InvoiceTo and POShipTo→DeliverTo, but not POLines→ 
Items. The entities POBillTo, POShipTo and Address are 
merged into one entity that has two relationships, 
InvoiceTo and DeliverTo, with the PurchaseOrder entity. 
2. MOMIS: Since ARTEMIS clusters the five classes 
(POShipTo, POBillTo, InvoiceTo DeliverTo, Address) 
together, and the corresponding elements in the PO and 
PurchaseOrder cluster are not mapped to each other, we 
believe that it did not achieve the desired mapping. This 
might be because, unlike Cupid, MOMIS does not 
perform context dependent matching. Not all possible 
attribute level matches are performed: e.g. the 
Street(1…4) attributes in the two schemas are not mapped 
1:1 (though their meanings in WordNet are the same, the 
names themselves are distinct, and hence we would 
expect them to match correctly). The XML-element Items 
was clustered with the Item classes (and not POLines).  
Since attribute matching is done only within global 
clusters (after the clusters have been decided), the XML-
attribute itemCount (in Items) is matched with Quantity 
(in Item).  
3. Cupid: Cupid identifies all the correct XML-attribute 
matching pairs (leaves in the example). Cupid is the only 
one to identify CIDX.line to correspond to Excel.itemNu-
mber (there were no supporting thesaurus entries). This 
matching was based purely on the data-type and structural 
matching. In addition, there are two false positives (e.g. 
CIDX.contactName is mapped to both Excel.contactName 
and Excel.companyName). This is due to the naïve 

mapping-generator; for every XML attribute in the target 
schema it returns the best matching XML attribute in the 
source (whether or not the latter was already mapped). 
The data types and elements in the vicinity of these XML-
attributes strongly match and thus these mappings are 
reported. This demonstrates the need for a more sophisti-
cated scheme to generate mappings from the similarity 
values. The XML-element mappings in [7] are reported 
based on their respective structural similarity values. 

In [7] we further demonstrate the utility of exploiting 
referential constraints as join nodes   for a different real-
world example, Cupid is able to infer relationships such 
as the correspondence of a single table in one of the 
schemas to the join of two tables in the other schema. 
MOMIS and DIKE are unable to infer similar 
relationships. 

8.3 Experimental Conclusions 
We draw the following conclusions from our experiments. 
1.  Linguistic matching of schema element names results 
in useful mappings. Cupid performs simple token manipu-
lation to be tolerant to variations in element names. 
Unlike Cupid, DIKE and MOMIS expect identical names 
for matching schema elements in the absence of linguistic 
input (via LSPD or the user interface to WordNet 
respectively). MOMIS uses the description logic based 
ODB tools to infer name affinities within a single schema 
(by exploiting object hierarchies and referential con-
straints), and also infers additional name affinities by tran-
sitive closure calculations — both are helpful features. 
2. The thesaurus plays a crucial role in linguistic 
matching. The effect of dropping the thesaurus varies. 
With Cupid, the resulting mapping is comparatively poor 
in the CIDX-Excel example, but it is unchanged in other 
examples [7]. The WordNet interface of MOMIS provides 
a useful tool for the user to pick from alternative mean-
ings in a thesaurus, but can be a bit restrictive (only one 
applicable word form). The sense of a word is often 
domain-specific; e.g. the correct sense of Header does not 
exist in WordNet, and the synonym has to be manually 
added. The tokenization done by Cupid, followed by 
stemming, can aid in the automatic selection of possible 
word meanings during name matching (done by the user 
in MOMIS) and make it easier to use off-the-shelf 
thesauri. A robust solution will need a module to 
incrementally learn synonyms and abbreviations from 
mappings that are performed over time. 
3. Using linguistic similarity with no structure 
similarity, Cupid cannot distinguish between the 
instances of a single XML-attribute in multiple contexts 
(there are 18 such XML attributes in the CIDX-Excel 
example). So, to make a fair evaluation of the utility of 
just the linguistic similarity, we compared elements in the 
two schemas using just their complete path names (from 
the root) in their schema trees. While in the CIDX-Excel 
example only 2 of the correct matching XML attribute 
pairs went undetected, there were as many as 7 false 



 

positive mappings. In a relational schema, where the path-
names include only the table and column names, the 
accuracy is much worse [7]. 
4. Granularity of similarity computation. MOMIS’s 
ultimate goal is a mediated schema, so mappings are 
performed at a class level granularity. As we have seen, 
class-level similarity computation, can sometimes lead to 
non-optimal mappings. Single classes might be nested or 
normalized differently (with referential constraints) in 
different schemas.  
5. Using the leaves in the schema tree for the structur-
al similarity computation allows the Cupid approach to 
match similar schemas that have different nesting. Also, 
reporting mappings in terms of leaves allows a sophisti-
cated query discovery module to generate the correct 
queries for data transformations.  
6. Incorporating structure information beyond the 
immediate vicinity of a schema element leads to better 
matching. Thus, in the CIDX-Excel example, Cupid is 
able to match POBillTo, POShipTo and POLines to 
InvoiceTo, DeliverTo and Items respectively. For the same 
reason, DIKE finds many of the matches. ARTEMIS tries 
to incorporate such information using the ODB-Tools 
during the name affinity computation.  
7. Context-dependent mappings generated by con-
structing schema trees are useful when inferring different 
mappings for the same element in different contexts. 
8. Performance parameters. Some of the mapping 
results for these tools might not be the best achievable by 
them, in that improvements may be possible by adjusting 
few of their parameters. Tuning performance parameters 
in some cases requires expert knowledge of these tools. 
Thus auto-tuning is an open problem, and a requirement 
for a robust solution.   

9 Summary and Future Work 
In this paper, we studied schema matching as an indepen-
dent problem. We provided a survey and taxonomy of 
past approaches. We presented a new algorithm that 
improves on past methods in many respects, for example, 
by including a substantial linguistic matching step and by 
biasing matches by leaves of a schema. We implemented 
the algorithm as an independent component. And we 
compared our implementation to two others. This 
demonstrated the strengths of our approach and is a 
possible model for future algorithm comparisons.  

While we believe we have made progress on the 
schema-matching problem, we do not claim to have 
solved it. A truly robust solution needs to include other 
techniques, such as machine learning applied to instances, 
natural language technology, and pattern matching to 
reuse known matches. Some of the immediate challenges 
for further work include: integrating Cupid transparently 
with an off-the-shelf thesaurus; using schema annotations 
(textual descriptions of schema elements in the data dic-
tionary) for the linguistic matching; and automatic tuning 
of the control parameters. Scalability analysis and testing 

are necessary to study the performance on large-sized 
schemas. And much more comparative analysis of algo-
rithms is needed. Our long-term goal is to make Cupid be 
a truly general-purpose schema matching component, that 
can be used in systems for schema integration, data 
migration, etc. The work reported here is just one step 
along what we expect will be a very long research path. 
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