The Gamma Database Machine Project

David DeWitt, Shahram Ghandeharizadeh, Donovan Schcheider, Allan Bricker, Hui-i Hsiao, and Rick Rasmussen

Slides adopted from those of Deepak Bastakoty, and Ghandeharizadeh and DeWitt, Jianhao Cao

Presenter: Tanya Prasad
Discussion Leader: Jonas Tai
UBC CPSC 504 – 2023.03.06
Motivation

Why parallel databases?

- Obtain faster response time
- Increase query throughput
- Improve robustness to failure
- Reduce processor workload
- Enable scalability
Motivation

- DIRECT
 - Early parallel database project
 - Shared memory
 - Centralized control of parallel algorithms
Motivation

❑ DIRECT
 • Early parallel database project
 • Shared memory
 • Centralized control of parallel algorithms

Impossible to scale the architecture to hundreds of processors!
Motivation

- **Share-nothing**
 - Each processor has its own memory or disk(s)

- **Hash-based parallel algorithms**
 - No need for centralized control
Motivation

- Horizontal partitioning (declustering)
 - Tuples of a relation distributed over multiple disks.
 - Round robin; hashed; range partitioned
Hardware Architecture

- **GAMMA 1.0**
 - 17 VAX 11/750 processors, each with 2 MB memory
 - Another VAX as the host machine
 - An 80 Mb/s token ring to connect processors
 - 8 processors attached with 333 MB disk drivers

- **Problems**
 - The token ring network packet size is too small (2K bytes)
 - The bandwidth mismatch between the token ring and the Unibus on the 11/750
 - Insufficient memory for each processor
Hardware Architecture

- **GAMMA 2.0**
 - 32 processor iPSC/2 hypercube from Intel
 - 386 CPU, 8 MB memory
 - 330 MB MAXTOR 4380 disk drive with a 45 KB RAM buffer
 - Custom VLSI routing modules for network communication
 - NOSE (Gamma’s OS) run as a thread package inside a process
Discussion 1 (Groups of 3, at least 1 Systems)

- As some of you pointed out in their reviews, the authors spend a lot of time talking about hardware
 - Issues in Gamma Version 1.0 such as insufficient memory
 - Problems with the disk controller in Gamma Version 2.0
 - Conversion problems because of different addressing schemes
- What do you think was the motivation to include this long section about the hardware and the problems they faced?
- Do you think the experiences they made with the chosen hardware strengthen, weaken or do not impact the paper?
Software Architecture

- Horizontally partitioned data: round robin; hashed; range partitioned
- One for each active Gamma user
- One for each multisite query

```
---------
<table>
<thead>
<tr>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPM</td>
</tr>
<tr>
<td>S  CM</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

---------
<table>
<thead>
<tr>
<th>HPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDP</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

---------
<table>
<thead>
<tr>
<th>OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

---------
<table>
<thead>
<tr>
<th>OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

---------
<table>
<thead>
<tr>
<th>OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

---------
<table>
<thead>
<tr>
<th>OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```
Software Architecture

The split table defines a mapping of values to a set of destination processes.

<table>
<thead>
<tr>
<th>Value</th>
<th>Destination Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(Processor #3, Port #5)</td>
</tr>
<tr>
<td>1</td>
<td>(Processor #2, Port #13)</td>
</tr>
<tr>
<td>2</td>
<td>(Processor #7, Port #6)</td>
</tr>
<tr>
<td>3</td>
<td>(Processor #9, Port #15)</td>
</tr>
</tbody>
</table>
Query Processing

- **Selection**
 - Selection on the partitioning attribute
 - Direct the selection to a subset of node if hash or range partitioned.
 - Initiate the selection on all nodes if round-robin partitioned.

- **Join**
 - Partition relations into disjoint subsets (buckets) by hashing on the join attribute.
 - Four types of parallel joins: sort-merge, Grace, Simple, Hybrid.
 - The Hybrid hash join almost always provides the best performance.
The Parallel Hybrid Hash Join

- A partitioning split table separates the relations into N logical buckets.
- A joining table sends tuples in the first bucket to M processors for the join operation.
- In-memory hash table for the first bucket of the inner table to be joined with the first bucket of the outer table.
- The N-1 buckets are temporarily stored on disks.

Fig. 8. Partitioning of R into N logical buckets for hybrid hash-join.
Query Processing Algorithms

- **Aggregate functions**
 - Each processor computes a partial results on its partition.
 - The processors redistribute the results on hashing on the “group by” attribute.

- **Update operators**
 - Most operators are implemented with standard techniques.
 - A replace operator will send a tuple to the partition to which it belongs.
Transaction and Failure Management

- **Concurrency control**
 - Two-phase locking.
 - A local lock manager with a lock table and a transaction wait-for-graph.
 - A centralized deadlock detector communicate with each node.

- **Recovery and Log manager**
 - A log record is generated when a tuple is updated.
 - Log records are sent to one or more log managers.
 - The log manager keeps track of the last flushed record from each node.
 - The buffer managers observe the WAL protocol.
Data Placement

- **Chained declustering**

<table>
<thead>
<tr>
<th>Node</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Copy</td>
<td>R0</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
<td>R5</td>
<td>R6</td>
<td>R7</td>
</tr>
<tr>
<td>Backup Copy</td>
<td>r7</td>
<td>r0</td>
<td>r1</td>
<td>r2</td>
<td>r3</td>
<td>r4</td>
<td>r5</td>
<td>r6</td>
</tr>
</tbody>
</table>

- **Interleaved declustering**

<table>
<thead>
<tr>
<th>Node</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Copy</td>
<td>R0</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
<td>R5</td>
<td>R6</td>
<td>R7</td>
</tr>
<tr>
<td>Backup Copy</td>
<td>r0.0</td>
<td>r0.1</td>
<td>r0.2</td>
<td>r1.0</td>
<td>r1.1</td>
<td>r4.0</td>
<td>r4.1</td>
<td>r4.2</td>
</tr>
<tr>
<td></td>
<td>r1.2</td>
<td>r2.1</td>
<td>r2.2</td>
<td>r2.0</td>
<td>r5.2</td>
<td>r5.0</td>
<td>r5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r3.0</td>
<td>r3.1</td>
<td>r3.2</td>
<td></td>
<td>r6.1</td>
<td>r6.2</td>
<td>r6.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r7.0</td>
<td>r7.1</td>
<td>r7.2</td>
<td></td>
</tr>
</tbody>
</table>
Load Balancing When One Node Fails

Access both the primary and backup copies to balance load on each node.
Ideal Parallelism

- **Speedup**
 Given a system with 1 node, does adding n nodes speed it up with a factor of n?

 $$Speedup = \frac{\text{small system elapsed time}}{\text{big system elapsed time}}$$

- **Scaleup**
 Given a system with 1 node, does the response time remain the same with n nodes?

 $$Scaleup = \frac{\text{small system elapsed time on small problem}}{\text{big system elapsed time on big problem}}$$
Discussion 2 (Groups of 4)

- The Gamma database paper is quite old (as you probably also noticed from the used hardware).
- What kind of use cases do you think did the authors have in mind?
- Why do you think parallel databases were not a big breakthrough at the time?
- How do you think the demand for parallel databases has changed since then?
Three key ideas that enables Gamma to be scaled to hundreds of processors:

- Horizontally partitioned relations
- Extensive use of hash-based parallel algorithms
- Dataflow scheduling techniques for multioperator queries
MapReduce: Simplified Data Processing on Large Clusters

Jeff Dean, Sanjay Ghemawat
Google, OSDI 2004

Slides based on those by authors and other online sources

Presenter: Tanya Prasad
Motivation

- Large scale data processing
 - Using hundreds or thousands of machines but without the hassle of management
- MapReduce benefits
 - Automatic parallelization & distribution
 - Fault tolerance
 - I/O scheduling
 - Monitoring & status updates
Programming model

- Input & Output: each a set of key/value pairs
- Programmer specifies two functions:
 - `map(in_key, in_value) -> list(out_key, intermediate_value)`
 - Processes each input key/value pair
 - Produces set of intermediate pairs
 - `reduce(out_key, list(intermediate_value)) -> list(out_value)`
 - Combines all intermediate values for a particular key
 - Produces a set of merged output values (usually just one)

Inspired by similar primitives in LISP and other
MapReduce model widely applicable

- MapReduce programs in Google source tree (2003-04)

Examples

- distributed grep
- term-vector / host
- document clustering
- web link-graph reversal
- inverted index construction
- statistical machine translation
- distributed sort
- web access log stats
- machine learning
Implementation overview

- Typical cluster:
 - 100s/1000s of 2-CPU x86 machines, 2-4 GB of memory
 - Limited bisection bandwidth
 - Storage is on local IDE disks
 - GFS: distributed file system manages data (SOSP'03)
 - Job scheduling system: jobs made up of tasks, scheduler assigns tasks to machines

- Implementation as C++ library linked into user programs
Overall execution workflow
Discussion 3 (Pairs)

- MapReduce breaks with a lot of conventions: Input data has no schema, programs are written in Java, no indices,...
 - Why do you think MapReduce was still such a huge success?
 - Why or why not is that surprising to you?
- Discuss the questions with the lessons from last week's discussion in mind. How do they hold up here?
 - Lesson 12: Unless there is a big performance or functionality advantage, new constructs will go nowhere
 - Lesson 13: Packages will not sell to users unless they are in “major pain”
 - Lesson 16: Schema-last is probably a niche market
Fault-tolerance via re-execution

On worker failure:
 • Detect failure via periodic heartbeats
 • Re-execute completed and in-progress *map* tasks
 - Output stored on the local disk becomes inaccessible
 • Re-execute in progress *reduce* tasks
 - Output stored in a global file system
 • Task completion committed through master

Master failure:
 • Left unhandled as considered unlikely
 • Abort the MapReduce computation
Locality Optimization

- Master scheduling policy:
 - Asks GFS for locations of replicas of input file blocks
 - Map tasks typically split into 64MB (== GFS block size)
 - Map tasks scheduled so GFS input block replica are on same machine or same rack or nearest machine.
 - Goal to reduce communication overhead as much as possible

- Effect: Thousands of machines read input at local disk speed
 - Without this, rack switches limit read rate
Task Granularity

- Fine granularity tasks: map tasks >> machines
 - Minimizes time for fault recovery
 - Can pipeline shuffling with map execution
 - Better dynamic load balancing

- Often use 200K map and 5000 reduce tasks running on 2000 machines
Backup Execution

- Slow workers significantly lengthen completion time
 - Other jobs consuming resources on machine
 - Bad disks with soft errors transfer data very slowly
 - Weird things: processor caches disabled (!!)

- Solution: Near end of phase, spawn backup task copies
 - Whichever one finishes first "wins"

- Benefit: Dramatically shortens job completion time
Skipping Bad Records

- Map/Reduce functions sometimes fail for particular inputs
 - Best solution is to debug & fix, but not always possible

- On segmentation fault:
 - Send UDP packet to master from the signal handler
 - Include sequence number of record being processed

- If master sees two failures for the same record:
 - Next worker is told to skip the record

- Effect: Can work around bugs in third-party libraries
Some Refinements

- Sorting guarantees within each reduce partition
- Compression of intermediate data
- Combiner: useful for saving network bandwidth
- Local sequential execution for debugging/testing
- User-defined counters
MapReduce Grep

Locality optimization helps:
- 1800 machines read 1 TB at peak ~31 GB/s
- W/out this, rack switches would limit to 10 GB/s

Startup overhead is significant for short jobs
MapReduce Sort

- Backup tasks reduce job completion time a lot!
- System deals well with failures
Google Experience: Rewrite of Production Indexing System

- Rewrote Google's production indexing system using MapReduce
 - New code is simpler, easier to understand
 - MapReduce takes care of failures, slow machines
 - Easy to make indexing faster by adding more machines
Discussion 4 (Groups of 4)

- With the Gamma database project and MapReduce we have seen two models to parallelize data processing:
 - What are the differences and similarities?
 - Which use cases are they designed for? Do they have the same kind of applications in mind?
 - Which model do you find more convincing and why?

- Gamma Database key features:
 - Parallel Database
 - Horizontally partitioned relations
 - Extensive use of hash-based parallel algorithms
 - Dataflow scheduling techniques for multioperator queries
Conclusions

- MapReduce has proven to be a useful abstraction.
- Network bandwidth is a scarce resource.
- Redundant execution can reduce the impact of slow machines and machine failures.