
Query Optimisation
PRESENTED BY: RUT 
DISCUSSION LEAD: WILSON

* Some slides borrowed from Rachel’s Presentation



Architecture of a Query Optimiser 

Source: https://15721.courses.cs.cmu.edu/spring2023/slides/16-optimizer1.pdf



Logical Plan Physical Plan

What is Logical/Physical Plan?

•Action to carry out

•E.g. JOIN

•Algorithm/Implementation 
to use to perform action

•E.g. Merge-Join, Hash-Join



Starburst: Motivation

•DBMS were unable to support non-administrative (e.g. 
engineering or science-related) applications 
•Needed extensions to data types

•Needed extensibility to support arbitrary applications

•Note: Publication time when emphasis on OODBMS



Starburst: Features and Components

Features (supports extensions for):
•Languages (e.g. Data Types)

•Data Management (e.g. Access/Storage Methods)
•Internal Processing

Components:
•Corona: Query Language Processor

•Core: Data Manager (similar to RDS/RSS in System R)



Starburst: Query Language - Hydrogen

•Similar to SQL but more orthogonal

•Introduces Table Expressions

•Extensions of Functions:
•Scalar Functions (e.g. Area of a rectangle, Mean/Stdev)

•Set Predicate Functions (e.g. “Majority of”)

•Table Functions (e.g. SAMPLE(table, int))



Discussion (4 people)

•Starburst envision having a small group of more 
knowledgeable people to work on it instead of general 
programmers.

•Do you think this is a better direction to take in terms of 
extensibility? 

•Can you think of other examples of this in open-source 
projects? 

•What are some good/bad things you see with this model. 
Why or why not do you think it will work here.



Starburst: Language Processing



Starburst: Example of The Query Graph Model

SELECT partno, price, order_qty

   FROM quotations Q1

   WHERE Q1.partno IN

   (SELECT partno

      FROM inventory Q3

      WHERE Q3.onhand_qty < Q1.order_qty

                     AND Q3.type = ‘cpu’)



Starburst: Rewriting the Query

•New Rule System

•Language: C
•Rule = Condition + Action

•Transformation: QGM -> QGM



Starburst: Rewriting the Query

•Pre-defined query rewrite classes
•Predicate Migration

•Projection Push-down

•Operation Merging



Discussion (2 people)

•We can see that the query rewrite rules are 
quite verbose and exhaustive.

•What do you think of this design choice? Do you have 
any recommendations instead?



Starburst: Optimised Query Graph Model



Starburst: Query Execution Plans

•STARs: Strategy Alternative Rules 
(Grammar for Execution Plans)

•LOLEPOP: Terminal operators/functions/implementations
(e.g. SCAN, SORT, JOIN)

•Query Execution Plan: Nested invocations of LOLEPOPs



Starburst: Example QEP – Bottom-Up Optimisation

SELECT ARTIST.NAME 
  FROM ARTIST, APPEARS, ALBUM 
  WHERE ARTIST.ID=APPEARS.ARTIST_ID
    AND APPEARS.ALBUM_ID=ALBUM.ID
    AND ALBUM.NAME=“Andy's Drill Remix” 
    ORDER BY ARTIST.ID 

Retrieve names of artists that are in 
Andy’s mix ordered by artist ID

Source: https://15721.courses.cs.cmu.edu/spring2023/slides/16-optimizer1.pdf



Starburst: Example QEP – Bottom-Up Optimisation

SELECT ARTIST.NAME 
  FROM ARTIST, APPEARS, ALBUM 
  WHERE ARTIST.ID=APPEARS.ARTIST_ID
    AND APPEARS.ALBUM_ID=ALBUM.ID
    AND ALBUM.NAME=“Andy's Drill Remix” 
    ORDER BY ARTIST.ID 

Retrieve names of artists that are in 
Andy’s mix ordered by artist ID

Source: https://15721.courses.cs.cmu.edu/spring2023/slides/16-optimizer1.pdf



Starburst: Example QEP – Bottom-Up Optimisation

SELECT ARTIST.NAME 
  FROM ARTIST, APPEARS, ALBUM 
  WHERE ARTIST.ID=APPEARS.ARTIST_ID
    AND APPEARS.ALBUM_ID=ALBUM.ID
    AND ALBUM.NAME=“Andy's Drill Remix” 
    ORDER BY ARTIST.ID 

Retrieve names of artists that are in 
Andy’s mix ordered by artist ID

Source: https://15721.courses.cs.cmu.edu/spring2023/slides/16-optimizer1.pdf



Starburst: Accounting for Costs

•No need to evaluate all Query Execution Plans (QEPs)

•Table has a summary, used by the cost model

•Add cost when moving up the QEP graph

•Exhaustive searching?



Discussion (2 people)

•Who do you think would be a DBC (what kind of 
education, skills)? What are some challenges with 
needing such specialized skill set?



Volcano: Motivation 

•General Purpose DBMS Optimiser Generator

•Application-specific optimisations:
•Scientific and OO-DBMS the goal (but can generalise)



Architecture of a Query Optimiser 

Source: https://15721.courses.cs.cmu.edu/spring2023/slides/16-optimizer1.pdf



Volcano: Overview of the Optimiser Generator



Volcano: Design Principles

1. Query processing based on algebra, even in OODBMS

2. Rules are expressive for extending/creating optimisers

3. Query Rewrite: Equivalent Algebraic expressions

4. Rules are compiled (not interpreted)

5. Directed Dynamic Programming to search optimal plan



Volcano: Inputs and Outputs

Input:
•Set of Logical Operators
•Algebraic Transformation Rules 
•Algorithms/Enforcers
•Implementation Rules (Operators to Algorithms)
•Cost Functions
•Applicability Function for each algorithm/enforcer

Output: Generated Optimiser



Discussion (2 people, optional)

-Notice that the cost function can be customized to 
what we want. Usually estimated number of I/O is 
used, but can you think of other cost functions that 
might be helpful?



Volcano: Search Engine

•Same search engine for all optimisers

•Directed Dynamic Programming (backward chaining)

•Find cost of useful moves only



Volcano: Example QEP – Top-down Optimisation

SELECT ARTIST.NAME 
  FROM ARTIST, APPEARS, ALBUM 
  WHERE ARTIST.ID=APPEARS.ARTIST_ID
    AND APPEARS.ALBUM_ID=ALBUM.ID
    AND ALBUM.NAME=“Andy's Drill Remix” 
    ORDER BY ARTIST.ID 

Retrieve names of artists that are in 
Andy’s mix ordered by artist ID

Source: https://15721.courses.cs.cmu.edu/spring2023/slides/16-optimizer1.pdf



Volcano: Example QEP – Top-down Optimisation

SELECT ARTIST.NAME 
  FROM ARTIST, APPEARS, ALBUM 
  WHERE ARTIST.ID=APPEARS.ARTIST_ID
    AND APPEARS.ALBUM_ID=ALBUM.ID
    AND ALBUM.NAME=“Andy's Drill Remix” 
    ORDER BY ARTIST.ID 

Retrieve names of artists that are in 
Andy’s mix ordered by artist ID

Source: https://15721.courses.cs.cmu.edu/spring2023/slides/16-optimizer1.pdf



Volcano: Example QEP – Top-down Optimisation

SELECT ARTIST.NAME 
  FROM ARTIST, APPEARS, ALBUM 
  WHERE ARTIST.ID=APPEARS.ARTIST_ID
    AND APPEARS.ALBUM_ID=ALBUM.ID
    AND ALBUM.NAME=“Andy's Drill Remix” 
    ORDER BY ARTIST.ID 

Retrieve names of artists that are in 
Andy’s mix ordered by artist ID

Source: https://15721.courses.cs.cmu.edu/spring2023/slides/16-optimizer1.pdf



Volcano: Example QEP – Top-down Optimisation

SELECT ARTIST.NAME 
  FROM ARTIST, APPEARS, ALBUM 
  WHERE ARTIST.ID=APPEARS.ARTIST_ID
    AND APPEARS.ALBUM_ID=ALBUM.ID
    AND ALBUM.NAME=“Andy's Drill Remix” 
    ORDER BY ARTIST.ID 

Retrieve names of artists that are in 
Andy’s mix ordered by artist ID

Source: https://15721.courses.cs.cmu.edu/spring2023/slides/16-optimizer1.pdf



Discussion (4 people)

• Do you think by today's standard this paper would be 
published? At what point is writing code research and 
what point is it considered implementing a product? 
What is the distinction and has the line 
blurred/became clearer over the years?

• (An interesting point someone brough up is the 
paper reveals author identity)



Starburst Volcano

Volcano: Comparison to Startburst

•Bottom-up optimization

•Hierarchy of LOLEPOPS
(Difficult to understand)

•Query rewrites based on 
heuristics only (no cost)

•Top-down Optimisation

•Algebraic equivalence
(Easier to understand)

•Query rewrite considers 
cost of execution



Volcano: Evaluation of the system

•Comparison with Exodus

•Used similar data model 
descriptions for both 

•Exodus took a lot of memory

•Exodus does not exploit 
physical properties for QEP

•Comparison with Exodus 



Discussion (2 people)

•The benchmark the paper use is quite small. Do you 
think it's representative of the performance? How 
would you test it instead to show the effectiveness?



Summary

•Tools for extending DBMS

•Separation of logical and physical properties

•Heuristics vs Cost-based optimisations

•Consider physical properties for optimisation, too


	Slide 1: Query Optimisation
	Slide 2: Architecture of a Query Optimiser 
	Slide 3: What is Logical/Physical Plan?
	Slide 4: Starburst: Motivation
	Slide 5: Starburst: Features and Components
	Slide 6: Starburst: Query Language - Hydrogen
	Slide 7: Discussion (4 people)
	Slide 8: Starburst: Language Processing
	Slide 9: Starburst: Example of The Query Graph Model
	Slide 10: Starburst: Rewriting the Query
	Slide 11: Starburst: Rewriting the Query
	Slide 12: Discussion (2 people)
	Slide 13: Starburst: Optimised Query Graph Model
	Slide 14: Starburst: Query Execution Plans
	Slide 15: Starburst: Example QEP – Bottom-Up Optimisation
	Slide 16: Starburst: Example QEP – Bottom-Up Optimisation
	Slide 17: Starburst: Example QEP – Bottom-Up Optimisation
	Slide 18: Starburst: Accounting for Costs
	Slide 19: Discussion (2 people)
	Slide 20: Volcano: Motivation 
	Slide 21: Architecture of a Query Optimiser 
	Slide 22: Volcano: Overview of the Optimiser Generator
	Slide 23: Volcano: Design Principles
	Slide 24: Volcano: Inputs and Outputs
	Slide 25: Discussion (2 people, optional)
	Slide 26: Volcano: Search Engine
	Slide 27: Volcano: Example QEP – Top-down Optimisation
	Slide 28: Volcano: Example QEP – Top-down Optimisation
	Slide 29: Volcano: Example QEP – Top-down Optimisation
	Slide 30: Volcano: Example QEP – Top-down Optimisation
	Slide 31: Discussion (4 people)
	Slide 32: Volcano: Comparison to Startburst
	Slide 33: Volcano: Evaluation of the system
	Slide 34: Discussion (2 people)
	Slide 35: Summary

